Skip to main content

Hypothermia Therapy in Sudden Death

  • Chapter
  • First Online:
Sudden Death
  • 568 Accesses

Abstract

Therapeutic hypothermia has been used for millennia, but more recently, targeted temperature management has caught physician’s interest as the main neuroprotective strategy for cardiac arrest patients who remain comatose after return of spontaneous circulation. Randomized clinical trials have shown benefits in neurologic and mortality outcomes when lowering body’s core temperature to mild-to-moderate ranges of hypothermia, in conjunction with strict hyperthermia prevention measurements. The International Liaison Committee on Resuscitation recommends in their current guidelines to use a target temperature between 32 °C and 36 °C, for at least 24 h, in post-cardiac arrest patients, regardless of their initial rhythm (shockable vs. non-shockable). Therapeutic hypothermia consists of three well-defined phases: induction, maintenance, and rewarming. Each of these phases has very specific physiologic and clinical considerations for optimal patient management. The optimal dose, the induction and maintenance method, and the temperature monitoring technique remain unclear and are the focus of future research. Despite the overwhelmingly positive data regarding the benefits of therapeutic hypothermia, this technique remains underused. Clinicians should be familiar with this therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–e528. https://doi.org/10.1161/CIR.0000000000000659.

    Article  PubMed  Google Scholar 

  2. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346(8):557–63. https://doi.org/10.1056/NEJMoa003289.

    Article  PubMed  Google Scholar 

  3. Hypothermia after Cardiac Arrest Study G. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346(8):549–56. https://doi.org/10.1056/NEJMoa012689.

    Article  Google Scholar 

  4. Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med. 2009;37(7 Suppl):S186–202. https://doi.org/10.1097/CCM.0b013e3181aa5241.

    Article  PubMed  Google Scholar 

  5. Girotra S, Chan PS, Bradley SM. Post-resuscitation care following out-of-hospital and in-hospital cardiac arrest. Heart. 2015;101(24):1943–9. https://doi.org/10.1136/heartjnl-2015-307450.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Polderman KH, Varon J. Confusion around therapeutic temperature management hypothermia after in-hospital cardiac arrest? Circulation. 2018;137(3):219–21. https://doi.org/10.1161/circulationaha.117.029656.

    Article  PubMed  Google Scholar 

  7. Polderman KH, Varon J. How low should we go? Hypothermia or strict normothermia after cardiac arrest? Circulation. 2015;131(7):669–75. https://doi.org/10.1161/circulationaha.114.012165.

    Article  PubMed  Google Scholar 

  8. Bray JE, Stub D, Bloom JE, Segan L, Mitra B, Smith K, et al. Changing target temperature from 33 degrees C to 36 degrees C in the ICU management of out-of-hospital cardiac arrest: a before and after study. Resuscitation. 2017;113:39–43. https://doi.org/10.1016/j.resuscitation.2017.01.016.

    Article  PubMed  Google Scholar 

  9. Karnatovskaia LV, Wartenberg KE, Freeman WD. Therapeutic hypothermia for neuroprotection: history, mechanisms, risks, and clinical applications. Neurohospitalist. 2014;4(3):153–63. https://doi.org/10.1177/1941874413519802.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Varon J. Therapeutic hypothermia in cardiac arrest: 206 years later! Resuscitation. 2009;80(12):1335. https://doi.org/10.1016/j.resuscitation.2009.08.021.

    Article  PubMed  Google Scholar 

  11. Liss HP. A history of resuscitation. Ann Emerg Med. 1986;15(1):65–72. https://doi.org/10.1016/s0196-0644(86)80490-5.

    Article  CAS  PubMed  Google Scholar 

  12. Remba SJ, Varon J, Rivera A, Sternbach GL. Dominique-Jean Larrey: the effects of therapeutic hypothermia and the first ambulance. Resuscitation. 2010;81(3):268–71. https://doi.org/10.1016/j.resuscitation.2009.11.010.

    Article  PubMed  Google Scholar 

  13. Alzaga AG, Salazar GA, Varon J. Resuscitation great. Breaking the thermal barrier: Dr. Temple Fay. Resuscitation. 2006;69(3):359–64. https://doi.org/10.1016/j.resuscitation.2006.02.014.

    Article  PubMed  Google Scholar 

  14. Bohl MA, Martirosyan NL, Killeen ZW, Belykh E, Zabramski JM, Spetzler RF, et al. The history of therapeutic hypothermia and its use in neurosurgery. J Neurosurg. 2018:1–15. https://doi.org/10.3171/2017.10.JNS171282.

  15. Fay T. Observations on prolonged human refrigeration. NY State J Med. 1941;2(3):347.

    Google Scholar 

  16. Bigelow WG, McBirnie JE. Further experiences with hypothermia for intracardiac surgery in monkeys and groundhogs. Ann Surg. 1953;137(3):361–5. https://doi.org/10.1097/00000658-195303000-00010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rosomoff HL, Holaday DA. Cerebral blood flow and cerebral oxygen consumption during hypothermia. Am J Phys. 1954;179(1):85–8. https://doi.org/10.1152/ajplegacy.1954.179.1.85.

    Article  CAS  Google Scholar 

  18. Bonaventura J, Alan D, Vejvoda J, Honek J, Veselka J. History and current use of mild therapeutic hypothermia after cardiac arrest. Arch Med Sci. 2016;12(5):1135–41. https://doi.org/10.5114/aoms.2016.61917.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Alzaga AG, Cerdan M, Varon J. Therapeutic hypothermia. Resuscitation. 2006;70(3):369–80. https://doi.org/10.1016/j.resuscitation.2006.01.017.

    Article  PubMed  Google Scholar 

  20. Varon J, Acosta P. Therapeutic hypothermia: past, present, and future. Chest. 2008;133(5):1267–74. https://doi.org/10.1378/chest.07-2190.

    Article  PubMed  Google Scholar 

  21. Nolan JP, Morley PT, Vanden Hoek TL, Hickey RW, Kloeck WG, Billi J, et al. Therapeutic hypothermia after cardiac arrest: an advisory statement by the advanced life support task force of the International Liaison Committee on Resuscitation. Circulation. 2003;108(1):118–21. https://doi.org/10.1161/01.Cir.0000079019.02601.90.

    Article  CAS  PubMed  Google Scholar 

  22. Nolan JP, Hazinski MF, Steen PA, Becker LB. Controversial Topics from the 2005 International Consensus Conference on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation. 2005;67(2–3):175–9. https://doi.org/10.1016/j.resuscitation.2005.09.008.

    Article  PubMed  Google Scholar 

  23. Negovsky VA. The second step in resuscitation—the treatment of the ‘post-resuscitation disease’. Resuscitation. 1972;1(1):1–7.

    Article  CAS  Google Scholar 

  24. Nolan JP, Neumar RW, Adrie C, Aibiki M, Berg RA, Bottiger BW, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation. 2008;79(3):350–79. https://doi.org/10.1016/j.resuscitation.2008.09.017.

    Article  PubMed  Google Scholar 

  25. Binks A, Nolan JP. Post-cardiac arrest syndrome. Minerva Anestesiol. 2010;76(5):362–8.

    CAS  PubMed  Google Scholar 

  26. Madder RD, Reynolds JC. Multidisciplinary management of the post-cardiac arrest patient. Cardiol Clin. 2018;36(1):85–101. https://doi.org/10.1016/j.ccl.2017.08.005.

    Article  PubMed  Google Scholar 

  27. Bougouin W, Cariou A. Management of postcardiac arrest myocardial dysfunction. Curr Opin Crit Care. 2013;19(3):195–201. https://doi.org/10.1097/MCC.0b013e3283607740.

    Article  PubMed  Google Scholar 

  28. Polderman KH, Varon J. Cool hemodynamics—the intricate interplay between therapeutic hypothermia and the post-cardiac arrest syndrome. Resuscitation. 2014;85(8):975–6. https://doi.org/10.1016/j.resuscitation.2014.06.002.

    Article  PubMed  Google Scholar 

  29. Oksanen T, Skrifvars M, Wilkman E, Tierala I, Pettila V, Varpula T. Postresuscitation hemodynamics during therapeutic hypothermia after out-of-hospital cardiac arrest with ventricular fibrillation: a retrospective study. Resuscitation. 2014;85(8):1018–24. https://doi.org/10.1016/j.resuscitation.2014.04.026.

    Article  PubMed  Google Scholar 

  30. Kleinman ME, Perkins GD, Bhanji F, Billi JE, Bray JE, Callaway CW, et al. ILCOR scientific knowledge gaps and clinical research priorities for cardiopulmonary resuscitation and emergency cardiovascular care: a consensus statement. Resuscitation. 2018;127:132–46. https://doi.org/10.1016/j.resuscitation.2018.03.021.

    Article  PubMed  Google Scholar 

  31. Jones AE, Shapiro NI, Kilgannon JH, Trzeciak S. Emergency medicine shock research network I. Goal-directed hemodynamic optimization in the post-cardiac arrest syndrome: a systematic review. Resuscitation. 2008;77(1):26–9. https://doi.org/10.1016/j.resuscitation.2007.10.021.

    Article  PubMed  Google Scholar 

  32. Lurie KG, Nemergut EC, Yannopoulos D, Sweeney M. The physiology of cardiopulmonary resuscitation. Anesth Analg. 2016;122(3):767–83. https://doi.org/10.1213/ANE.0000000000000926.

    Article  PubMed  Google Scholar 

  33. Lewis LM, Stothert JC Jr, Gomez CR, Ruoff BE, Hall IS, Chandel B, et al. A noninvasive method for monitoring cerebral perfusion during cardiopulmonary resuscitation. J Crit Care. 1994;9(3):169–74.

    Article  CAS  Google Scholar 

  34. Maramattom BV, Wijdicks EF. Postresuscitation encephalopathy. Current views, management, and prognostication. Neurologist. 2005;11(4):234–43. https://doi.org/10.1097/01.nrl.0000159985.07242.22.

    Article  PubMed  Google Scholar 

  35. Ferreira Da Silva IR, Frontera JA. Targeted temperature management in survivors of cardiac arrest. Cardiol Clin. 2013;31(4):637–55. https://doi.org/10.1016/j.ccl.2013.07.010. ix

    Article  PubMed  Google Scholar 

  36. Laver S, Farrow C, Turner D, Nolan J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004;30(11):2126–8. https://doi.org/10.1007/s00134-004-2425-z.

    Article  PubMed  Google Scholar 

  37. Tahsili-Fahadan P, Farrokh S, Geocadin RG. Hypothermia and brain inflammation after cardiac arrest. Brain Circ. 2018;4(1):1–13. https://doi.org/10.4103/bc.bc_4_18.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Holzer M. Targeted temperature management for comatose survivors of cardiac arrest. N Engl J Med. 2010;363(13):1256–64. https://doi.org/10.1056/NEJMct1002402.

    Article  CAS  PubMed  Google Scholar 

  39. Eleff SM, Maruki Y, Monsein LH, Traystman RJ, Bryan RN, Koehler RC. Sodium, ATP, and intracellular pH transients during reversible complete ischemia of dog cerebrum. Stroke. 1991;22(2):233–41. https://doi.org/10.1161/01.str.22.2.233.

    Article  CAS  PubMed  Google Scholar 

  40. Gonzalez-Ibarra FP, Varon J, Lopez-Meza EG. Therapeutic hypothermia: critical review of the molecular mechanisms of action. Front Neurol. 2011;2:4. https://doi.org/10.3389/fneur.2011.00004.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015;6:524–51. https://doi.org/10.1016/j.redox.2015.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Han F, Da T, Riobo NA, Becker LB. Early mitochondrial dysfunction in electron transfer activity and reactive oxygen species generation after cardiac arrest. Crit Care Med. 2008;36(11 Suppl):S447–53. https://doi.org/10.1097/ccm.0b013e31818a8a51.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Patil KD, Halperin HR, Becker LB. Cardiac arrest: resuscitation and reperfusion. Circ Res. 2015;116(12):2041–9. https://doi.org/10.1161/CIRCRESAHA.116.304495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vaagenes P, Ginsberg M, Ebmeyer U, Ernster L, Fischer M, Gisvold SE, et al. Cerebral resuscitation from cardiac arrest: pathophysiologic mechanisms. Crit Care Med. 1996;24(2 Suppl):S57–68.

    Article  CAS  Google Scholar 

  45. Kuffler DP. Maximizing neuroprotection: where do we stand? Ther Clin Risk Manag. 2012;8:185–94. https://doi.org/10.2147/TCRM.S16196.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kuschner CE, Becker LB. Recent advances in personalizing cardiac arrest resuscitation. F1000Res. 2019;8:F1000 Faculty Rev-915. https://doi.org/10.12688/f1000research.17554.1.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Varon J, Marik PE, Einav S. Therapeutic hypothermia: a state-of-the-art emergency medicine perspective. Am J Emerg Med. 2012;30(5):800–10. https://doi.org/10.1016/j.ajem.2011.03.007.

    Article  PubMed  Google Scholar 

  48. Zipfel GJ, Babcock DJ, Lee JM, Choi DW. Neuronal apoptosis after CNS injury: the roles of glutamate and calcium. J Neurotrauma. 2000;17(10):857–69. https://doi.org/10.1089/neu.2000.17.857.

    Article  CAS  PubMed  Google Scholar 

  49. Small DL, Morley P, Buchan AM. Biology of ischemic cerebral cell death. Prog Cardiovasc Dis. 1999;42(3):185–207.

    Article  CAS  Google Scholar 

  50. Yenari MA, Han HS. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat Rev Neurosci. 2012;13(4):267–78. https://doi.org/10.1038/nrn3174.

    Article  CAS  PubMed  Google Scholar 

  51. Hurst S, Hoek J, Sheu SS. Mitochondrial Ca(2+) and regulation of the permeability transition pore. J Bioenerg Biomembr. 2017;49(1):27–47. https://doi.org/10.1007/s10863-016-9672-x.

    Article  CAS  PubMed  Google Scholar 

  52. Honda HM, Korge P, Weiss JN. Mitochondria and ischemia/reperfusion injury. Ann N Y Acad Sci. 2005;1047:248–58. https://doi.org/10.1196/annals.1341.022.

    Article  CAS  PubMed  Google Scholar 

  53. Arun S, Liu L, Donmez G. Mitochondrial biology and neurological diseases. Curr Neuropharmacol. 2016;14(2):143–54.

    Article  CAS  Google Scholar 

  54. Jung JE, Kim GS, Chen H, Maier CM, Narasimhan P, Song YS, et al. Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection. Mol Neurobiol. 2010;41(2–3):172–9. https://doi.org/10.1007/s12035-010-8102-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, et al. NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci. 2009;12(7):857–63. https://doi.org/10.1038/nn.2334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Globus MY, Busto R, Lin B, Schnippering H, Ginsberg MD. Detection of free radical activity during transient global ischemia and recirculation: effects of intraischemic brain temperature modulation. J Neurochem. 1995;65(3):1250–6. https://doi.org/10.1046/j.1471-4159.1995.65031250.x.

    Article  CAS  PubMed  Google Scholar 

  57. Li Y, Tang Q, Wang P, Qin J, Wu H, Lin J, et al. Dynamic changes of mitochondrial fusion and fission in brain injury after cardiac arrest in rats. Biomed Res Int. 2017;2017:1948070. https://doi.org/10.1155/2017/1948070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chavez LO, Leon M, Einav S, Varon J. Editor’s choice- inside the cold heart: a review of therapeutic hypothermia cardioprotection. Eur Heart J Acute Cardiovasc Care. 2017;6(2):130–41. https://doi.org/10.1177/2048872615624242.

    Article  PubMed  Google Scholar 

  59. Walker AC, Johnson NJ. Targeted temperature management and postcardiac arrest care. Emerg Med Clin North Am. 2019;37(3):381–93. https://doi.org/10.1016/j.emc.2019.03.002.

    Article  PubMed  Google Scholar 

  60. Deakin CD, Nolan JP, Soar J, Sunde K, Koster RW, Smith GB, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support. Resuscitation. 2010;81(10):1305–52. https://doi.org/10.1016/j.resuscitation.2010.08.017.

    Article  PubMed  Google Scholar 

  61. Colbourne F, Grooms SY, Zukin RS, Buchan AM, Bennett MV. Hypothermia rescues hippocampal CA1 neurons and attenuates down-regulation of the AMPA receptor GluR2 subunit after forebrain ischemia. Proc Natl Acad Sci U S A. 2003;100(5):2906–10. https://doi.org/10.1073/pnas.2628027100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu L, Yenari MA. Therapeutic hypothermia: neuroprotective mechanisms. Front Biosci. 2007;12:816–25. https://doi.org/10.2741/2104.

    Article  CAS  PubMed  Google Scholar 

  63. Berger C, Schabitz WR, Wolf M, Mueller H, Sommer C, Schwab S. Hypothermia and brain-derived neurotrophic factor reduce glutamate synergistically in acute stroke. Exp Neurol. 2004;185(2):305–12. https://doi.org/10.1016/j.expneurol.2003.10.008.

    Article  CAS  PubMed  Google Scholar 

  64. Perman SM, Goyal M, Neumar RW, Topjian AA, Gaieski DF. Clinical applications of targeted temperature management. Chest. 2014;145(2):386–93. https://doi.org/10.1378/chest.12-3025.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Varon J. Therapeutic hypothermia: implications for acute care practitioners. Postgrad Med. 2010;122(1):19–27. https://doi.org/10.3810/pgm.2010.01.2095.

    Article  PubMed  Google Scholar 

  66. Staer-Jensen H, Sunde K, Olasveengen TM, Jacobsen D, Draegni T, Nakstad ER, et al. Bradycardia during therapeutic hypothermia is associated with good neurologic outcome in comatose survivors of out-of-hospital cardiac arrest. Crit Care Med. 2014;42(11):2401–8. https://doi.org/10.1097/CCM.0000000000000515.

    Article  PubMed  Google Scholar 

  67. Thomsen JH, Hassager C, Bro-Jeppesen J, Soholm H, Nielsen N, Wanscher M, et al. Sinus bradycardia during hypothermia in comatose survivors of out-of-hospital cardiac arrest—a new early marker of favorable outcome? Resuscitation. 2015;89:36–42. https://doi.org/10.1016/j.resuscitation.2014.12.031.

    Article  PubMed  Google Scholar 

  68. Kiyosue T, Arita M, Muramatsu H, Spindler AJ, Noble D. Ionic mechanisms of action potential prolongation at low temperature in guinea-pig ventricular myocytes. J Physiol. 1993;468:85–106. https://doi.org/10.1113/jphysiol.1993.sp019761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lewis ME, Al-Khalidi AH, Townend JN, Coote J, Bonser RS. The effects of hypothermia on human left ventricular contractile function during cardiac surgery. J Am Coll Cardiol. 2002;39(1):102–8. https://doi.org/10.1016/s0735-1097(01)01694-1.

    Article  PubMed  Google Scholar 

  70. Frank SM, Satitpunwaycha P, Bruce SR, Herscovitch P, Goldstein DS. Increased myocardial perfusion and sympathoadrenal activation during mild core hypothermia in awake humans. Clin Sci (Lond). 2003;104(5):503–8. https://doi.org/10.1042/CS20020256.

    Article  Google Scholar 

  71. Polderman KH, Herold I. Therapeutic hypothermia and controlled normothermia in the intensive care unit: practical considerations, side effects, and cooling methods. Crit Care Med. 2009;37(3):1101–20. https://doi.org/10.1097/CCM.0b013e3181962ad5.

    Article  PubMed  Google Scholar 

  72. Dobak S, Rincon F. “Cool” topic: feeding during moderate hypothermia after intracranial hemorrhage. JPEN J Parenter Enteral Nutr. 2017;41(7):1125–30. https://doi.org/10.1177/0148607116655448.

    Article  PubMed  Google Scholar 

  73. Williams ML, Nolan JP. Is enteral feeding tolerated during therapeutic hypothermia? Resuscitation. 2014;85(11):1469–72. https://doi.org/10.1016/j.resuscitation.2014.08.018.

    Article  PubMed  Google Scholar 

  74. Varon J, Acosta P. Coagulopathy during therapeutic hypothermia: where are the data? Resuscitation. 2009;80(7):726–7. https://doi.org/10.1016/j.resuscitation.2009.04.036.

    Article  PubMed  Google Scholar 

  75. Zeiner A, Holzer M, Sterz F, Behringer W, Schorkhuber W, Mullner M, et al. Mild resuscitative hypothermia to improve neurological outcome after cardiac arrest. A clinical feasibility trial. Hypothermia After Cardiac Arrest (HACA) Study Group. Stroke. 2000;31(1):86–94. https://doi.org/10.1161/01.str.31.1.86.

    Article  CAS  PubMed  Google Scholar 

  76. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206. https://doi.org/10.1056/NEJMoa1310519.

    Article  CAS  PubMed  Google Scholar 

  77. Donnino MW, Andersen LW, Berg KM, Reynolds JC, Nolan JP, Morley PT, et al. Temperature management after cardiac arrest: an advisory statement by the advanced life support task force of the international liaison committee on resuscitation and the American heart association emergency cardiovascular care committee and the council on cardiopulmonary, critical care, perioperative and resuscitation. Circulation. 2015;132(25):2448–56. https://doi.org/10.1161/CIR.0000000000000313.

    Article  CAS  PubMed  Google Scholar 

  78. Part 7.5: postresuscitation support. Circulation. 2005;112(24_supplement):IV-84–IV-8. https://doi.org/10.1161/circulationaha.105.166560.

  79. Morrison Laurie J, Deakin Charles D, Morley Peter T, Callaway Clifton W, Kerber Richard E, Kronick Steven L, et al. Part 8: advanced life support. Circulation. 2010;122(16_suppl_2):S345–421. https://doi.org/10.1161/circulationaha.110.971051.

    Article  CAS  PubMed  Google Scholar 

  80. Nichol G, Huszti E, Kim F, Fly D, Parnia S, Donnino M, et al. Does induction of hypothermia improve outcomes after in-hospital cardiac arrest? Resuscitation. 2013;84(5):620–5. https://doi.org/10.1016/j.resuscitation.2012.12.009.

    Article  PubMed  Google Scholar 

  81. Testori C, Sterz F, Behringer W, Haugk M, Uray T, Zeiner A, et al. Mild therapeutic hypothermia is associated with favourable outcome in patients after cardiac arrest with non-shockable rhythms. Resuscitation. 2011;82(9):1162–7. https://doi.org/10.1016/j.resuscitation.2011.05.022.

    Article  PubMed  Google Scholar 

  82. Dumas F, Grimaldi D, Zuber B, Fichet J, Charpentier J, Pene F, et al. Is hypothermia after cardiac arrest effective in both shockable and nonshockable patients?: insights from a large registry. Circulation. 2011;123(8):877–86. https://doi.org/10.1161/circulationaha.110.987347.

    Article  PubMed  Google Scholar 

  83. Vaahersalo J, Hiltunen P, Tiainen M, Oksanen T, Kaukonen KM, Kurola J, et al. Therapeutic hypothermia after out-of-hospital cardiac arrest in Finnish intensive care units: the FINNRESUSCI study. Intensive Care Med. 2013;39(5):826–37. https://doi.org/10.1007/s00134-013-2868-1.

    Article  PubMed  Google Scholar 

  84. Mader TJ, Nathanson BH, Soares WE 3rd, Coute RA, McNally BF. Comparative effectiveness of therapeutic hypothermia after out-of-hospital cardiac arrest: insight from a large data registry. Ther Hypothermia Temp Manag. 2014;4(1):21–31. https://doi.org/10.1089/ther.2013.0018.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, et al. Part 8: post-cardiac arrest care: 2015 American heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S465–82. https://doi.org/10.1161/CIR.0000000000000262.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Guterman EL, Kim AS, Josephson SA. Neurologic consultation and use of therapeutic hypothermia for cardiac arrest. Resuscitation. 2017;118:43–8. https://doi.org/10.1016/j.resuscitation.2017.06.025.

    Article  PubMed  Google Scholar 

  87. Kim F, Nichol G, Maynard C, Hallstrom A, Kudenchuk PJ, Rea T, et al. Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial. JAMA. 2014;311(1):45–52. https://doi.org/10.1001/jama.2013.282173.

    Article  CAS  PubMed  Google Scholar 

  88. Lyon RM, Van Antwerp J, Henderson C, Weaver A, Davies G, Lockey D. Prehospital intranasal evaporative cooling for out-of-hospital cardiac arrest: a pilot, feasibility study. Eur J Emerg Med. 2014;21(5):368–70. https://doi.org/10.1097/mej.0000000000000100.

    Article  PubMed  Google Scholar 

  89. Nie C, Dong J, Zhang P, Liu X, Han F. Prehospital therapeutic hypothermia after out-of-hospital cardiac arrest: a systematic review and meta-analysis. Am J Emerg Med. 2016;34(11):2209–16. https://doi.org/10.1016/j.ajem.2016.09.007.

    Article  PubMed  Google Scholar 

  90. Scales DC, Cheskes S, Verbeek PR, Pinto R, Austin D, Brooks SC, et al. Prehospital cooling to improve successful targeted temperature management after cardiac arrest: a randomized controlled trial. Resuscitation. 2017;121:187–94. https://doi.org/10.1016/j.resuscitation.2017.10.002.

    Article  CAS  PubMed  Google Scholar 

  91. Schenfeld EM, Studnek J, Heffner AC, Nussbaum M, Kraft K, Pearson DA. Effect of prehospital initiation of therapeutic hypothermia in adults with cardiac arrest on time-to-target temperature. CJEM. 2015;17(3):240–7. https://doi.org/10.2310/8000.2014.141307.

    Article  PubMed  Google Scholar 

  92. Uray T, Mayr FB, Stratil P, Aschauer S, Testori C, Sterz F, et al. Prehospital surface cooling is safe and can reduce time to target temperature after cardiac arrest. Resuscitation. 2015;87:51–6. https://doi.org/10.1016/j.resuscitation.2014.10.026.

    Article  PubMed  Google Scholar 

  93. Schenone AL, Cohen A, Patarroyo G, Harper L, Wang X, Shishehbor MH, et al. Therapeutic hypothermia after cardiac arrest: a systematic review/meta-analysis exploring the impact of expanded criteria and targeted temperature. Resuscitation. 2016;108:102–10. https://doi.org/10.1016/j.resuscitation.2016.07.238.

    Article  PubMed  Google Scholar 

  94. Surani S, Varon J. The expanded use of targeted temperature management: time for reappraisal. Resuscitation. 2016;108:A8–9. https://doi.org/10.1016/j.resuscitation.2016.09.002.

    Article  PubMed  Google Scholar 

  95. Patel PV, John S, Garg RK, Temes RE, Bleck TP, Prabhakaran S. Therapeutic hypothermia after cardiac arrest is underutilized in the United States. Ther Hypothermia Temp Manag. 2011;1(4):199–203. https://doi.org/10.1089/ther.2011.0015.

    Article  PubMed  Google Scholar 

  96. Jena AB, Romley JA, Newton-Cheh C, Noseworthy P. Therapeutic hypothermia for cardiac arrest: real-world utilization trends and hospital mortality. J Hosp Med. 2012;7(9):684–9. https://doi.org/10.1002/jhm.1974.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Dresden SM, O’Connor LM, Pearce CG, Courtney DM, Powell ES. National trends in the use of postcardiac arrest therapeutic hypothermia and hospital factors influencing its use. Ther Hypothermia Temp Manag. 2015;5(1):48–54. https://doi.org/10.1089/ther.2014.0023.

    Article  PubMed  Google Scholar 

  98. Morrison LJ, Brooks SC, Dainty KN, Dorian P, Needham DM, Ferguson ND, et al. Improving use of targeted temperature management after out-of-hospital cardiac arrest: a stepped wedge cluster randomized controlled trial. Crit Care Med. 2015;43(5):954–64. https://doi.org/10.1097/CCM.0000000000000864.

    Article  PubMed  Google Scholar 

  99. Varon J, Acosta P. Therapeutic hypothermia use among health care providers in 2 developing countries. Am J Emerg Med. 2008;26(2):244. https://doi.org/10.1016/j.ajem.2007.05.025.

    Article  PubMed  Google Scholar 

  100. Guluma KZ, Hemmen TM, Olsen SE, Rapp KS, Lyden PD. A trial of therapeutic hypothermia via endovascular approach in awake patients with acute ischemic stroke: methodology. Acad Emerg Med. 2006;13(8):820–7. https://doi.org/10.1197/j.aem.2006.03.559.

    Article  PubMed  Google Scholar 

  101. Geurts M, Petersson J, Brizzi M, Olsson-Hau S, Luijckx GJ, Algra A, et al. COOLIST (cooling for ischemic stroke trial): a multicenter, open, randomized, phase II. Clin Trial Strok. 2017;48(1):219–21. https://doi.org/10.1161/STROKEAHA.116.014757.

    Article  Google Scholar 

  102. Kurisu K, Yenari MA. Therapeutic hypothermia for ischemic stroke; pathophysiology and future promise. Neuropharmacology. 2018;134(Pt B):302–9. https://doi.org/10.1016/j.neuropharm.2017.08.025.

    Article  CAS  PubMed  Google Scholar 

  103. Fox JL, Vu EN, Doyle-Waters M, Brubacher JR, Abu-Laban R, Hu Z. Prophylactic hypothermia for traumatic brain injury: a quantitative systematic review. CJEM. 2010;12(4):355–64.

    Article  Google Scholar 

  104. Varon J, Marik PE. Complete neurological recovery following delayed initiation of hypothermia in a victim of warm water near-drowning. Resuscitation. 2006;68(3):421–3. https://doi.org/10.1016/j.resuscitation.2005.07.020.

    Article  PubMed  Google Scholar 

  105. Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev. 2013;(1):CD003311. https://doi.org/10.1002/14651858.CD003311.pub3.

  106. Rose C, Michalak A, Pannunzio M, Chatauret N, Rambaldi A, Butterworth RF. Mild hypothermia delays the onset of coma and prevents brain edema and extracellular brain glutamate accumulation in rats with acute liver failure. Hepatology. 2000;31(4):872–7. https://doi.org/10.1053/he.2000.5923.

    Article  CAS  PubMed  Google Scholar 

  107. Vaquero J, Rose C, Butterworth RF. Keeping cool in acute liver failure: rationale for the use of mild hypothermia. J Hepatol. 2005;43(6):1067–77. https://doi.org/10.1016/j.jhep.2005.05.039.

    Article  CAS  PubMed  Google Scholar 

  108. Stravitz RT, Lee WM, Kramer AH, Kramer DJ, Hynan L, Blei AT. Therapeutic hypothermia for acute liver failure: toward a randomized, controlled trial in patients with advanced hepatic encephalopathy. Neurocrit Care. 2008;9(1):90–6. https://doi.org/10.1007/s12028-008-9090-y.

    Article  PubMed  Google Scholar 

  109. Villar J, Slutsky AS. Effects of induced hypothermia in patients with septic adult respiratory distress syndrome. Resuscitation. 1993;26(2):183–92. https://doi.org/10.1016/0300-9572(93)90178-s.

    Article  CAS  PubMed  Google Scholar 

  110. Madden LK, Hill M, May TL, Human T, Guanci MM, Jacobi J, et al. The implementation of targeted temperature management: an evidence-based guideline from the neurocritical care society. Neurocrit Care. 2017;27(3):468–87. https://doi.org/10.1007/s12028-017-0469-5.

    Article  PubMed  Google Scholar 

  111. Che D, Li L, Kopil CM, Liu Z, Guo W, Neumar RW. Impact of therapeutic hypothermia onset and duration on survival, neurologic function, and neurodegeneration after cardiac arrest. Crit Care Med. 2011;39(6):1423–30. https://doi.org/10.1097/CCM.0b013e318212020a.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kuboyama K, Safar P, Radovsky A, Tisherman SA, Stezoski SW, Alexander H. Delay in cooling negates the beneficial effect of mild resuscitative cerebral hypothermia after cardiac arrest in dogs: a prospective, randomized study. Crit Care Med. 1993;21(9):1348–58. https://doi.org/10.1097/00003246-199309000-00019.

    Article  CAS  PubMed  Google Scholar 

  113. Cabanas JG, Brice JH, De Maio VJ, Myers B, Hinchey PR. Field-induced therapeutic hypothermia for neuroprotection after out-of hospital cardiac arrest: a systematic review of the literature. J Emerg Med. 2011;40(4):400–9. https://doi.org/10.1016/j.jemermed.2010.07.002.

    Article  PubMed  Google Scholar 

  114. Bernard SA, Smith K, Finn J, Hein C, Grantham H, Bray JE, et al. Induction of therapeutic hypothermia during out-of-hospital cardiac arrest using a rapid infusion of cold saline: the RINSE Trial (Rapid Infusion of Cold Normal Saline). Circulation. 2016;134(11):797–805. https://doi.org/10.1161/circulationaha.116.021989.

    Article  CAS  PubMed  Google Scholar 

  115. Kirkegaard H, Soreide E, de Haas I, Pettila V, Taccone FS, Arus U, et al. Targeted temperature management for 48 vs 24 hours and neurologic outcome after out-of-hospital cardiac arrest: a randomized clinical trial. JAMA. 2017;318(4):341–50. https://doi.org/10.1001/jama.2017.8978.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Callaway CW. Targeted temperature management after cardiac arrest: finding the right dose for critical care interventions. JAMA. 2017;318(4):334–6. https://doi.org/10.1001/jama.2017.8977.

    Article  PubMed  Google Scholar 

  117. Vaity C, Al-Subaie N, Cecconi M. Cooling techniques for targeted temperature management post-cardiac arrest. Crit Care. 2015;19:103. https://doi.org/10.1186/s13054-015-0804-1.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Fukuda T. Targeted temperature management for adult out-of-hospital cardiac arrest: current concepts and clinical applications. J Intensive Care. 2016;4:30. https://doi.org/10.1186/s40560-016-0139-2.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Glover GW, Thomas RM, Vamvakas G, Al-Subaie N, Cranshaw J, Walden A, et al. Intravascular versus surface cooling for targeted temperature management after out-of-hospital cardiac arrest—an analysis of the TTM trial data. Crit Care. 2016;20(1):381. https://doi.org/10.1186/s13054-016-1552-6.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Tommasi E, Lazzeri C, Bernardo P, Sori A, Chiostri M, Gensini GF, et al. Cooling techniques in mild hypothermia after cardiac arrest. J Cardiovasc Med (Hagerstown). 2017;18(7):459–66. https://doi.org/10.2459/JCM.0000000000000130.

    Article  Google Scholar 

  121. Sonder P, Janssens GN, Beishuizen A, Henry CL, Rittenberger JC, Callaway CW, et al. Efficacy of different cooling technologies for therapeutic temperature management: a prospective intervention study. Resuscitation. 2018;124:14–20. https://doi.org/10.1016/j.resuscitation.2017.12.026.

    Article  PubMed  Google Scholar 

  122. Coppler PJ, Marill KA, Okonkwo DO, Shutter LA, Dezfulian C, Rittenberger JC, et al. Concordance of brain and core temperature in comatose patients after cardiac arrest. Ther Hypothermia Temp Manag. 2016;6(4):194–7. https://doi.org/10.1089/ther.2016.0010.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Akata T, Setoguchi H, Shirozu K, Yoshino J. Reliability of temperatures measured at standard monitoring sites as an index of brain temperature during deep hypothermic cardiopulmonary bypass conducted for thoracic aortic reconstruction. J Thorac Cardiovasc Surg. 2007;133(6):1559–65. https://doi.org/10.1016/j.jtcvs.2006.11.031.

    Article  PubMed  Google Scholar 

  124. Stone JG, Young WL, Smith CR, Solomon RA, Wald A, Ostapkovich N, et al. Do standard monitoring sites reflect true brain temperature when profound hypothermia is rapidly induced and reversed? Anesthesiology. 1995;82(2):344–51. https://doi.org/10.1097/00000542-199502000-00004.

    Article  CAS  PubMed  Google Scholar 

  125. Markota A, Palfy M, Stozer A, Sinkovic A. Difference between bladder and esophageal temperatures in mild induced hypothermia. J Emerg Med. 2015;49(1):98–103. https://doi.org/10.1016/j.jemermed.2014.12.059.

    Article  PubMed  Google Scholar 

  126. Zweifler RM, Voorhees ME, Mahmood MA, Parnell M. Rectal temperature reflects tympanic temperature during mild induced hypothermia in nonintubated subjects. J Neurosurg Anesthesiol. 2004;16(3):232–5.

    Article  Google Scholar 

  127. McIlvoy L. Comparison of brain temperature to core temperature: a review of the literature. J Neurosci Nurs. 2004;36(1):23–31.

    Article  Google Scholar 

  128. Cabanac M, Germain M, Brinnel H. Tympanic temperatures during hemiface cooling. Eur J Appl Physiol Occup Physiol. 1987;56(5):534–9. https://doi.org/10.1007/bf00635366.

    Article  CAS  PubMed  Google Scholar 

  129. Lopez M, Sessler DI, Walter K, Emerick T, Ozaki M. Rate and gender dependence of the sweating, vasoconstriction, and shivering thresholds in humans. Anesthesiology. 1994;80(4):780–8. https://doi.org/10.1097/00000542-199404000-00009.

    Article  CAS  PubMed  Google Scholar 

  130. Choi HA, Ko SB, Presciutti M, Fernandez L, Carpenter AM, Lesch C, et al. Prevention of shivering during therapeutic temperature modulation: the Columbia anti-shivering protocol. Neurocrit Care. 2011;14(3):389–94. https://doi.org/10.1007/s12028-010-9474-7.

    Article  PubMed  Google Scholar 

  131. Howes D, Gray SH, Brooks SC, Boyd JG, Djogovic D, Golan E, et al. Canadian Guidelines for the use of targeted temperature management (therapeutic hypothermia) after cardiac arrest: a joint statement from The Canadian Critical Care Society (CCCS), Canadian Neurocritical Care Society (CNCCS), and the Canadian Critical Care Trials Group (CCCTG). Resuscitation. 2016;98:48–63. https://doi.org/10.1016/j.resuscitation.2015.07.052.

    Article  PubMed  Google Scholar 

  132. Rubeiz GJ, Thill-Baharozian M, Hardie D, Carlson RW. Association of hypomagnesemia and mortality in acutely ill medical patients. Crit Care Med. 1993;21(2):203–9. https://doi.org/10.1097/00003246-199302000-00010.

    Article  CAS  PubMed  Google Scholar 

  133. Chernow B, Bamberger S, Stoiko M, Vadnais M, Mills S, Hoellerich V, et al. Hypomagnesemia in patients in postoperative intensive care. Chest. 1989;95(2):391–7. https://doi.org/10.1378/chest.95.2.391.

    Article  CAS  PubMed  Google Scholar 

  134. Arrich J, European Resuscitation Council Hypothermia After Cardiac Arrest Registry Study G. Clinical application of mild therapeutic hypothermia after cardiac arrest. Crit Care Med. 2007;35(4):1041–7. https://doi.org/10.1097/01.CCM.0000259383.48324.35.

    Article  PubMed  Google Scholar 

  135. Zhu SZ, Gu Y, Wu Z, Hu YF, Pan SY. Hypothermia followed by rapid rewarming exacerbates ischemia-induced brain injury and augments inflammatory response in rats. Biochem Biophys Res Commun. 2016;474(1):175–81. https://doi.org/10.1016/j.bbrc.2016.04.095.

    Article  CAS  PubMed  Google Scholar 

  136. Naito H, Isotani E, Callaway CW, Hagioka S, Morimoto N. Intracranial pressure increases during rewarming period after mild therapeutic hypothermia in postcardiac arrest patients. Ther Hypothermia Temp Manag. 2016;6(4):189–93. https://doi.org/10.1089/ther.2016.0009.

    Article  PubMed  Google Scholar 

  137. Bro-Jeppesen J, Annborn M, Hassager C, Wise MP, Pelosi P, Nielsen N, et al. Hemodynamics and vasopressor support during targeted temperature management at 33 degrees C Versus 36 degrees C after out-of-hospital cardiac arrest: a post hoc study of the target temperature management trial*. Crit Care Med. 2015;43(2):318–27. https://doi.org/10.1097/CCM.0000000000000691.

    Article  CAS  PubMed  Google Scholar 

  138. Bro-Jeppesen J, Hassager C, Wanscher M, Soholm H, Thomsen JH, Lippert FK, et al. Post-hypothermia fever is associated with increased mortality after out-of-hospital cardiac arrest. Resuscitation. 2013;84(12):1734–40. https://doi.org/10.1016/j.resuscitation.2013.07.023.

    Article  PubMed  Google Scholar 

  139. Winters SA, Wolf KH, Kettinger SA, Seif EK, Jones JS, Bacon-Baguley T. Assessment of risk factors for post-rewarming "rebound hyperthermia" in cardiac arrest patients undergoing therapeutic hypothermia. Resuscitation. 2013;84(9):1245–9. https://doi.org/10.1016/j.resuscitation.2013.03.027.

    Article  CAS  PubMed  Google Scholar 

  140. Monsieurs KG, Nolan JP, Bossaert LL, Greif R, Maconochie IK, Nikolaou NI, et al. European Resuscitation Council Guidelines for Resuscitation 2015: section 1. Executive summary. Resuscitation. 2015;95:1–80. https://doi.org/10.1016/j.resuscitation.2015.07.038.

    Article  PubMed  Google Scholar 

  141. Karcioglu O, Topacoglu H, Dikme O, Dikme O. A systematic review of safety and adverse effects in the practice of therapeutic hypothermia. Am J Emerg Med. 2018;36(10):1886–94. https://doi.org/10.1016/j.ajem.2018.07.024.

    Article  PubMed  Google Scholar 

  142. Saigal S, Sharma JP, Dhurwe R, Kumar S, Gurjar M. Targeted temperature management: current evidence and practices in critical care. Indian J Crit Care Med. 2015;19(9):537–46. https://doi.org/10.4103/0972-5229.164806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Geurts M, Macleod MR, Kollmar R, Kremer PH, van der Worp HB. Therapeutic hypothermia and the risk of infection: a systematic review and meta-analysis. Crit Care Med. 2014;42(2):231–42. https://doi.org/10.1097/CCM.0b013e3182a276e8.

    Article  PubMed  Google Scholar 

  144. Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med. 1996;334(19):1209–15. https://doi.org/10.1056/nejm199605093341901.

    Article  CAS  PubMed  Google Scholar 

  145. Liu YM, Ibrahim A, Jan T, Chang P, Fagan S, Goverman J. Skin necrosis as a complication of therapeutic hypothermia. J Burn Care Res. 2014;35(3):e184–e6. https://doi.org/10.1097/BCR.0b013e3182a22730.

    Article  PubMed  Google Scholar 

  146. Polderman KH, Varon J. Interpreting the results of the targeted temperature management trial in cardiac arrest. Ther Hypothermia Temp Manag. 2015;5(2):73–6. https://doi.org/10.1089/ther.2014.0031.

    Article  PubMed  Google Scholar 

  147. Stub D. Targeted temperature management after cardiac arrest. N Engl J Med. 2014;370(14):1358. https://doi.org/10.1056/NEJMc1401250.

    Article  PubMed  Google Scholar 

  148. Varon J, Polderman K. Targeted temperature management after cardiac arrest. N Engl J Med. 2014;370(14):1358–9. https://doi.org/10.1056/NEJMc1401250.

    Article  PubMed  Google Scholar 

  149. Lascarrou J-B, Merdji H, Le Gouge A, Colin G, Grillet G, Girardie P, et al. Targeted temperature management for cardiac arrest with nonshockable rhythm. N Engl J Med. 2019;381(24):2327–37. https://doi.org/10.1056/NEJMoa1906661.

    Article  PubMed  Google Scholar 

  150. Cariou A, Payen JF, Asehnoune K, Audibert G, Botte A, Brissaud O, et al. Targeted temperature management in the ICU: guidelines from a French expert panel. Ann Intensive Care. 2017;7(1):70. https://doi.org/10.1186/s13613-017-0294-1.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Stratil P, Holzer M. Is hypothermia indicated during cardiopulmonary resuscitation and after restoration of spontaneous circulation? Curr Opin Crit Care. 2016;22(3):212–7. https://doi.org/10.1097/mcc.0000000000000299.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Varon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Araiza, A., Varon, J. (2021). Hypothermia Therapy in Sudden Death. In: Zhu, H. (eds) Sudden Death. Springer, Singapore. https://doi.org/10.1007/978-981-15-7002-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7002-5_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7001-8

  • Online ISBN: 978-981-15-7002-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics