Skip to main content

Sudden Unexpected Death in Endocrine Diseases

  • Chapter
  • First Online:
Sudden Death

Abstract

Sudden unexpected death (SUD) refers to the sudden (usually occurs within 24 h from the onset of the initial symptoms) and unexpected (not caused by obvious reasons like trauma, poisoning, violent asphyxia, etc.) death of a person. It may be the result of one or several serious underlying diseases, while the initial symptoms may be totally different from the common manifestations of those diseases. Disorders of many endocrine organs can cause SUD, and some of these conditions are reviewed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vance NF, Brittenham M. Hypopituitarism. NEJM. 1994;330:1651–62.

    CAS  PubMed  Google Scholar 

  2. Schneider HJ, Aimaretti G, Kreitschmann-Andermahr I, et al. Hypopituitarism. Lancet. 2007;369:1461–70.

    CAS  PubMed  Google Scholar 

  3. Nguyen R, Kirsten MF, et al. The international incidence of traumatic brain injury: a systematic review and meta-analysis. Can J Neurol Sci. 2016;43(6):774–85.

    PubMed  Google Scholar 

  4. Schneider HJ, Kreitschmann-Andermahr I, Ghigo E, et al. Hypothalamopituitary dysfunction following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a systematic review. JAMA. 2007;298(12):1429–38.

    CAS  PubMed  Google Scholar 

  5. Benvenga S, Campenni A, Ruggeri RM, et al. Clinical review 113: hypopituitarism secondary to head trauma. J Clin Endocrinol Metab. 2000;85(4):1353–61.

    CAS  PubMed  Google Scholar 

  6. Schneider M, Schneider HJ, Stalla GK. Anterior pituitary hormone abnormalities following traumatic brain injury. J Neurotrauma. 2005;22(9):937–46.

    PubMed  Google Scholar 

  7. Caputo M, Mele C, Prodam F, et al. Clinical picture and the treatment of TBI-induced hypopituitarism. Pituitary. 2019;22(3):261–9.

    PubMed  Google Scholar 

  8. Tanriverdi F, Taheri S, Ulutabanca H, et al. Apolipoprotein E3/E3 genotype decreases the risk of pituitary dysfunction after traumatic brain injury due to various causes: preliminary data. J Neurotrauma. 2008;25(9):1071–7.

    PubMed  Google Scholar 

  9. Tanriverdi F, De Bellis A, Bizzarro A, et al. Antipituitary antibodies after traumatic brain injury: is head trauma-induced pituitary dysfunction associated with autoimmunity. Eur J Endocrinol. 2008;159(1):7–13.

    CAS  PubMed  Google Scholar 

  10. Karaca Z, Tanrıverdi F, Ünlühızarcı K, et al. GH and pituitary hormone alterations after traumatic brain injury. Prog Mol Biol Transl Sci. 2016;138:167–91.

    CAS  PubMed  Google Scholar 

  11. Karamouzis I, Pagano L, Prodam F, et al. Clinical and diagnostic approach to patients with hypopituitarism due to traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), and ischemic stroke (IS). Endocrine. 2016;52(3):441–50.

    CAS  PubMed  Google Scholar 

  12. Klose M, Juul A, Struck J, et al. Acute and long-term pituitary insufficiency in traumatic brain injury: a prospective single-centre study. Clin Endocrinol (Oxf). 2007;67(4):598–606.

    CAS  Google Scholar 

  13. Tanriverdi F, Agha A, Aimaretti G, et al. Manifesto for the current understanding and management of traumatic brain injury-induced hypopituitarism. J Endocrinol Invest. 2011;34(7):541–3.

    CAS  PubMed  Google Scholar 

  14. Defense Centers of Excellence (DCoE) for psychological health and traumatic brain injury. 2017. https://dvbic.dcoe.mil/files/resources/DCoE_TBI_NED_Clnical_Recommendations.pdf. Accessed Sept 17.

  15. Ghigo E, Masel B, Aimaretti G, et al. Consensus guidelines on screening for hypopituitarism following traumatic brain injury. Brain Inj. 2005;19(9):711–24.

    CAS  PubMed  Google Scholar 

  16. Silva PP, Bhatnagar S, Herman SD, et al. Predictors of hypopituitarism in patients with traumatic brain injury. J Neurotrauma. 2015;32(22):1789–95.

    PubMed  Google Scholar 

  17. Schneider M, Schneider HJ, Yassouridis A, et al. Predictors of anterior pituitary insufficiency after traumatic brain injury. Clin Endocrinol. 2008;68(2):206–12.

    CAS  Google Scholar 

  18. Kreitschmann-Andermahr I, Poll EM, Reineke A, et al. Growth hormone deficient patients after traumatic brain injury—baseline characteristics and benefits after growth hormone replacement—an analysis of the German KIMS database. Growth Horm IGF Res. 2008;18(6):472–8.

