Skip to main content

Organic Sources and Tillage Practices for Soil Management

  • Chapter
  • First Online:
Resources Use Efficiency in Agriculture

Abstract

Soil is the most valued natural resource, which needs to be used until the existence of the world for our food production. There is a limited option to bring new land under crop cultivation. The finite land resource is decreasing continuously due to a new settlement, industrial, and other development activities. Intensive agriculture ensured food security, which, however, exerts huge pressure on arable land through increased frequency of crop cultivation, repeated tillage, and indiscriminate use of unbalanced agrochemicals. The resultant effects of long-term intensive agriculture are the depletion of organic matter (OM) and degradation of soils, which attributes to lower use efficiencies of agricultural inputs. It is anticipated that 60% more yields of cereals will be needed by 2050 contrasted with the current level. Because of poor soil health, it has become a great challenge to keep increased food production onwards. If the productive capacity of soils could not be maintained, the present civilization must be collapsed. Therefore, the soil needs to be kept alive by adding locally available organic amendments and adopting conservation tillage practices. Soil carbon (C) is the fuel and driving force of ecosystem functions. Application of organic amendments increases soil C, builds soil structure, enriches biological diversity, and contributes to reducing inorganic fertilizers in crop production. Rice straw is the most available residue in many countries of the world, which increases soil aggregate stability, organic C, and cation exchange capacity by 27.8, 45.5, and 27.2%, respectively, compared to sole inorganic fertilizer application. Poultry manure and cow dung were found effective to reduce soil acidity, which depends on the rates and frequency of their application. Conservation tillage like no-till, reduced tillage, and strip-tillage, etc. diminishes mineralization of OM and increases C accumulation in soil. No-till with residue retention has global demand, which is one of the best options of increasing soil C. No-till system alone can save about 70% energy and fuel consumption compared to traditional tillage. Rotation of crops, retention of residues, and adoption of other suitable resource conservation strategies further ensure good soil health and its productive capacity. The combined adoption of organic amendments and conservation tillage can revitalize degraded soils and bring multiple benefits including agricultural sustainability and mitigation of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AEC:

Anion exchange capacity

Al:

Aluminum

AMF:

Arbuscular mycorrhizal fungi

B:

Boron

BNF:

Biological nitrogen fixation

BSMRAU:

Bangabandhu Sheikh Mujibur Rahman Agricultural University

C:

Carbon

Ca:

Calcium

CA:

Conservation agriculture

CaCO3:

Calcium carbonate

cc:

Cubic centimetre

CD:

Cow dung

CEC:

Cation exchange capacity

CFU:

Colony forming units

CH4:

Methane

Cl:

Chlorine

Co:

Cobalt

CO2:

Carbon dioxide

CP:

Compost

Cu:

Copper

FAO:

Food and Agriculture Organization

Fe:

Iron

FRG:

Fertilizer recommendation guide

FYM:

Farmyard manure

g cc−1:

Grams per cubic centimetre

g kg−1:

Grams per kilogram

GHG:

Greenhouse gas

GM:

Green manure

H:

Hydrogen

H2PO4−:

Phosphate

HCO3−:

Bicarbonate

K:

Potassium

mg kg−1:

Milligrams per kilogram

Mg:

Magnesium

mm:

Millimetre

Mn:

Manganese

Mo:

Molybdenum

MT:

Minimum tillage

N:

Nitrogen

N2O:

Nitrous oxide

Na:

Sodium

NH4+:

Ammonium

Ni:

Nickel

NO2−:

Nitrite

NO3−:

Nitrate

NUE:

Nitrogen use efficiency

O:

Oxygen

OC:

Organic carbon

OH−:

Hydroxide

OM:

Organic matter

P:

Phosphorus

Pg:

Peta gram

PGPF:

Plant growth promoting fungi

PGPM:

Plant growth promoting microbes

PGPR:

Plant growth promoting rhizobacteria

PM:

Poultry manure

RHB:

Rice husk biochar

RS:

Rice straw

RT:

Reduced tillage

S:

Sulphur

SDGs:

Sustainable development goals

Si:

Silicon

SO4−2:

Sulphate

SOC:

Soil organic carbon

SOM:

Soil organic matter

ST:

Strip tillage

t ha−1:

Ton per hectare

TT:

Traditional tillage

UN:

United Nations

Va:

Vanadium

VC:

Vermicompost

WHC:

Water holding capacity

Zn:

Zinc

References

  • Abbott LK, Murphy DV (2007) Biological soil fertility: a key to sustainable land use in agriculture. Springer, London, p 254

    Book  Google Scholar 

  • Adebola AE, Ewulo BS, Arije DN (2017) Effects of different animal manures on soil physical and microbial properties. Appl Trop Agric 22(1):128–133

    Google Scholar 

  • Adebusoye SA, Ilori MO, Amund OO, Teniola OD, Olatope SO (2007) Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. World J Microbiol Biotechnol 23(8):1149–1159

    Article  CAS  Google Scholar 

  • Adekiya AO, Ojeniyi SO, Owonifari OE (2016) Effect of cow dung on soil physical properties, growth and yield of maize (Zea mays) in a tropical Alfisol. Sci Agric 15(2):374–379

    CAS  Google Scholar 

  • Adeyemo AJ, Akingbola OO, Ojeniyi SO (2019) Effects of poultry manure on soil infiltration, organic matter contents and maize performance on two contrasting degraded alfisols in southwestern Nigeria. Int J Recycl Org Waste Agric 1:1–8

    Google Scholar 

  • Agbede TM, Ojeniyi SO, Adeyemo AJ (2008) Effect of poultry manure on soil physical and chemical properties, growth and grain yield of sorghum in southwest, Nigeria. Am Eurasian J Sustain Agric 2(1):72–77

    Google Scholar 

  • Agegnehu G, Vanbeek C, Bird MI (2014) Influence of integrated soil fertility management in wheat and tef productivity and soil chemical properties in the highland tropical environment. J Soil Sci Plant Nutr 14(3):532–545

    CAS  Google Scholar 

  • Akbarnia A, Alimardani R, Baharloeyan S (2010) Performance comparison of three tillage systems in wheat farms. Australian J Crop Sci 4(8):586–589

    Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdisc Toxicol 2:1–12

    Article  Google Scholar 

  • Akter N, Ara KA, Akand MH, Alam MK (2017) Vermicompost and trichocompost in combination with inorganic fertilizers increased growth, flowering and yield of gladiolus cultivar (GL-031) (Gladiolus grandiflorus L.). Adv Res 12(3):1–11

    Article  Google Scholar 

  • Alam MK, Salahin N, Islam S, Begum RA, Hasanuzzaman M, Islam MS, Rahman MM (2017) Patterns of change in soil organic matter, physical properties and crop productivity under tillage practices and cropping systems in Bangladesh. J Agric Sci 155(2):216–238. https://doi.org/10.1017/S0021859616000265

    Article  CAS  Google Scholar 

  • Alam MA, Rahman MM, Biswas JC, Akhter S, Maniruzzaman M, Choudhury AK, Jahan ABMS, Miah MMU, Sen R, Kamal MZU, Mannan MA, Shiragi MHK, Kabir W, Kalra N (2019) Nitrogen transformation and carbon sequestration in wetland paddy field of Bangladesh. Paddy Water Environ 17:677–688. https://doi.org/10.1007/s10333-019-00693-7

    Article  Google Scholar 

  • Al-Kaisi MM, Yin X (2005) Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soyabean rotations. J Environ Qual 34(2):437–445

    Article  PubMed  CAS  Google Scholar 

  • Antonious GF (2016) Soil amendments for agricultural production. In: Larramendy ML, Soloneski S (eds) Organic fertilizers: from basic concepts to applied outcomes. Intech, Rijeka, pp 157–187

    Google Scholar 

  • ASAE (2013) Terminology and definitions for soil tillage and soil-tool relationships. ASAE EP191.3, February 2005 (R2013). American Society of Agricultural Engineers, St Joseph, MI

    Google Scholar 

  • Avnimelech Y, Cohen A, Shkedi D (1990) The effect of municipal solid waste compost on the fertility of clay souls. Soil Technol 3(3):275–284

    Article  Google Scholar 

  • Awale R, Chatterjee A, Franzen D (2013) Tillage and N-fertilizer influences on selected organic carbon fractions in a North Dakota silty clay soil. Soil Till Res 134:213–222

    Article  Google Scholar 

  • Bandyopadhyay KK, Misra AK, Ghosh PK, Hati KM (2010) Effect of integrated use of farmyard manure and chemical fertilizers on soil physical properties and productivity of soybean. Soil Till Res 110(1):115–125

    Article  Google Scholar 

  • Bauer A, Black AL (1992) Organic carbon effects on available water capacity of three soil textural groups. Soil Sci Soc Am J 56(1):248–254

    Article  Google Scholar 

  • Beare MH, Hendrix PF, Coleman DC (1994) Water-stable aggregates and organic matter fractions in conventional-and no-tillage soils. Soil Sci Soc Am J 58(3):777–786

    Article  Google Scholar 

  • Binte BI (2020) Effect of long term rice straw application on soil health. MS thesis, Winter 2019 term. Department of Soil Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh

    Google Scholar 

  • Bolan NS, Hedley MJ (2003) Role of carbon, nitrogen, and sulphur cycles in soil acidification. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, New York, pp 29–56

    Google Scholar 

  • Bosch DD, Potter TL, Truman CC, Bednarz CW, Strickland TC (2005) Surface runoff and lateral surface flow as response to conventional tillage and soil-water conditions. Trans ASAE 48(6):2137–2144

    Article  Google Scholar 

  • Brady NC, Weil RR (1999) The nature and properties of soils. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Brady NC, Weil RR (2014) The nature and properties of soils, 14th edn. Pearson Education, Upper Saddle River

    Google Scholar 

  • Brown S, Cotton M (2011) Changes in soil properties and carbon content following compost application: results of on-farm sampling. Compost Sci Util 19(2):87–96

    Article  Google Scholar 

  • Busari MA, Kukal SS, Kaur A, Bhatt R, Dulazi AA (2015) Conservation tillage impacts on soil, crop and the environment. Int Soil Water Conserv Res 3(2):119–129

    Article  Google Scholar 

  • Butler TJ, Han KJ, Muir JP, Weindorf DC, Lastly L (2008) Dairy manure compost effects on corn silage production and soil properties. Agron J 100(6):1541–1545

    Article  Google Scholar 

  • Campbell-Nelson K (2019) New England vegetable management guide. https://ag.umass.edu/vegetable/news/2018-2019-new-england-vegetable-management-guide-available-now

  • Carr PM, Mader P, Creamer NG, Beeby JS (2012) Overview and comparison of conservation tillage practices and organic farming in Europe and North America. Renew Agric Food Syst 27:2–6

    Article  Google Scholar 

  • Celik I, Ortas I, Kilic S (2004) Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil Till Res 78(1):59–67

    Article  Google Scholar 

  • Celik A, Altikat S, Way T (2013) Strip tillage width effects on sunflower seed emergence and yield. Soil Till Res 131:20–27

    Article  Google Scholar 

  • Chan KY (2001) An overview of some tillage impacts on earthworm population abundance and diversity—implications for functioning in soils. Soil Till Res 57(4):179–191

    Article  Google Scholar 

  • Chang EH, Wang CH, Chen CL, Chung RS (2014) Effects of long-term treatments of different organic fertilizers complemented with chemical N fertilizer on the chemical and biological properties of soils. Soil Sci Plant Nutr 60(4):499–511

    Article  CAS  Google Scholar 

  • Channabasavanna AS (2003) Efficient utilization of poultry manure with inorganic fertilizers in wet land rice. J Maharashtra Agric Univ 27(3):237–238

    Google Scholar 

  • Connolly RD (1998) Modelling effects of soil structure on the water balance of soil-crop systems: a review. Soil Till Res 48:1–19

    Article  Google Scholar 

  • Cruse RM (2002) Strip tillage effects on crop production, crop year 2001. Department of Agronomy, Lowa State Univ, Ames, IA

    Google Scholar 

  • Das BB, Dkhar MS (2011) Rhizosphere microbial populations and physico chemical properties as affected by organic and inorganic farming practices. Am-Euras J Agric Environ Sci 10:140–150

    Google Scholar 

  • Derpsch R, Friedrich T, Kassam A, Hongwen L (2010) Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng 3:1–25

    Google Scholar 

  • Diacono M, Mantemurro F (2010) Long-term effects of organic amendments on soil fertility. A review. Agron Sustain Dev 30:401–422

    Article  CAS  Google Scholar 

  • Diacono M, Castrignanò A, Troccoli A, Benedetto DD, Basso B, Rubino P (2012) Spatial and temporal variability of wheat grain yield and quality in a Mediterranean environment: a multivariate geostatistical approach. Field Crop Res 131:49–62

    Article  Google Scholar 

  • Dimassi B, Mary B, Wylleman R, Labreuche J, Couture D, Piraux F, Cohan JP (2014) Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years. Agric Ecosyst Environ 188:134–146

    Article  Google Scholar 

  • Dobermann A, Fairhurst TH (2002) Rice straw management. Better Crop Int Spec Suppl 16:7–11

    Google Scholar 

  • Drakopoulos D, Scholberg JM, Lantinga EA, Tittonell PA (2016) Influence of reduced tillage and fertilization regime on crop performance and nitrogen utilization of organic potato. Org Agric 6(2):75–87

    Article  Google Scholar 

  • Duong TT, Penfold C, Marschner P (2012) Amending soils of different texture with six compost types: impact on soil nutrient availability, plant growth and nutrient uptake. Plant Soil 354(1–2):197–209

    Article  CAS  Google Scholar 

  • Elmi AA, Madramootoo C, Hamel C, Liu A (2003) Denitrification and nitrous oxide to nitrous oxide plus dinitrogen ratios in the soil profile under three tillage systems. Biol Fertil Soils 38:340–348

    Article  CAS  Google Scholar 

  • Ewulo BS, Hassan KO, Ojeniyi SO (2007) Comparative effect of cow dung manure on soil and leaf nutrient and yield of pepper. Int J Agric Res 2(12):1043–1048

    Article  Google Scholar 

  • Ewulo BS, Ojeniyi SO, Akanni DA (2008) Effect of poultry manure on selected soil physical and chemical properties, growth, yield and nutrient status of tomato. Afr J Agric Res 3(9):612–616

    Google Scholar 

  • Fan M, Shen J, Yuan L, Jiang R, Chen X, Davies WJ, Zhang F (2011) Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J Exp Bot 63(1):13–24

    Article  PubMed  CAS  Google Scholar 

  • FAO (2005) The importance of soil organic matter: key to drought-resistant soil and sustained food production. FAO soils bulletin 80. FAO, Rome

    Google Scholar 

  • FAO (2009) Global agriculture towards 2050. High level expert forum – how to feed to world in 2050. http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf

  • FAO (2015) Healthy soils are the basis for healthy food production. Food and Agriculture Organization of the United Nations. www.fao.org/soils-2015/news/news-detail/en/c/277682

  • Farooq M, Siddique KHM (eds) (2014) Conservation agriculture. Springer International, Cham. https://www.springer.com/gp/book/9783319116198

    Google Scholar 

  • Farrell M, Jones DL (2009) Critical evaluation of municipal solid waste composting and potential compost markets. Bioresour Technol 100(19):4301–4310

    Article  PubMed  CAS  Google Scholar 

  • Franzluebbers AJ (2002) Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Till Res 66(2):197–205

    Article  Google Scholar 

  • FRG (2018) Fertilizer recommendation guide. Bangladesh Agricultural Research Council (BARC) Farmgate, Dhaka, p 223

    Google Scholar 

  • Friedrich T, Kassam A (2012) No-till farming and the environment: do no-till systems require more chemicals? Outlooks Pest Manag 23(4):153–157. https://doi.org/10.1564/23aug02

    Article  Google Scholar 

  • Gannett M, Pritts MP, Lehmann J (2019) Soil amendments affect soil health indicators and crop yield in perennial strawberry. Hort Tech 29(2):179–188

    Article  CAS  Google Scholar 

  • Gao M, Liang F, Yu A, Li B, Yang L (2010) Evaluation of stability and maturity during forced-aeration composting of chicken manure and sawdust at different C/N ratios. Chemosphere 78(5):614–619

    Article  PubMed  CAS  Google Scholar 

  • Garg S, Bahla GS (2008) Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils. Bioresour Technol 99(13):5773–5777

    Article  PubMed  CAS  Google Scholar 

  • Gattinger A, Jawtusch J, Muller A, Mader P (2011) No-till agriculture – a climate smart solution? Bischofliches Hilfswerk MISEREOR e.V. Mozartstrabe, Aachen

    Google Scholar 

  • Ge S, Zhu Z, Jiang Y (2018) Long-term impact of fertilization on soil pH and fertility in an apple production system. J Soil Sci Plant Nutr 18(1):282–293

    CAS  Google Scholar 

  • Ghosh PK, Ramesh P, Bandyopadhyay KK, Tripathi AK, Hati KM, Misra AK, Acharya CL (2004) Comparative effectiveness of cattle manure, phosphocompost and fertilizer-NPK on three cropping systems in vertisols of semi-arid tropics. I. Crop yields and system performance. J Bioresour Technol 95:77–83

    Article  CAS  Google Scholar 

  • Govaerts B, Mezzalama M, Unno Y, Sayre KD, Luna-Guido M, Vanherck K, Dendooven L, Deckers J (2007) Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Appl Soil Ecol 37(1–2):18–30

    Article  Google Scholar 

  • Govaerts B, Verhulst N, Castellanos-Navarrete A, Sayre KD, Dixon J, Dendooven L (2009) Conservation agriculture and soil carbon sequestration: between myth and famer reality. Crit Rev Plant Sci 28:97–122

    Article  CAS  Google Scholar 

  • Goyal S, Singh D, Suneja S, Kapoor KK (2009) Effect of rice straw compost on soil microbiological properties and yield of rice. Indian J Agric Res 43(4):263–268

    Google Scholar 

  • Grandy AS, Loecke TD, Parr S, Robertson GP (2006) Long-term trends in nitrous oxide emissions, soil nitrogen, and crop yields of till and no-till cropping systems. J Environ Qual 35(4):1487–1495. https://doi.org/10.2134/jeq2005.0166

    Article  PubMed  CAS  Google Scholar 

  • Greenland DJ (1977) Soil damage by intensive arable cultivation: temporary or permanent? Philos T R Soc B 281(980):193–208

    Google Scholar 

  • Gregorich EG, Turchenek LW, Carter MR, Angers DA (eds) (2001) Soil and environmental science dictionary. Can Soc Soil Sci 8:372

    Google Scholar 

  • Gui-mei Z, Xiang-yong L, Min WU (2015) Effect of straw incorporation on soil fertility and yield of rice after tobacco. Fujian Agricultural Science and Technology, Fujian

    Google Scholar 

  • Gupta R, Sayre KD (2007) Conservation agriculture in South Asia. J Agric Sci 145(3):207–214

    Article  Google Scholar 

  • Gupta KK, Aneja KR, Rana D (2016) Current status of cow dung as a bioresource for sustainable development. Bioresour Bioprocess 3(1):1–11

    Article  Google Scholar 

  • Hafeez-ur-Rehman AN, Wakeel A, Saharawat YS, Farooq M, Siddique KH (eds) (2015) Conservation agriculture in South Asia. Conservation agriculture. Springer, Cham

    Google Scholar 

  • Hati KM, Mandal KG, Misra AK, Ghosh PK, Bandyopadhyay KK (2006) Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India. Bioresour Technol 97(16):2182–2188

    Article  PubMed  CAS  Google Scholar 

  • Havlin JL, Beaton JD, Tisdale SL, Nelson WL (2005) Soil fertility and fertilizers: an introduction to nutrient management (no. 631.422/H388). Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • He J, Kuhn NJ, Zhang XM, Zhang XR, Li HW (2009) Effects of 10 years of conservation tillage on soil properties and productivity in the farming–pastoral ecotone of Inner Mongolia, China. Soil Use Manag 25(2):201–209

    Article  Google Scholar 

  • He J, Li H, Kuhn NJ, Wang Q, Zhang X (2010) Effect of ridge tillage, no-tillage, and conventional tillage on soil temperature, water use, and crop performance in cold and semi-arid areas in Northeast China. Soil Res 48(8):737–744

    Article  Google Scholar 

  • He L, Zhang A, Wang X, Li J, Hussain Q (2019) Effects of different tillage practices on the carbon footprint of wheat and maize production in the loess plateau of China. J Clean Prod 23:297–305

    Article  Google Scholar 

  • Heggelund LR, Diez-Ortiz M, Lofts S, Lahive E, Jurkschat K, Wojnarowicz J, Svendsen C (2014) Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida. Nanotoxicology 8(5):559–572

    Article  PubMed  CAS  Google Scholar 

  • Heggenstaller A (2012) Managing soil pH for crop production. Crop Insights 22:1–4

    Google Scholar 

  • Hepperly P, Lotter D, Ulsh CZ, Seidel R, Reider C (2009) Compost, manure and synthetic fertilizer influences crop yields, soil properties, nitrate leaching and crop nutrient content. Compost Sci Util 17(2):117–126

    Article  CAS  Google Scholar 

  • Hiel MP, Chelin M, Parvin N, Barbieux S, Degrune F, Lemtiri A, Colinet G, Degre A, Bodson B, Garre S (2016) Crop residue management in arable cropping systems under temperate climate, part 2: soil physical properties and crop production. Biotechnol Agron Soc Environ 20:245–256

    CAS  Google Scholar 

  • Hillel D, Hatfield JL (eds) (2005) Encyclopedia of soils in the environment, vol 3. Elsevier, Amsterdam

    Google Scholar 

  • Hobbs PR (2007) Conservation agriculture: what is it and why is it important for future sustainable food production? J Agric Sci 145:127–137

    Article  Google Scholar 

  • Hofmeijer MA, Krauss M, Berner A, Peigne J, Mäder P, Armengot L (2019) Effects of reduced tillage on weed pressure, nitrogen availability and winter wheat yields under organic management. Agronomy 9(4):180

    Article  CAS  Google Scholar 

  • Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice PV, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130

    Article  Google Scholar 

  • Hoover NL, Law JY, Long LAM, Kanwar RS, Soupir ML (2019) Long-term impact of poultry manure on crop yield, soil and water quality, and crop revenue. J Environ Manag 252:109582

    Article  CAS  Google Scholar 

  • Hubbard RK, Bosch DD, Marshall LK, Strickland TC, Rowland D, Griffin TS, Wienhold BJ (2008) Nitrogen mineralization from broiler litter applied to southeastern coastal plain soils. J Soil Water Conserv 63(4):182–192

    Article  CAS  Google Scholar 

  • Hunke P, Mueller EN, Schroder B, Zeilhofer P (2015) The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 8(6):1154–1180

    Article  Google Scholar 

  • Hussain N, Hassan G, Arshadullah M, Mujeeb F (2001) Evaluation of amendments for the improvement of physical properties of sodic soil. Int J Agric Biol 3:319–322

    Google Scholar 

  • Jabro JD, Stevens WB, Evans RG, Iversen WM (2009) Tillage effects on physical properties in two soils of the northern great plains. Am Soc Agric Biol Eng 25(3):377–382

    Google Scholar 

  • Jabro JD, Stevens WB, Iversen WM, Evans RG (2011) Bulk density, water content, and hydraulic properties of a sandy loam soil following conventional or strip tillage. Appl Eng Agric 27(5):765–768

    Article  Google Scholar 

  • Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, Endale DM, Coleman DC, Whitman WB (2008) Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biol Biochem 40:2843–2853

    Article  CAS  Google Scholar 

  • Jangir CK, Singh D, Kumar S (2016) Yield and economic response of biofertilizer and fertility levels on black gram (Vigna mungo L.). Prog Res 11(Special-VIII):5252–5254

    Google Scholar 

  • Jangir CK, Kumar S, Meena RS (2019) Significance of soil organic matter to soil quality and evaluation of sustainability. In: Meena RS (ed) Sustainable agriculture. Scientific Publisher, Jodhpur, pp 357–381

    Google Scholar 

  • Jarvis PE, Woolford AR (2017) Economic and ecological benefits of reduced tillage. Frank Parkinson Agricultural Trust and Game & Wildlife Conservation Trust. https://www.agricology.co.uk/sites/default/files/Economic%20and%20ecological%20benefits%20of%20reduced%20tillage%20in%20the%20Uk%20-%20Final.pdf

  • Jat RA, Sahrawat KL, Kassam AH (eds) (2014) Conservation agriculture: global prospects and challenges. CABI, Wallingford, 393 pp

    Google Scholar 

  • Jia S, Zhang X, Chen X, McLaughlin NB, Zhang S, Wei S, Sun B, Liang A (2016) Long-term conservation tillage influences the soil microbial community and its contribution to soil CO2 emissions in a Mollisol in Northeast China. J Soils Sediments 16(1):1–12

    Article  CAS  Google Scholar 

  • Jiang XJ, De-Ti XIE (2009) Combining ridge with no-tillage in lowland rice-based cropping system: Long-term effect on soil and rice yield. Pedosphere 19(4):515–522

    Article  Google Scholar 

  • Juskulska I (2019) Change in soil properties after 5 years of using strip-till technology. Int Scient J Mech Agric Conserv Resour 6:193–195

    Google Scholar 

  • Kaiser J (2004) Wounding earth’s fragile skin. Science 304:1616–1618

    Article  PubMed  CAS  Google Scholar 

  • Kakraliya SK, Kumar S, Kakraliya SS, Choudhary KK, Singh LK (2018) Remedial options for the sustainability of rice-wheat cropping system. J Pharmacogn Phytochem 7(2):163–171

    CAS  Google Scholar 

  • Karlen DL, Mausbach MJ, Doran JW, Cline RG (1997) Soil quality: a concept, definition, and framework for evaluation. Soil Sci Soc Am J 61:4–10

    Article  CAS  Google Scholar 

  • Kassam A, Friedrich T, Derpsch R (2019) Global spread of conservation agriculture. Int J Environ Stud 76(1):29–51

    Article  CAS  Google Scholar 

  • Kaur K, Kapoor KK, Gupta AP (2005) Impact of organic manures with and without mineral fertilizers on soil chemical and biological properties under tropical conditions. J Plant Nutr Soil Sci 168(1):117–122

    Article  CAS  Google Scholar 

  • Kay BD (1998) Soil structure and organic carbon: a review. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil processes and carbon cycle. CRC Press, Boca Raton

    Google Scholar 

  • Kibblewhite MG, Ritz K, Swift MJ (2007) Soil health in agricultural systems. Philos T R Soc B Biol Sci 363(1492):685–701

    Article  Google Scholar 

  • Kimble JM, Rice CW, Reed D, Mooney S, Follett RF, Lal R (2007) Soil carbon management, economic, environmental and social benefits. CRC Press, Boca Raton

    Google Scholar 

  • King LD (1990) Soil nutrient management in the United States. Sustainable agricultural systems. St Lucie Press, Boca Raton, pp 89–106

    Google Scholar 

  • Kirkegaard JA, Conyers MK, Hunt JR, Kirkby CA, Watt M, Rebetzke GJ (2014) Sense and nonsense in conservation agriculture: principles, pragmatism and productivity in Australian mixed farming systems. Agric Ecosyst Environ 187:133–145. https://doi.org/10.1016/j.agee.2013.08.011

    Article  Google Scholar 

  • Kumar S, Karaliya SK, Chaudhary S (2017) Precision farming technologies towards enhancing productivity and sustainability of rice-wheat cropping system. J Curr Microbiol Appl Sci 6(3):142–151

    Article  Google Scholar 

  • Kumar S, Meena RS, Datta R, Verma SK, Yadav GS, Pradhan G, Molaei A, Mustafizur Rahman GKM, Mashuk HA (2020) Legumes for carbon and nitrogen cycling: an organic approach. In: Datta R, Meena RS, Pathan SI, Ceccherini MT (eds) Carbon and nitrogen cycling in soil. Springer, Singapore, pp 337–375. https://doi.org/10.1007/978-981-13-7264-3_10

    Chapter  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Laryea KB, Pathak P, Klaij MC (1991) Tillage systems and soils in the semi-arid tropics. Soil Till Res 20:201–218

    Article  Google Scholar 

  • Laufer DB, Loibl B, Koch MH-J (2016) Soil erosion and surface runoff under strip tillage for sugar beat (Beta vulgaris L.) in central Europe. Soil Till Res 262:1–7

    Article  Google Scholar 

  • Lehnhoff E, Miller Z, Miller P, Johnson S, Scott T, Hatfield P, Menalled F (2017) Organic agriculture and the quest for the holy grail in water-limited ecosystems: managing weeds and reducing tillage intensity. Agriculture 7(4):33

    Article  Google Scholar 

  • Leskovar D, Othman Y, Dong X (2016) Strip tillage improves soil biological activity, fruit yield and sugar content of triploid watermelon. Soil Till Res 163:266–273

    Article  Google Scholar 

  • Li H, Gao H, Wu H, Li W, Wang X, He J (2007) Effects of 15 years of conservation tillage on soil structure and productivity of wheat cultivation in northern China. Soil Res 45(5):344–350

    Article  Google Scholar 

  • Liang Y, Lin X, Yamada S, Inoue M, Inosako K (2013) Soil degradation and prevention in green house production. Springerplus 2(Suppl 1):S10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Licht MA, Al-Kaisi M (2005) Strip-tillage effect on seedbed soil temperature and other soil physical properties. Soil Till Res 80(1–2):233–249

    Article  Google Scholar 

  • Lim TJ, Spokas KA, Feyereisen G, Novak JM (2016) Predicting the impact of biochar additions on soil hydraulic properties. Chemosphare 142:136–144

    Article  CAS  Google Scholar 

  • Lipiec L, Kus J, Slowinska-Jurkiewicz A, Nosalewicz A (2005) Soil porosity and water infiltration as influenced by tillage methods. Soil Till Res 89(2):210–220

    Article  Google Scholar 

  • Magdoff FR, Bartlett RJ, Ross DS (1987) Acidification and pH buffering of forest soils. Soil Sci Soc Am J 51(5):1384–1386

    Article  CAS  Google Scholar 

  • Maguire RO, Hesterberg D, Gernat A, Anderson K, Wineland M, Grimes J (2006) Liming poultry manures to decrease soluble phosphorus and suppress the bacteria population. J Environ Qual 35(3):849–857

    Article  PubMed  CAS  Google Scholar 

  • Mandal B, Majumder B, Bandyopadhyay PK, Hazra GC, Gangopadhyay A, Samantaray RN, Mishra AK, Chaudhury J, Saha MN, Kundu S (2007) The potential of cropping systems and soil amendments for carbon sequestration in soils under long-term experiments in subtropical India. Glob Chang Biol 13(2):357–369. https://doi.org/10.1111/j.1365-2486.2006.01309.x

    Article  Google Scholar 

  • Manzoni S, Porparato A (2009) Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol Biochem 41(7):1355–1379

    Article  CAS  Google Scholar 

  • MDA (2011) Conservation practices, Minnesota conservation funding guide. Minnesota Department of Agriculture, St Paul, MN. http://www.mda.state.mn.us/protecting/conservation/practices/constillage

    Google Scholar 

  • Meena RS, Lal R (2018) Legumes and sustainable use of soils. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer, Singapore, pp 1–31. https://doi.org/10.1007/978-981-13-0253-4_1

    Chapter  Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Meena RS, Kumar S, Yadav GS (2020a) Soil carbon sequestration in crop production. In: Meena RS (ed) Nutrient dynamics for sustainable crop production. Springer, Singapore, pp 1–39. https://doi.org/10.1007/978-981-13-8660-2_1

    Chapter  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020b) Long term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in Central Ohio, USA. Geoderma 363:1141164

    Article  CAS  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020c) Impact of agrochemicals on soil microbiota and management: a review. Land 9(34):1–22. https://doi.org/10.3390/land9020034

    Article  Google Scholar 

  • Mitchell JP, Shrestha A, Mathesius K, Scow KM, Southard RJ, Haney RL, Schmidt R, Munk DS, Horwath WR (2017) Cover cropping and no-tillage improve soil health in an arid irrigated cropping system in California’s San Joaquin Valley, USA. Soil Till Res 165:325–335

    Article  Google Scholar 

  • Mloza-banda ML, Cornelis W, Mloza-banda HR, Makwiza CN, Verbist K (2014) Soil properties after change to conservation agriculture from ridge tillage in sandy clay loams of mid-altitude Central Malawi. Soil Use Manag 30:569–578

    Article  Google Scholar 

  • Mohamed AM, Sekar S, Muthukrishnan P (2010) Prospects and potential of poultry manure. Asian J Plant Sci 9:172–182

    Article  Google Scholar 

  • Mullens BA, Szijj CE, Hinkle NC (2002) Oviposition and development of Fannia spp. (Diptera: Muscidae) on poultry manure of low moisture levels. Environ Entomol 31(4):588–593

    Article  Google Scholar 

  • Murphy DV, Stockdale EA, Brookes PC, Goulding KWT (2007) Impact of microorganisms on chemical transformation in soil. In: Abbott LK, Murphy DV (eds) Soil biological fertility – a key to sustainable land use in agriculture. Springer, Dordrecht, pp 37–59

    Google Scholar 

  • Norris CE, Congreves KA (2018) Alternative management practices improve soil health indices in intensive vegetable cropping systems: a review. Front Environ Sci 6:50

    Article  Google Scholar 

  • Nweke IA, Nsoanya LN (2015) Effect of cow dung and urea fertilization on soil properties, growth and yield of cucumber (Cucumis sativus L.). J Agric Ecol Res 3(2):81–88

    Google Scholar 

  • Omonode RA, Smith DR, Gal A, Vyn TJ (2011) Soil nitrous oxide emissions in corn following three decades of tillage and rotation treatments. Soil Sci Soc Am J 75(1):152–163

    Article  CAS  Google Scholar 

  • Orji FA, Ibiene AA, Dike EN (2012) Laboratory scale bioremediation of petroleum hydrocarbon–polluted mangrove swamps in the Niger Delta using cow dung. Malay J Microbiol 8(4):219–228

    CAS  Google Scholar 

  • Osman KT (2013) Chemical properties of soil. In: Soils. Springer, Dordrecht, pp 97–111

    Chapter  Google Scholar 

  • Overstreet L, Hoyt G, Imbriani J (2010) Comparing nematode and earthworm communities under combinations of conventional and conservation vegetable production practices. Soil Till Res 110:42–50

    Article  Google Scholar 

  • Parikh SJ, James BR (2012) Soil: the foundation of agriculture. Nat Educ Knowl 3(10):2

    Google Scholar 

  • Patino-Zuniga L, Ceja-Navarro JA, Govaerts B, Luna-Guido M, Sayre KD, Dendooven L (2009) The effect of different tillage and residue management practices on soil characteristics, inorganic N dynamics and emissions of N2O, CO2 and CH4 in the central highlands of Mexico: a laboratory study. Plant Soil 314(1–2):231–241

    Article  CAS  Google Scholar 

  • Paul M (2003) Long-term effects of manure compost and mineral fertilizers on soil biological activity as related to soil structure and crop yield. In: Amlinger F, Nortcliff S, Weinfurtner K, Dreher P (eds) Applying compost – benefits and needs, proc. of a seminar 22–23 November 2001, BMLFUW. European Commission, Brussels

    Google Scholar 

  • Paustian K, Six J, Elliott ET, Hunt HW (2000) Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48(1):147–163

    Article  CAS  Google Scholar 

  • Phogat VK, Tomar VS, Dahiya R (2015) Soil physical properties, chapter 6. In: Soil science: an introduction. Indian Society of Soil Science, New Delhi, pp 135–171

    Google Scholar 

  • Pikul JL Jr, Carpenter-Boggs L, Vigil M, Schumacher TE, Lindstrom MJ, Riedell WE (2001) Crop yield and soil condition under ridge and chisel-plow tillage in the northern Corn Belt, USA. Soil Till Res 60(1–2):21–33

    Article  Google Scholar 

  • Ponnamperuma FN (1984) Straw as a source of nutrients for wet land rice. Org Matter Rice 117:136

    Google Scholar 

  • Powlson DS, Whitmore AP, Goulding WT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62:42–55

    Article  CAS  Google Scholar 

  • Rahman MM (2013) Nutrient use and carbon sequestration efficiencies in soils from different organic wastes in rice and tomato cultivation. Commun Soil Sci Plant Anal 44(9):1457–1471

    Article  CAS  Google Scholar 

  • Rahman MM (2014) Carbon and nitrogen dynamics and carbon sequestration in soils under different residue management. The Agriculturists 12(2):48–55

    Article  Google Scholar 

  • Rahman F, Rahman MM, Rahman GKMM, Saleque A, Hossain ATS, Miah MG (2016) Effect of organic and inorganic fertilizers and rice straw on carbon sequestration and soil fertility under rice-rice cropping pattern. Carbon Manag 7(1–2):41–53

    Article  CAS  Google Scholar 

  • Rahman MM, Biswas JC, Maniruzzaman M, Choudhury AK, Ahmed F (2017) Effect of tillage practices and rice straw management on soil environment and carbon dioxide emission. The Agriculturists 15(1):127–142

    Article  Google Scholar 

  • Rahman GKM, Rahman MM, Alam MS, Kamal MZ, Mashuk HA, Datta R, Meena RS (2020) Biochar and organic amendments for sustainable soil carbon and soil health. In: Datta R et al (eds) Carbon nitrogen cycling in soil. Springer, Singapore, pp 45–85. https://doi.org/10.1007/978-981-13-7264-3

    Chapter  Google Scholar 

  • Raich JW, Potter CS, Bhagawati D (2002) Inter-annual variability in global soil respiration, 1980–94. Glob Chang Biol 8:800–812

    Article  Google Scholar 

  • Ramos MC, Nacci S, Pla I (2003) Effect of raindrop impact and its relationship with aggregate stability to different disaggregate forces. Catena 53(4):365–376

    Article  Google Scholar 

  • Randhawa GK, Kullar JS (2011) Bioremediation of pharmaceuticals, pesticides, and petrochemicals with gomeya/cow dung. ISRN Pharmacol 2011:362459. https://doi.org/10.5402/2011/362459

    Article  PubMed  PubMed Central  Google Scholar 

  • Rani K, Sharma P, Kumar S, Wati L, Kumar R, Gurjar DS, Kumar D, Kumar R (2019) Legumes for sustainable soil and crop management. In: Meena RS, Kumar S, Bohra JS, Jat ML (eds) Sustainable management of soil and environment. Springer, Singapore, pp 193–215. https://doi.org/10.1007/978-981-13-8832-3_6

    Chapter  Google Scholar 

  • Rashad FM, Kesba HH, Saleh WD, Moselhy MA (2011) Impact of rice straw composts on microbial population, plant growth, nutrient uptake and root-knot nematode under greenhouse conditions. Afr J Agric Res 6(5):1188–1203

    Google Scholar 

  • Reicosky D (1998) Strip tillage methods: impact on soil and air quality. In: ASSSI national soils conference, Brisbane-Australia. Australian Society of Soil Science, Brisbane, pp 56–60

    Google Scholar 

  • Rochette P (2008) No-till only increases N2O emissions in poorly-aerated soils. Soil Till Res 101(1–2):97–100

    Article  Google Scholar 

  • Rosenstock TS, Lamanna C, Chesterman S, Bell P, Arslan A, Richards M, Rioux J, Akinleye AO, Champalle C, Cheng Z, Corner-Dolloff C, Dohn J, English W, Eyrich AS, Girvetz EH, Kerr A, Lizarazo M, Madalinska A, McFatridge S, Morris KS, Namoi N, Poultouchidou N, Ravina da Silva M, Rayess S, Ström H, Tully KL, Zhou W (2016) The scientific basis of climate-smart agriculture: a systematic review protocol. CCAFS working paper no 138. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen

    Google Scholar 

  • Roy S, Rahman MM, Rahman GKMM, Miah MG, Kamal MZU (2019) Soil structural stability under different organic fertilizer management practices. Annals Bangladesh Agril 23(1):15–24

    Google Scholar 

  • Ruensuk N, Mongkonbunjong P, Leuchikam C, Inthalaeng W (2008) Rice straw management in the area of continuous rice planting. Rice Res J 2:35–46

    Google Scholar 

  • Schiesari L, Waichman A, Brock T, Adams C, Grillitsch B (2013) Pesticide use and biodiversity conservation in the Amazonian agricultural frontier. Philos Trans R Soc B Biol Sci 368(1619):20120378

    Article  Google Scholar 

  • Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:1–11

    Article  CAS  Google Scholar 

  • Scotti R, Bonanomi G, Scelza R, Zoina A, Rao MA (2015) Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J Soil Sci Plant Nutr 15(2):333–352

    CAS  Google Scholar 

  • Sengupta A, Dick WA (2015) Bacterial community diversity in soil under two tillage practices as determined by pyrosequencing. Microb Ecol 70(3):853–859

    Article  PubMed  Google Scholar 

  • Shao JA, Li YB, Wei CF, Xie DT (2009) Effects of land management practices on labile organic carbon fractions in rice cultivation. Chin Geogr Sci 19:241–248

    Article  Google Scholar 

  • Sharma P, Meena RS, Kumar S, Gurjar DS, Yadav GS, Kumar S (2019) Growth, yield and quality of cluster bean (Cyamopsis tetragonoloba) as influenced by integrated nutrient management under alley cropping system. Indian J Agric Sci 89(11):1876–1880

    CAS  Google Scholar 

  • Shi XH, Yang XM, Drury CF, Reynolds WD, McLaughlin NB, Zhang XP (2012) Impact of ridge tillage on soil organic carbon and selected physical properties of a clay loam in southwestern Ontario. Soil Till Res 120:1–7

    Article  Google Scholar 

  • Simmons FW (1992) Tillage and compaction effects on root distribution. In: Reetz HF Jr (ed) Proc. of roots of plant nutrition conference. Chamaign, Illinois, GA. Potash and Phosphate Institute, Manhattan, pp 61–68

    Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241(2):155–176

    Article  CAS  Google Scholar 

  • Smith SR, Jasim S (2009) Small-scale home composting of biodegradable household waste: overview of key results from a 3-year research programme in West London. Waste Manag Res 27(10):941–950

    Article  PubMed  CAS  Google Scholar 

  • Somani LL, Totawat KL (1996) Soil conditioners and amendments, vol 1. Agrotech Publishing Academy, Udaipur, pp 28–160

    Google Scholar 

  • Soremi AO, Adetunji MT, Adejuyigbe CO, Bodunde JG, Azeez JO (2017) Effects of poultry manure on some soil chemical properties and nutrient bioavailability to soybean. J Agric Ecol Res Int 11(3):1–10

    Google Scholar 

  • Stanley UO (2010) Effectiveness of cow dung and mineral fertilizer on soil properties, nutrient uptake and yield of sweet potato (Ipomoea batatas) in southeastern Nigeria. Asian Agric Res 4:148–154

    Google Scholar 

  • Tautges NE, Sullivan TS, Reardon CL, Burke IC (2016) Soil microbial diversity and activity linked to cropyield and quality in a dryland organic wheat production system. Appl Soil Ecol 108:258–268

    Article  Google Scholar 

  • Tejada M, Hernandez MT, Garcia C (2006) Application of two organic amendments on soil restoration: effects on the soil biological properties. J Environ Qual 35(4):1010–1017

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677

    Article  PubMed  CAS  Google Scholar 

  • Trevini M, Benincasa P, Guiducci M (2013) Strip tillage effect on seedbed tilth and maize production in Northern Italy as case-study for the Southern Europe environment. Eur J Agron 48:50–56

    Article  Google Scholar 

  • Trinsoutrot I, Recous S, Mary B, Nicolardot B (2000) C and N fluxes of decomposing 13C and 15N Brassica napus L. effects of residue composition and N content. Soil Biol Biochem 32(11–12):1717–1730

    Article  CAS  Google Scholar 

  • Turmel MS, Speratti A, Baudron F, Verhulst N, Govaerts B (2015) Crop residue management and soil health: a systems analysis. Agric Sys 134:6–16

    Article  Google Scholar 

  • Umanu G, Nwachukwu SCU, Olasode OK (2013) Effects of cow dung on microbial degradation of motor oil in lagoon water. GJBB 2:542–548

    Google Scholar 

  • Valpassos MAR, Cavalcante EGS, Cassiolato AMR, Alves MC (2001) Effects of soil management systems on soil microbial activity, bulk density and chemical properties. Pesq Agropec Bras 36(12):1539–1545

    Article  Google Scholar 

  • Van den Putte A, Govers G, Diels J, Gillijns K, Demuzere M (2010) Assessing the effect of soil tillage on crop growth: a meta-regression analysis on European crop yields under conservation agriculture. Eur J Agron 33:231–241

    Article  Google Scholar 

  • Wander M (2004) Soil organic matter fractions and their relevance to soil function. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC Press, Boca Raton

    Google Scholar 

  • Wang Z, Liu L, Chen Q, Wen X, Liao Y (2016) Conservation tillage increases soil bacterial diversity in the dryland of northern China. Agron Sustain Dev 36:28. https://doi.org/10.1007/s13593-016-0366-x

    Article  Google Scholar 

  • Watts DB, Torbert HA, Feng YC, Prior SA (2010) Soil microbial community dynamics as influenced bycomposted dairy manure, soil properties, and landscape position. Soil Sci 175:474–486

    Article  CAS  Google Scholar 

  • Weaver AR, Kissel DE, Chen F, West LT, Adkins W, Rickman D, Luvall JC (2004) Mapping soil pH buffering capacity of selected fields in the coastal plain. Soil Sci Soc Am J 68(2):662–668

    Article  CAS  Google Scholar 

  • Wen-Wei Z, Xiao-Jiang S, Li-Hong Z, Yue-Cai S (2011) Effects of rice straw backed to soil in double rice cropping production. Crop Res 3:10

    Google Scholar 

  • Whalen JK, Benslim H, Jiao Y, Sey BK (2008) Soil organic carbon and nitrogen pools as affected by compost applications to a sandy-loam soil in Quebec. Can J Soil Sci 88(4):443–450

    Article  Google Scholar 

  • Whalley WR, Dumitru E, Dexter AR (1995) Biological effects of soil compaction. Soil Till Res 35:53–68

    Article  Google Scholar 

  • Wilhelm WW, Johnson JMF, Karlen DL, Lightle DT (2007) Corn Stover to sustain soil organic carbon further constrains biomass supply. Agron J 99:1665–1667

    Article  CAS  Google Scholar 

  • World Bank (2016) Agricultural land percent of land area. https://data.worldbank.org/indicator/AG.LND.AGRI.ZS

  • Zaller JG, Kopke U (2004) Effects of traditional and biodynamic farmyard manure amendment on yields, soil chemical, biochemical and biological properties in a long-term field experiment. Biol Fertil Soil 40(4):222–229

    Article  Google Scholar 

  • Zaman MM, Chowdhury T, Nahar K, Chowdhury MAH (2017a) Effect of cow dung as organic manure on the growth, leaf biomass yield of Stevia rebaudiana and post-harvest soil fertility. J Bangladesh Agric Univ 15(2):206–211

    Google Scholar 

  • Zaman MM, Nahar K, Chowdhury T, Chowdhury MAH (2017b) Growth, leaf biomass yield of stevia and post-harvest soil fertility as influenced by different levels of poultry manure. J Bangladesh Agric Univ 15(2):212–218

    Article  Google Scholar 

  • Zhang Y, Liu Y, Zhang G, Guo X, Sun Z, Li T (2018) The effects of rice straw and biochar applications on the microbial community in a soil with a history of continuous tomato planting history. Agronomy 8(5):65

    Article  CAS  Google Scholar 

  • Zhao X, Liu SL, Pu C, Zhang XQ, Xue JF, Zhang R, Wang YQ, Lal R, Zhang HL, Chen F (2016) Methane and nitrous oxide emissions under no–till farming in China: a meta–analysis. Glob Chang Biol 22(4):1372–1384

    Article  PubMed  Google Scholar 

  • Zikeli S, Gruber S (2017) Reduced tillage and no-till in organic farming systems, Germany— status quo, potentials and challenges. Agriculture 7(35):1–17. https://doi.org/10.3390/agriculture7040035

    Article  Google Scholar 

  • Zikeli S, Gruber S, Teufel C-F, Hartung K, Claupein W (2013) Effects of reduced tillage on crop yield, plant available nutrients and soil organic matter in a 12-year long-term trial under organic management. Sustainability 5:3876–3894. https://doi.org/10.3390/su5093876

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Mizanur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahman, M.M., Alam, M.S., Kamal, M.Z.U., Rahman, G.K.M.M. (2020). Organic Sources and Tillage Practices for Soil Management. In: Kumar, S., Meena, R.S., Jhariya, M.K. (eds) Resources Use Efficiency in Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-6953-1_9

Download citation

Publish with us

Policies and ethics