    CAS  PubMed  Google Scholar 

  19. High WM Jr, Briones-Galang M, Clark JA, et al. Effect of growth hormone replacement therapy on cognition after traumatic brain injury. J Neurotrauma. 2010;27(9):1565–75.

    PubMed  PubMed Central  Google Scholar 

  20. Agha A, Phillips J, O’Kelly P, et al. The natural history of post-traumatic hypopituitarism: implications for assessment and treatment. Am J Med. 2005;118(12):1416.

    PubMed  Google Scholar 

  21. Reifschneider K, Auble BA, Rose SR. Update of endocrine dysfunction following pediatric traumatic brain injury. J Clin Med. 2015;4(8):1536–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosario ER, Aqeel R, Brown MA, et al. Hypothalamic-pituitary dysfunction following traumatic brain injury affects functional improvement during acute inpatient rehabilitation. J Head Trauma Rehabil. 2013;28(5):390–6.

    PubMed  Google Scholar 

  23. Popovic V, Aimaretti G, Casanueva FF, et al. Hypopituitarism following traumatic brain injury. In: JOL J, Christiansen JS, editors. Growth hormone deficiency in adults, vol. 33. Basel: Karger; 2005. p. 33–44.

    Google Scholar 

  24. Zaben M, El Ghoul W, Belli A. Post-traumatic head injury pituitary dysfunction. Disabil Rehabil. 2013;35(6):522–5.

    PubMed  Google Scholar 

  25. Bhoelan S, Langerak T, Noack D, et al. Hypopituitarism after orthohantavirus infection: what is currently known? Viruses. 2019;11(4):340.

    CAS  PubMed Central  Google Scholar 

  26. Steer A. Pathology of hemorrhagic fever: A comparison of the findings—1951 and 1952. Am J Pathol. 1955;31(2):201–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lukes RJ. The pathology of thirty-nine fatal cases of epidemic hemorrhagic fever. Am J Med. 1954;16(5):639–50.

    CAS  PubMed  Google Scholar 

  28. Lim TH, Chang KH, Han MC, et al. Pituitary atrophy in Korean (epidemic) hemorrhagic fever: CT correlation with pituitary function and visual field. AJNR Am J Neuroradiol. 1986;7(4):633–7.

    CAS  PubMed  Google Scholar 

  29. Valtonen M, Kauppila M, Kotilainen P, et al. Four fatal cases of nephropathia epidemica. Scand J Infect Dis. 1995;27(5):515–7.

    CAS  PubMed  Google Scholar 

  30. Sarıgüzel N, Hofmann J, Canpolat AT, et al. Dobrava orthohantavirus infection complicated by panhypopituitarism, Istanbul, Turkey, 2010. Emerg Infect Dis. 2012;18(7):1180–3.

    PubMed  PubMed Central  Google Scholar 

  31. Suh DC, Park JS, Park SK, et al. Pituitary hemorrhage as a complication of hantaviral disease. AJNR Am J Neuroradiol. 1995;16(1):175–8.

    CAS  PubMed  Google Scholar 

  32. Jost C, Krause R, Graninger W, et al. Transient hypopituitarism in a patient with nephropathia epidemica. BMJ Case Rep. 2009;2009:pii: bcr02.2009.1538.

    Google Scholar 

  33. Pekic S, Cvijovic G, Stojanovic M, et al. Hypopituitarism as a late complication of hemorrhagic fever. Endocrine. 2005;26(2):79–82.

    CAS  PubMed  Google Scholar 

  34. Stojanovic M, Pekic S, Cvijovic G, et al. High risk of hypopituitarism in patientswho recovered from hemorrhagic fever with renal syndrome. J Clin Endocrinol Metab. 2008;93(7):2722–8.

    CAS  PubMed  Google Scholar 

  35. Hautala T, Sironen T, Vapalahti O, et al. Hypophyseal hemorrhage and panhypopituitarism during Puumala virus infection: magnetic resonance imaging and detection of viral antigen in the hypophysis. Clin Infect Dis. 2002;35(1):96–101.

    PubMed  Google Scholar 

  36. Tarvainen M, Mäkelä S, Mustonen JE. Autoimmune polyendocrinopathy and hypophysitis after Puumala orthohantavirus infection. Endocrinol Diabetes Metab Case Rep. 2016;2016:16-0084.

    PubMed  PubMed Central  Google Scholar 

  37. Burggraaf J, Tulen JH, Lalezari S, et al. Sympathovagal imbalance in hyperthyroidism. Am J Physiol Endocrinol Metab. 2001;281(1):E190–5.

    CAS  PubMed  Google Scholar 

  38. Kahaly GJ, Wagner S, Nieswandt J, et al. Stress echocardiography in hyperthyroidism. J Clin Endocrinol Metab. 1999;84(7):2308–13.

    CAS  PubMed  Google Scholar 

  39. Fazio S, Palmieri EA, Lombardi G, et al. Effects of thyroid hormone on the cardiovascular system. Recent Prog Horm Res. 2004;59:31–50.

    CAS  PubMed  Google Scholar 

  40. Napoli R, Biondi B, Guardasole V, et al. Impact of hyperthyroidism and its correction on vascular reactivity in humans. Circulation. 2001;104(25):3076–80.

    CAS  PubMed  Google Scholar 

  41. Kahaly GJ, Dillmann WH. Thyroid hormone action in the heart. Endocr Rev. 2005;26(5):704–28.

    CAS  PubMed  Google Scholar 

  42. Ohshima T, Maeda H, Takayasu T, et al. An autopsy case of sudden death due to hyperthyroidism. Nihon Hoigaku Zasshi. 1990;44(4):365–70.

    CAS  PubMed  Google Scholar 

  43. Terndrup TE, Heisig DG, Garceau JP. Sudden death associated with undiagnosed Graves’ disease. J Emerg Med. 1990;8(5):553–5.

    CAS  PubMed  Google Scholar 

  44. Shirani J, Barron MM, Pierre-Louis ML, et al. Congestive heart failure, dilated cardiac ventricles, and sudden death in hyperthyroidism. Am J Cardiol. 1993;72(3):365–8.

    CAS  PubMed  Google Scholar 

  45. Wei D, Yuan X, Yang T, et al. Sudden unexpected death due to Graves’ disease during physical altercation. J Forensic Sci. 2013;58(5):1374–7.

    PubMed  Google Scholar 

  46. Korte AKM, Derde L, van Wijk J, et al. Sudden cardiac arrest as a presentation of Brugada syndrome unmasked by thyroid storm. BMJ Case Rep. 2015;2015:bcr2015212351.

    PubMed  PubMed Central  Google Scholar 

  47. Nayak B, Burman K. Thyrotoxicosis and thyroid storm. Endocrinol Metab Clin North Am. 2006;35(4):663–86.

    CAS  PubMed  Google Scholar 

  48. Zhang MZ, Li BX, Zhao R, et al. Forensic analysis of 6 cases of sudden death due to hyperthyroid heart disease. Fa Yi Xue Za Zhi. 2017;33(5):482–5.

    CAS  PubMed  Google Scholar 

  49. Meseeha M, Parsamehr B, Kissell K, et al. Thyrotoxic periodic paralysis: a case study and review of the literature. J Commun Hosp Intern Med Perspect. 2017;7(2):103–6.

    Google Scholar 

  50. Klubo-Gwiezdzinska J, Wartofsky L. Thyroid emergencies. Med Clin North Am. 2012;96(2):385–403.

    PubMed  Google Scholar 

  51. Vijayakumar A, Ashwath G, Thimmappa D. Thyrotoxic periodic paralysis: clinical challenges. J Thyroid Res. 2014;2014:649502.

    PubMed  PubMed Central  Google Scholar 

  52. Chan A, Shinde R, Chow CC, et al. In vivo and in vitro sodium pump activity in subjects with thyrotoxic periodic paralysis. BMJ. 1991;303(6810):1096–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Soonthornpun S, Setasuban W, Thamprasit A. Insulin resistance in subjects with a history of thyrotoxic periodic paralysis (TPP). Clin Endocrinol (Oxf). 2009;70(5):794–7.

    CAS  Google Scholar 

  54. Yao Y, Fan L, Zhang X, et al. Episodes of paralysis in Chinese men with thyrotoxic periodic paralysis are associated with elevated serum testosterone. Thyroid. 2013;23(4):420–7.

    CAS  PubMed  Google Scholar 

  55. Biering H, Bauditz J, Pirlich M, et al. Manifestation of thyrotoxic periodic paralysis in two patients with adrenal adenomas and hyperandrogenaemia. Horm Res. 2003;59(6):301–4.

    CAS  PubMed  Google Scholar 

  56. Guerra M, Rodriguez del Castillo A, Battaner E, et al. Androgens stimulate preoptic area Na+,K+-ATPase activity in male rats. Neurosci Lett. 1987;78(1):97–100.

    CAS  PubMed  Google Scholar 

  57. Ryan DP, Da Silva MR, Soong TW, et al. Mutations ion potassium channel Kir2.6 cause susceptibility to thyrotoxic hypokalemic periodic paralysis. Cell. 2010;140(1):88–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Singer PA, Cooper DS, Levy E, et al. Treatment guidelines for patients with hyperthyroidism and hypothyroidism. JAMA. 1995;273(10):808–12.

    CAS  PubMed  Google Scholar 

  59. Cooper DS. Antithyroid drugs. N Engl J Med. 2005;352(9):905–17.

    CAS  PubMed  Google Scholar 

  60. Abuid J, Larsen PR. Triiodothyronine and thyroxine in hyperthyroidism: comparison of the acute changes during therapy with antithyroid agents. J Clin Invest. 1974;54(1):201–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Laurberg P, Vestergaard H, Nielsen S, et al. Sources of circulating 3,5,3′-triiodothyronine in hyperthyroidism estimated after blocking of type 1 and type 2 iodothyronine deiodinases. J Clin Endocrinol Metab. 2007;92(6):2149–56.

    CAS  PubMed  Google Scholar 

  62. Emerson CH, Anderson AJ, Howard WJ, et al. Serum thyroxine and triiodothyronine concentrations during iodide treatment of hyperthyroidism. J Clin Endocrinol Metab. 1975;40(1):33–6.

    CAS  PubMed  Google Scholar 

  63. Braga M, Cooper DS. Clinical review 129. Oral cholecystographic agents and the thyroid. J Clin Endocrinol Metab. 2001;86(5):1853–60.

    CAS  PubMed  Google Scholar 

  64. Carvalho-Bianco SD, Kim B, Harney JW, et al. Chronic cardiac-specific thyrotoxicosis increases myocardial beta-adrenergic responsiveness. Mol Endocrinol. 2004;18(7):1840–9.

    CAS  PubMed  Google Scholar 

  65. Hellstrom L, Wahrenberg H, Reynisdottir S, et al. Catecholamine-induced adipocyte lipolysis in human hyperthyroidism. J Clin Endocrinol Metab. 1997;82(1):159–66.

    CAS  PubMed  Google Scholar 

  66. Vigneri R, Pezzino V, Filetti S, et al. Effect of dexamethasone on thyroid hormone response to TSH. Metabolism. 1975;24(11):1209–13.

    CAS  PubMed  Google Scholar 

  67. Mechanick JI, Davies TF. Medical management of hyperthyroidism: theoretical and practical aspects. In: Falk SA, editor. Thyroid disease: endocrinolgy, surgery, nuclear medicine and tadiotherapy. 2nd ed. New York, NY: Lippincott-Raven; 1997. p. 253–96.

    Google Scholar 

  68. Lazarus JH, Richards AR, Addison GM, et al. Treatment of thyrotoxicosis with lithium carbonate. Lancet. 1974;2(7890):1160–3.

    CAS  PubMed  Google Scholar 

  69. Ross DS, Burch HB, Cooper DS, et al. 2016 American thyroid association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid. 2016;26(10):1343–421.

    PubMed  Google Scholar 

  70. Udovcic M, Pena RH, Patham B, et al. Hypothyroidism and the Heart. Methodist Debakey Cardiovasc J. 2017;13(2):55–9.

    PubMed  PubMed Central  Google Scholar 

  71. Elshimy G, Correa R. Myxedema. StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2020.

    Google Scholar 

  72. Paull AM, Phillips RW. Primary myxedema with secondary adrenocortical failure. J Clin Endocrinol Metab. 1954;14(5):554–60.

    CAS  PubMed  Google Scholar 

  73. Peterson RE, Wyngaarden JB, Guerra SL, et al. The physiological disposition and metabolic fate of hydrocortisone in man. J Clin Invest. 1955;34(12):1779–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Charoensri S, Sriphrapradang C, Nimitphong H. Split high-dose oral levothyroxine treatment as a successful therapy option in myxedema coma. Clin Case Rep. 2017;5(10):1706–11.

    PubMed  PubMed Central  Google Scholar 

  75. Roberts CG, Ladenson PW. Hypothyroidism. Lancet. 2004;363(9411):793–803.

    CAS  PubMed  Google Scholar 

  76. Ilias I, Tzanela M, Mavrou I, et al. Thyroid function changes and cytokine alterations following major surgery. Neuroimmunomodulation. 2007;14(5):243–7.

    CAS  PubMed  Google Scholar 

  77. Bajwa SJ, Sehgal V. Anesthesia and thyroid surgery: the never ending challenges. Indian J Endocrinol Metab. 2013;17(2):228–34.

    PubMed  PubMed Central  Google Scholar 

  78. Ueda K, Kiyota A, Tsuchida M, et al. Successful treatment of myxedema coma with a combination of levothyroxine and liothyronine. Endocr J. 2019;66(5):469–74.

    CAS  PubMed  Google Scholar 

  79. Rainey WE. Adrenal zonation: clues from 11β-hydroxylase and aldosterone synthase. Mol Cell Endocrinol. 1999;151(1–2):151–60.

    CAS  PubMed  Google Scholar 

  80. Weinberger C, Hollenberg SM, Rosenfeld MG, et al. Domain structure of human glucocorticoid receptor and its relationship to the v-erb-A oncogene product. Nature. 1986;318(6047):670–2.

    CAS  Google Scholar 

  81. Arriza JL, Weinberger C, Cerelli G, et al. Cloning of human mineralo-corticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science. 1987;237:268–75.

    CAS  PubMed  Google Scholar 

  82. Gustafsson JA, Carlstedt-Duke J, Poellinger L, et al. Biochemistry, molecular biology, and physiology of the glucocorticoid receptor. Endocr Rev. 1987;8(2):185–234.

    CAS  PubMed  Google Scholar 

  83. Melmed S, Polonsky KS, Reed Larsen P, Kronenberg HM. Williams textbook of endocrinology. 13th ed. Holand: Elsevier; 2016.

    Google Scholar 

  84. Sawka AM, Jaeschke R, Singh RJ, et al. A comparison of biochemical tests for pheochromocytoma: measurement of fractionated plasma metanephrines compared with the combination of 24hour urinary metanephrines and catecholamines. J Clin Endocrinol Metab. 2003;88(2):553–8.

    CAS  PubMed  Google Scholar 

  85. Neumann H, Berger DP, Sigmund G, et al. Pheochromocytomas, multiple endocrine neoplasia type 2, and von HippelLindau disease. N Engl J Med. 1993;329(21):1531–8.

    CAS  PubMed  Google Scholar 

  86. Lenders JW, Pacak K, Walther MM, et al. Biochemical diagnosis of pheochromocytoma: which test is best? JAMA. 2002;287(11):1427–34.

    CAS  PubMed  Google Scholar 

  87. Kantorovich V, Pacak K. New insights on the pathogenesis of paraganglioma and pheochromocytoma. F1000Res. 2018;7:F1000 Faculty Rev-1500.

    PubMed  PubMed Central  Google Scholar 

  88. Dahia PL. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer. 2014;14(2):108–19.

    CAS  PubMed  Google Scholar 

  89. Fishbein L, Leshchiner I, Walter V, et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell. 2017;31(2):181–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Favier J, Amar L, Gimenez-Roqueplo AP. Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat Rev Endocrinol. 2015;11(2):101–11.

    CAS  PubMed  Google Scholar 

  91. Sato TH, Uchida T, Dote K, Ishihara M. Tako-tsubo-like left ventricu-lar dysfunction due to multivessel coronary spasm. In: Kodama K, Haze K, Hori M, editors. Clinical aspect of myocardial injury: from ischemia to heart failure. Tokyo: Kagakuhyoronsha; 1990. p. 56–64.

    Google Scholar 

  92. Y-Hassan S, Falhammar H. Pheochromocytoma- and paraganglioma-triggered Takotsubo syndrome. Endocrine. 2019;65(3):483–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Y-Hassan S, Yamasaki K. History of takotsubo syndrome: is the syndrome really described as a disease entity first in 1990? Some inaccuracies. Int J Cardiol. 2013;166(3):736–7.

    PubMed  Google Scholar 

  94. Dote K, Sato H, Tateishi H, et al. Myocardial stunning due to simultaneous multivessel coronary spasms: a review of 5 cases. J Cardiol. 1991;21(2):203–14.

    CAS  PubMed  Google Scholar 

  95. Ghadri JR, Wittstein IS, Prasad A, et al. International expert consensus document on takotsubo syndrome (part I): clinical characteristics, diagnostic criteria, and pathophysiology. Eur Heart J. 2018;39(22):2032–46.

    PubMed  PubMed Central  Google Scholar 

  96. Akashi YJ, Nef HM, Lyon AR. Epidemiology and pathophysiology of Takotsubo syndrome. Nat Rev Cardiol. 2015;12(7):387–97.

    PubMed  Google Scholar 

  97. Kurisu S, Inoue I, Kawagoe T, et al. Time course of electrocardiographic changes in patients with Tako-tsubo syndrome: comparison with acute myocardial infarction with minimal enzymatic release. Circ J. 2004;68(1):77–81.

    PubMed  Google Scholar 

  98. Kosuge M, Ebina T, Hibi K, et al. Simple and accurate electrocardiographic criteria to differentiate Takotsubo cardiomyopathy from anterior acute myocardial infarction. J Am Coll Cardiol. 2010;55(22):2514–6.

    PubMed  Google Scholar 

  99. Fröhlich GM, Schoch B, Schmid F, et al. Takotsubo cardiomyopathy has a unique cardiac biomarker profile: NT-proBNP/myoglobin and NT-proBNP/troponin T ratios for the differential diagnosis of acute coronary syndromes and stress induced cardiomyopathy. Int J Cardiol. 2012;154(3):328–32.

    PubMed  Google Scholar 

  100. Omland T, Persson A, Ng L, et al. N-terminal pro-B-type natriuretic peptide and long-term mortality in acute coronary syndromes. Circulation. 2002;106(23):2913–8.

    CAS  PubMed  Google Scholar 

  101. Y-Hassan S, Tornvall P. Epidemiology, pathogenesis, and management of takotsubo syndrome. Clin Auton Res. 2018;28(1):53–65.

    PubMed  Google Scholar 

  102. Y-Hassan S, De Palma R. Contemporary review on the pathogenesis of takotsubo syndrome: the heart shedding tears: norepinephrine churn and foam at the cardiac sympathetic nerve terminals. Int J Cardiol. 2017;228:528–36.

    PubMed  Google Scholar 

  103. Vitale C, Rosano GM, Kaski JC. Role of coronary microvascular dysfunction in takotsubo cardiomyopathy. Circ J. 2016;80(2):299–305.

    CAS  PubMed  Google Scholar 

  104. El Mahmoud R, Mansencal N, Pilliére R, et al. Prevalence and characteristics of left ventricular outflow tract obstruction in Tako-Tsubo syndrome. Am Heart J. 2008;156(3):543–8.

    PubMed  Google Scholar 

  105. Sharkey SW, Windenburg DC, Lesser JR, et al. Natural history and expansive clinical profile of stress (tako-tsubo) cardiomyopathy. J Am Coll Cardiol. 2010;55(4):333–41.

    PubMed  Google Scholar 

  106. Wittstein IS, Thiemann DR, Lima JA, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352(6):539–48.

    CAS  PubMed  Google Scholar 

  107. Y-Hassan S. The pathogenesis of reversible T-wave inversions or large upright peaked T-waves: sympathetic T-waves. Int J Cardiol. 2015;191:237–43.

    PubMed  Google Scholar 

  108. Y-Hassan S. Insights into the pathogenesis of takotsubo syndrome, which with persuasive reasons should be regarded as an acute cardiac sympathetic disease entity. ISRN Cardiol. 2012;2012:593735.

    PubMed  PubMed Central  Google Scholar 

  109. McGonigle P, Webb SW, Adgey AA. Phaeochromocytoma: an unusual cause of chest pain. Br Med J. 1983;286(6376):1477–8.

    CAS  Google Scholar 

  110. Jessurun CR, Adam K, Moise KJ Jr, et al. Pheochromocytoma-induced myocardial infarction in pregnancy. A case report and literature review. Tex Heart Inst J. 1993;20(2):120–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wiswell JG, Crago RM. Reversible cardiomyopathy with pheochromocytoma. Trans Am Clin Climatol Assoc. 1969;80:185–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Sode J, Getzen LC, Osborne DP. Cardiac arrhythmias and cardiomyopathy associated with pheochromocytomas. Report of three cases. Am J Surg. 1967;114(6):927–31.

    CAS  PubMed  Google Scholar 

  113. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 15–1988. A 26-year-old woman with cardiomyopathy, multiple strokes, and an adrenal mass. N Engl J Med. 1988;318(15):970–81.

    Google Scholar 

  114. Y-Hassan S. Clinical features and outcome of pheochromocytoma-induced takotsubo syndrome: analysis of 80 published cases. Am J Cardiol. 2016;117(11):1836–44.

    PubMed  Google Scholar 

  115. Batisse-Lignier M, Pereira B, Motreff P, et al. Acute and chronic pheochromocytoma-induced cardiomyopathies: different prognoses? A systematic analytical review. Medicine (Baltimore). 2015;94(50):e2198.

    CAS  Google Scholar 

  116. Zhang R, Gupta D, Albert SG. Pheochromocytoma as a reversible cause of cardiomyopathy: analysis and review of the literature. Int J Cardiol. 2017;249:319–23.

    PubMed  Google Scholar 

  117. Unger RH, Orci L. Paracrinology of islets and the paracrinopathy of diabetes. Proc Natl Acad Sci USA. 2010;107(37):16009–12.

    CAS  PubMed  Google Scholar 

  118. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33 Suppl 1:S62–9.

    Google Scholar 

  119. Nyenwe EA, Kitabchi AE. The evolution of diabetic ketoacidosis: an update of its etiology, pathogenesis and management. Metabolism. 2016;65:507–21. https://doi.org/10.1016/j.metabol.2015.12.007.

    Article  CAS  PubMed  Google Scholar 

  120. Dhatariya K. Blood ketones: measurement, interpretation, limitations, and utility in the management of diabetic ketoacidosis. Rev Diabet Stud. 2016;13:217–25. https://doi.org/10.1900/RDS.2016.13.217.

    Article  PubMed  Google Scholar 

  121. Madias NE. Lactic acidosis. Kidney Int. 1986;29(3):752–74.

    CAS  PubMed  Google Scholar 

  122. Kamel KS, Oh MS, Halperin ML. L-lactic acidosis: pathophysiology, classification, and causes; emphasis on biochemical and metabolic basis. Kidney Int. 2020;97(1):75–88.

    CAS  PubMed  Google Scholar 

  123. Moller-Petersen J, Andersen PT, Hjorne N, et al. Nontraumatic rhabdomyolysis during diabetic ketoacidosis. Diabetologia. 1986;29(4):229–34.

    CAS  PubMed  Google Scholar 

  124. Brown D, Melamed ML. New frontiers in treating uremic metabolic acidosis. Clin J Am Soc Nephrol. 2018;13(1):4–5.

    PubMed  Google Scholar 

  125. Fulop M. Alcoholism, ketoacidosis, and lactic acidosis. Diabetes Metab Rev. 1989;5:365–78.

    CAS  PubMed  Google Scholar 

  126. Duffens K, Marx JA. Alcoholic ketoacidosis: a review. J Emerg Med. 1987;5(5):399–406.

    CAS  PubMed  Google Scholar 

  127. Robert DH, Bokhari SRA. Alcoholic ketoacidosis. StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2019.

    Google Scholar 

  128. Chatzipanteli K, Head C, Megerman J, et al. The relationship between plasma insulin level, prostaglandin production by adipose tissue, and blood pressure in normal rats and rats with diabetes mellitus and diabetic ketoacidosis. Metabolism. 1996;45(6):691–8.

    CAS  PubMed  Google Scholar 

  129. Trachtenbarg DE. Diabetic ketoacidosis. Am Fam Physician. 2005;71(9):1705–14.

    PubMed  Google Scholar 

  130. Fisher JN, Shahshahani MN, Kitabchi AE. Diabetic ketoacidosis: low-dose insulin therapy by various routes. N Engl J Med. 1977;297(5):238–41.

    CAS  PubMed  Google Scholar 

  131. Soler NG, FitzGerald MG, Wright AD, et al. Comparative study of different insulin regimens in management of diabetic ketoacidosis. Lancet. 1975;2(7947):1221–4.

    CAS  PubMed  Google Scholar 

  132. Umpierrez GE, Guervo R, Karabell A, et al. Treatment of diabetic ketoacidosis with subcutaneous insulin aspart. Diabetes Care. 2004;27(8):1873–8.

    CAS  PubMed  Google Scholar 

  133. Ehusani-Anumah FO, Ohwovoriole AE. Plasma glucose response to insulin in hyperglycaemic crisis. Int J Diabetes Metabol. 2007;15:17–21.

    CAS  Google Scholar 

  134. Basetty S, Yeshvanth Kumar GS, Shalini M, et al. Management of diabetic ketosis and ketoacidosis with intramuscular regular insulin in a low-resource family medicine setting. J Family Med Prim Care. 2017;6(1):25–8.

    PubMed  PubMed Central  Google Scholar 

  135. Wolfsdorf J, Craig ME, Daneman D, et al. Diabetic ketoacidosis in children and adolescents with diabetes. Pediatr Diabetes. 2009;10(Suppl 12):118–33.

    PubMed  Google Scholar 

  136. Inward CD, Chambers TL. Fluid management in diabetic ketoacidosis. Arch Dis Child. 2002;86(6):443–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Jayashree M, Williams V, Iyer R. Fluid therapy for pediatric patients with diabetic ketoacidosis: current perspectives. Diabetes Metab Syndr Obes. 2019;12:2355–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Glaser N, Barnett P, McCaslin I, et al. Risk factors for cerebral edema in children with diabetic ketoacidosis. N Engl J Med. 2001;344(4):264–9.

    CAS  PubMed  Google Scholar 

  139. Halperin ML, Maccari C, Kamel KS, et al. Strategies to diminish the danger of cerebral edema in a pediatric patient presenting with diabetic ketoacidosis. Pediatr Diabetes. 2006;7(4):191–5.

    PubMed  Google Scholar 

  140. Hsia DS, Tarai SG, Alimi A, et al. Fluid management in pediatric patients with DKA and rates of suspected clinical cerebral edema. Pediatr Diabetes. 2015;16(5):338–44.

    PubMed  PubMed Central  Google Scholar 

  141. Long B, Koyfman A. Emergency medicine myths: cerebral edema in pediatric diabetic ketoacidosis and intravenous fluids. J Emerg Med. 2017;53(2):212–21.

    PubMed  Google Scholar 

  142. Kuppermann N, Ghetti S, Schunk JE, et al. Clinical trial of fluid infusion rates for pediatric diabetic ketoacidosis. N Engl J Med. 2018;378(24):2275–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Van der Meulen JA, Klip A, Grinstein S. Possible mechanism for cerebral oedema in diabetic ketoacidosis. Lancet. 1987;2(8554):306–8.

    PubMed  Google Scholar 

  144. Kamel KS, Schreiber M, Carlotti AP, et al. Approach to the treatment of diabetic ketoacidosis. Am J Kidney Dis. 2016;68(6):967–72.

    CAS  PubMed  Google Scholar 

  145. Wu D, Kraut JA. Role of NHE1 in the cellular dysfunction of acute metabolic acidosis. Am J Nephrol. 2014;40(1):36–42.

    CAS  PubMed  Google Scholar 

  146. Shafi O, Kumar V. Initial fluid therapy in pediatric diabetic ketoacidosis: a comparison of hypertonic saline solution and normal saline solution. Pediatr Endocrinol Diabetes Metab. 2018;24(2):56–64.

    PubMed  Google Scholar 

  147. Felner EI, White PC. Improving management of diabetic ketoacidosis in children. Pediatrics. 2001;108(3):735–40.

    CAS  PubMed  Google Scholar 

  148. Brown TB. Cerebral oedema in childhood diabetic ketoacidosis: is treatment a factor? Emerg Med J. 2004;21(2):141–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Karslioglu French E, Donihi AC, Korytkowski MT. Diabetic ketoacidosis and hyperosmolar hyperglycemic syndrome: review of acute decompensated diabetes in adult patients. BMJ. 2019;365:l1114.

    PubMed  Google Scholar 

  150. Wolfsdorf JI, Glaser N, Agus M, et al. ISPAD clinical practice consensus guidelines 2018: diabetic ketoacidosis and the hyperglycemic hyperosmolar state. Pediatr Diabetes. 2018;19(Suppl 27):155–77.

    PubMed  Google Scholar 

  151. Kitabchi AE, Umpierrez GE, Miles JM, et al. Hyperglycemic crises in adult patients with diabetes. Diabetes Care. 2009;32(7):1335–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Goguen J, Gilbert J, Canadian Diabetes Association Clinical Practice Guidelines Expert Committee. Hyperglycemic emergencies in adults. Can J Diabetes. 2013;37(suppl 1):S72–6.

    PubMed  Google Scholar 

  153. McGreevy M, Beerman L, Arora G. Ventricular tachycardia in a child with diabetic ketoacidosis without heart disease. Cardiol Young. 2016;26(1):206–8.

    PubMed  Google Scholar 

  154. Gapp J, Krishnan M, Ratnaraj F, et al. Cardiac arrhythmias resulting from a peripherally inserted central catheter: two cases and a review of the literature. Cureus. 2017;9(6):e1308.

    PubMed  PubMed Central  Google Scholar 

  155. Postema PG, Vlaar AP, DeVries JH, et al. Familial Brugada syndrome uncovered by hyperkalaemic diabetic ketoacidosis. Europace. 2011;13(10):1509–10.

    PubMed  Google Scholar 

  156. Abrahim C, Maharaj S. DKA-induced Brugada phenocopy mimicking STEMI. Heart Asia. 2018;10:e011027. https://doi.org/10.1136/heartasia-2018-011027.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Haseeb S, Kariyanna PT, Jayarangaiah A, et al. Brugada pattern in diabetic ketoacidosis: a case report and scoping study. Am J Med Case Rep. 2018;6(9):173–9.

    PubMed  PubMed Central  Google Scholar 

  158. Abdulaziz S, Dabbagh O, Al Daker MO, et al. Hypokalaemia and refractory asystole complicating diabetic ketoacidosis, lessons for prevention. BMJ Case Rep. 2012;2012:pii: bcr-2012-007312.

    Google Scholar 

  159. Yang Y, Liu B, He J, et al. Impact of atrial fibrillation on in-hospital outcomes in patients with diabetic ketoacidosis. Am J Med Sci. 2019;358(5):350–6.

    PubMed  Google Scholar 

  160. Chua HR, Schneider A, Bellomo R. Bicarbonate in diabetic ketoacidosis—a systematic review. Ann Intensive Care. 2011;1(1):23.

    PubMed  PubMed Central  Google Scholar 

  161. Fadini GP, de Kreutzenberg SV, Rigato M, et al. Characteristics and outcomes of the hyperglycemic hyperosmolar non-ketotic syndrome in a cohort of 51 consecutive cases at a single center. Diabetes Res Clin Pract. 2011;94(2):172–9.

    PubMed  Google Scholar 

  162. Ananth J, Parameswaran S, Gunatilake S. Side effects of atypical antipsychotic drugs. Curr Pharm Des. 2004;10(18):2219–29.

    CAS  PubMed  Google Scholar 

  163. Pinies JA, Cairo G, Gaztambide S, et al. Course and prognosis of 132 patients with diabetic non ketotic hyperosmolar state. Diabete Metab. 1994;20:43–8.

    CAS  PubMed  Google Scholar 

  164. Scott AR. Joint British Diabetes Societies (JBDS) for Inpatient Care JBDS hyperosmolar hyperglycaemic guidelines group. Management of hyperosmolar hyperglycaemic state in adults with diabetes. Diabet Med. 2015;32(6):714–24.

    CAS  PubMed  Google Scholar 

  165. Umpierrez G, Korytkowski M. Diabetic emergencies—ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemia. Nat Rev Endocrinol. 2016;12(4):222–32.

    CAS  PubMed  Google Scholar 

  166. Pasquel FJ, Umpierrez GE. Hyperosmolar hyperglycemic state: a historic review of the clinical presentation, diagnosis, and treatment. Diabetes Care. 2014;37(11):3124–31.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., Zhang, H., Chong, W. (2021). Sudden Unexpected Death in Endocrine Diseases. In: Zhu, H. (eds) Sudden Death. Springer, Singapore. https://doi.org/10.1007/978-981-15-7002-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7002-5_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7001-8

  • Online ISBN: 978-981-15-7002-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics