Skip to main content

Entomopathogenic Microbes for Sustainable Crop Protection: Future Perspectives

  • Chapter
  • First Online:
Current Trends in Microbial Biotechnology for Sustainable Agriculture

Abstract

Food security for a growing world population is a challenging task under limited agriculture land and increasing incidences of pest infestation. In the pursuit of this challenging task, modern agriculture has seen a major escalation in the use of agrochemicals like chemical pesticides and fertilizer by the farmers. Repeated application of pesticides to agricultural soil not only leads to the development of pesticide-resistant pests but also imposes their toxicity in environmental systems and human health. Annually, ~40% of global crop loss occurs due to the inability of farmers in managing the pest attack and due to the resistance shown by these pests against different pesticides. Also, maintaining the sustainability of agroecosystems during agricultural production has become an important issue worldwide. Therefore, it is imperative to identify and develop biopesticides, which can provide protection to crops against a broad range of pests and insects’ infestations as well as be cost-effective and environmentally friendly at the same time. In the development of biocontrol agents (BAC), entomopathogenic microorganism (EPM) plays an important role as ecofriendly biopesticides and serves as an alternative to synthetic pesticides.

EPMs consist of bacteria, fungi, nematodes, and Viruses, which can facilitate in developing a potential biological technology to suppress the pests and promote sustainable agriculture. In this chapter, we focus on the important roles and application of entomopathogenic microorganism and their types for pest and insect control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AbaajehAR NF (2015) Isolation and pathogenicity of some South African entomopathogenic fungi (Ascomycota) against eggs and larvae of Cydia pomonella (Lepidoptera: Tortricidae). Biocontrol Sci Tech 25:828–842

    Google Scholar 

  • Abdel-Raheem M (2020) Isolation, mass production and application of Entomopathogenic Fungi for insect pests control. In: Cottage industry of biocontrol agents and their applications. Springer, Cham, pp 231–251

    Chapter  Google Scholar 

  • Abdel-Razek AS, Hussein M, Shehata I (2018) Isolation and identification of indigenous entomopathogenic nematode (EPN) isolate from Egyptian fauna. Arch Phytopathol Plant Prot 51:197–206

    Article  Google Scholar 

  • Adang MJ, Crickmore N, Jurat-Fuentes JL (2014) Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. In Adv Insect Physiol Academic Press 47:39–87

    Article  Google Scholar 

  • Afriani SR, Pujiastuti Y, Irsan C, Damiri N, Nugraha S, Sembiring ER (2018) Isolation and toxicity test of Bacillus thuringiensis from Sekayu region soil, South Sumatra on Spodopteralitura. In: In IOP conference series: earth and environmental science, vol 102:1. IOP Publishing, p 012066

    Google Scholar 

  • Akinci HA, Ozman-Sullivan SK, Diler H, Celik N, Sullivan GT, Karaca G (2017) Entomopathogenic fungi isolated from Thaumetopoea pityocampa and their efficacies against its larvae. Fresenius Environ Bull 26(8):5251–5257

    Google Scholar 

  • Andreazza AP, Cardoso RL, Cocco J, Guizelini D, Faoro H, Tadra-Sfeir MZ, Souza EM (2019) Genome analysis of entomopathogenic Bacillus sp. ABP14 isolated from a lignocellulosic compost. Genome Biol Evol1 1(6):1658–1662

    Google Scholar 

  • Antwi FB, Reddy GV (2016) Efficacy of entomopathogenic nematodes and sprayable polymer gel against crucifer flea beetle (Coleoptera: Chrysomelidae) on canola. J EconEntomo 109(4):1706–1712

    CAS  Google Scholar 

  • Barloy F, DelĂ©cluse A, Nicolas L, Lecadet MM (1996) Cloning and expression of the first anaerobic toxin gene from Clostridium bifermentans subsp. Malaysia, encoding a new mosquitocidal protein with homologies to Bacillus thuringiensis delta-endotoxins. J Bacteriol 178(11):3099–3105

    Google Scholar 

  • Barth H, Aktories K, Popoff MR, Stiles BG (2004) Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 68(3):373–402

    Google Scholar 

  • Batta YA (2018) Efficacy of two species of entomopathogenic fungi against the stored-grain pest, Sitophilus granaries L.(Curculionidae: Coleoptera), via oral ingestion. Egypt J Biol Pest Co 28(1):44

    Google Scholar 

  • Bazazo KG, Ekram AA, El-Sheikh MF (2019) New record of entomopathogenic bacteria, Bacillus aryabhattai strain b8w 22, isolated from Cassidavittatavill. and its pathogenicity against this insect in Egyptian sugar beet fields. Zagazig J Agri Res 46(6): 2247–2254

    Google Scholar 

  • Berliner E (1915) Ăśber die Schlaffsuchtder Mehlmottenraupe (EphestiakĂĽhniella Zell.) und ihren Erreger Bacillus thuringiensis n. sp. Z Angew Entomol 2(1):29–56

    Google Scholar 

  • Boonserm P, Moonsom S, Boonchoy C, Promdonkoy B, Parthasarathy K, Torres J (2006) Association of the components of the binary toxin from Bacillus sphaericus in solution and with model lipid bilayers. Biochem Bioph Res Co 342(4):1273–1278

    Article  CAS  Google Scholar 

  • Broadwell AH, Baumann L, Baumann P (1990) Larvicidal properties of the 42 and 51 kilodalton Bacillus sphaericus proteins expressed in different bacterial hosts: evidence for a binary toxin. Curr Microbiol 21(6):361–366

    Google Scholar 

  • Bravo A, Gill SS, SoberĂłn M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435

    Google Scholar 

  • Butko P (2003) Cytolytic toxin Cyt1A and its mechanism of membrane damage: data and hypotheses. Appl Environ Microbiol 69(5):2415–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canassa F, Esteca FC, Moral RA, Meyling NV, Klingen I, Delalibera I (2020) Root inoculation of strawberry with the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana reduces incidence of the twospotted spider mite and selected insect pests and plant diseases in the field. J Pest Sci 93(1):261–274

    Google Scholar 

  • Capinera JL, Cranshaw WS, Hughes HG (1986) Suppression of raspberry crown borer, Pennisetia marginata (Harris)(Lepidoptera: Sesiidae) with soil applications of Steinernema feltiae (Rhabditida: Steinernematidae). J Invertebr Pathol 48(2):257–258

    Google Scholar 

  • Chandler D, Davidson G, Jacobson RJ (2005) Laboratory and glasshouse evaluation of entomopathogenic fungi against the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), on tomato, Lycopersicon esculentum. Biocon Sci Tech 15(1):37–54

    Google Scholar 

  • Clark MA, Baumann PAUL (1991) Modification of the Bacillus sphaericus 51-and 42-kilodalton mosquitocidal proteins: effects of internal deletions, duplications, and formation of hybrid proteins. Appl Environ Microbiol 57(1):267–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen S, Dym O, Albeck S, Ben-Dov E, Cahan R, Firer M, Zaritsky A (2008) High-resolution crystal structure of activated Cyt2Ba monomer from Bacillus thuringiensis subsp. Israelensis.J. Mol Biol 380(5):820–827

    Article  CAS  Google Scholar 

  • Cohen S, Albeck S, Ben-Dov E, Cahan R, Firer M, ZaritskyA DO (2011) Cyt1Aa toxin: crystal structure reveals implications for its membrane-perforating function. J Mol Biol 413(4):804–814

    Article  CAS  PubMed  Google Scholar 

  • Crickmore N, Baum J, Bravo A, Lereclus D, Narva K, Sampson K, Zeigler DR (2015) Bacillus thuringiensis toxin nomenclature. Available at: http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/. Accessed on 14

  • Crickmore N, Wheeler VC, Ellar DJ (1994) Use of an operon fusion to induce expression and crystallisation of a Bacillus thuringiensis δ-endotoxin encoded by a cryptic gene. Mol Gen Genet 242(3):365–368

    Article  CAS  PubMed  Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):807–813

    Google Scholar 

  • Dara SK (2013) Entomopathogenic fungus Beauveria bassiana promotes strawberry plant growth and health. UCANR eJournal Strawberries and Vegetables:30

    Google Scholar 

  • Dara SK, Dara SS, Dara SS (2016) First report of entomopathogenic fungi, Beauveria bassiana, Isaria fumosorosea and Metarhizium brunneum promoting the growth and health of cabbage plants growing under water stress. UCANR eJournal Strawberries and Vegetables:19

    Google Scholar 

  • Dara SSR, Dara SS, Dara SK, Anderson T (2017) Fighting plant pathogenic fungi with entomopathogenic fungi and other biologicals. CAPCA Adviser 20(1):40–44

    Google Scholar 

  • de Barjec H, Lemille F (1970) Presence of flagellar antigenic subfactors in serotype 3 of Bacillus thuringiensis. J Invertebr Pathol 15(1):139–140

    Google Scholar 

  • De Brida AL, Rosa JMO, De Oliveira CMG, BMDC C, SerrĂŁo JE, Zanuncio JC, SRS W (2017) Entomopathogenic nematodes in agricultural areas in Brazil. Sci Rep-Uk 7:45254

    Article  CAS  Google Scholar 

  • de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37(1):409–433

    Article  PubMed  CAS  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB, Naylor RL (2018) Increase in crop losses to insect pests in a warming climate. Science 361(6405):916–919

    Article  CAS  PubMed  Google Scholar 

  • Dillon ME, Wang G, Huey RB (2010) Global metabolic impacts of recent climate warming. Nat 467(7316):704

    Article  CAS  Google Scholar 

  • Djukic M, Poehlein A, ThĂĽrmer A, Daniel R (2011) Genome sequence of Brevibacillus laterosporus LMG 15441, a pathogen of invertebrates. J Bacteriol 193:5535–5536

    Google Scholar 

  • Duarte GF, Rodrigues J, Fernandes ÉK, Humber RA, Luz C (2015) New insights into the amphibious life of Biomphalaria glabrata and susceptibility of its egg masses to fungal infection. J Invertebr Patho 125:31–36

    Article  Google Scholar 

  • Duarte RT, Gonçalves KC, Espinosa DJL, Moreira LF, De Bortoli SA, Humber RA, Polanczyk RA (2016) Potential of entomopathogenic fungi as biological control agents of diamondback moth (Lepidoptera: Plutellidae) and compatibility with chemical insecticides. J Econ Entomol 109(2):594–601

    Article  CAS  PubMed  Google Scholar 

  • Eberle KE, Jehle JA, Huber J (2012a) 10 microbial control of crop pests using insect viruses. Integrated pest management: principles and practice 281

    Google Scholar 

  • Eberle KE, Wennman JT, Klespies RG, Jehle JA (2012b) Basic techniques in insect virology. Manual of techniques in invertebrate pathology, 2nd edn. Academic Press, London, UK, pp 15–74

    Google Scholar 

  • El Kichaoui AY, Bara’a A, El Hindi M (2017) Isolation, molecular identification and under lab evaluation of the entomopathogenic fungi M. anisopliae and B. bassiana against the Red Palm Weevil R. ferrugineus in Gaza Strip. 7(01)

    Google Scholar 

  • ErtĂĽrk Ă–, Yaman M (2019) Potential of five non-spore-forming bacteria, originated from the European cockchafer, Melolontha melolontha (Linnaeus, 1758)(Coleoptera: Scarabaeidae), on three economic insect pests. Egypt J Biol Pest Co 29(1):1–5

    Google Scholar 

  • Fargues J, Smits N, Rougier M, Boulard T, Ridray G, Lagier J et al (2005) Effect of microclimate heterogeneity and ventilation system on entomopathogenic hyphomycete infection of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) in Mediterranean greenhouse tomato. Biol Control 32(3):461–472

    Article  Google Scholar 

  • de Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43(3):237–256

    Article  CAS  Google Scholar 

  • Fan Y, Fang W, Guo S, Pei X, Zhang Y, Xiao Y, Pei Y (2007) Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Appl Environ Microbiol 73(1):295–302

    Google Scholar 

  • Feldhaar H (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 36(5):533–543. https://doi.org/10.1111/j.1365-2311.2011.01318.x

  • Fernandez LE, Aimanova KG, Gill SS, Bravo A, SoberĂłn M (2006) A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae. Biochem J 394(1):77–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Jin K, Ying SH, Zhang Y, Xiao G, Shang Y et al (2011) Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet 7:1

    Article  CAS  Google Scholar 

  • Glare TR, O'callaghan M (2000) Bacillus thuringiensis Biology, Ecology and safety (No. 632.951 G5)

    Google Scholar 

  • Gninenko YI, Ponomarev VL, Nesterenkova A (2018) Virus application experience to protect boxwood against Cydalima prespectalis caterpillars. Recent advances in the researches and application of viruses and entomophages in forest health protection 40

    Google Scholar 

  • Gokturk T, Tozlu E, Kotan R (2018) Prospects of entomopathogenic bacteria and fungi for biological control of Ricania simulans (Walker 1851)(Hemiptera: Ricaniidae). Pak J Zool 50(1)

    Google Scholar 

  • Goldberg LJ, Margalit J (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univitattus, Aedes aegypti and Culexpipiens. Mosq News 37(3):355–358

    Google Scholar 

  • González-Cabrera J, Mollá O, MontĂłn H, Urbaneja A (2011) Efficacy of Bacillus thuringiensis (Berliner) in controlling the tomato borer, Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae). BioControl 56(1):71–80

    Google Scholar 

  • Gupta S, Dikshit AK (2010) Biopesticides: an ecofriendly approach for pest control. J Biopest 3(1):186–188

    Google Scholar 

  • Hajek AE, St Leger RJ (1994) Interactions between fungal pathogens and insect hosts. Annu Rev Entomol 39(1):293–322

    Article  Google Scholar 

  • Han S, Craig JA, Putnam CD, CarozziNB TJA (1999) Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct sBiol 6(10):932–936

    Article  CAS  Google Scholar 

  • Haviland DR (2014) UC IPM Pest Management Guidelines: Blueberry. UCANR Pub. 3542

    Google Scholar 

  • Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Mol Biol R53(2):242–255

    Google Scholar 

  • Humphrey SMJ, Berry C (1998) Variants of the Bacillus sphaericus binary toxins: implications for differential toxicity of strains. J Invertebr Pathol 71(2):184–185

    Article  Google Scholar 

  • Ibrahim AA, Mohamed HF, El-Naggar SEM, Swelim MA, Elkhawaga OE (2016) Isolation and selection of entomopathogenic fungi as biocontrol agent against the greater wax moth, Galleria mellonella L.(Lepidoptera: Pyralidae). Egypt J Biol Pest Co 26(2):249

    Google Scholar 

  • Imoulan A, Wu HJ, Lu WL, Li Y, Li BB, Yang RH et al (2016) Beauveria medogensis sp. nov., a new fungus of the entomopathogenic genus from China. J Invertebr Pathol 139:74–81

    Article  CAS  PubMed  Google Scholar 

  • Iqbal M, Shaheen FA, Mahmood R, Rafique MK, Bodlah I, Naz F, Raja MU (2019) Synergistic effect of Entomopathogenic Fungi and Bacteria against pulse beetle, Callosobruchus chinensis. Pak J Zool 51(5)

    Google Scholar 

  • Irlich UM, Terblanche JS, Blackburn TM, Chown SL (2009) Insect rate-temperature relationships: environmental variation and the metabolic theory of ecology. Nat 174(6):819–835

    Google Scholar 

  • Jackson TA, Pearson JF, O'callaghan M, Mahanty HK, Willocks MJ (1992) Pathogen to product-development of Serratia entomophila Enterobacteriaceae) as a commercial biological control agent for the New Zealand grass grub (Costelytra zealandica). Use of pathogens in scarab pest management Ed. by TrevorAJ, Travis RG

    Google Scholar 

  • Jaihan P, Sangdee K, Sangdee A (2016) Selection of entomopathogenic fungus for biological control of chili anthracnose disease caused by Colletotrichum spp. Eur J Plant Pathol 146(3):551–564

    Article  CAS  Google Scholar 

  • James M, Malan AP, Addison P (2018) Surveying and screening south African entomopathogenic nematodes for the control of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). Crop Prot 105:41–48

    Google Scholar 

  • Jucovic M, Walters FS, Warren GW, Palekar NV, Chen JS (2008) From enzyme to zymogen: engineering Vip2, an ADP-ribosyltransferase from Bacillus cereus, for conditional toxicity. Protein Eng Des Sel 21(10):631–638

    Article  CAS  PubMed  Google Scholar 

  • Kalane VG, Pardeshi AB (2018) Larvicidal effect of Staphylococcus vitulinus bacteria against Spodoptera litura fab. J Pharmacogn Phytochem 7(3):3054–3057

    Google Scholar 

  • Kamali S, Karimi J, Koppenhöfer AM (2018) New insight into the management of the tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae) with entomopathogenic nematodes. J Econ Entomol 111(1):112–119

    Google Scholar 

  • Karkute SG, Krishna R, Ansari WA, Singh B, Singh PM, Singh M, Singh AK (2019) Heterologous expression of the AtDREB1A gene in tomato confers tolerance to chilling stress. Biol Plant 63(1):268–277

    Article  CAS  Google Scholar 

  • Kepenekci I, Atay T, Oksal E, Saglam HD, Tulek A, Evlice E (2015) Identification of Turkish isolate of the Entomopathogenic Fungi, Purpureocillium lilacinum (syn: Paecilomyces lilacinus) and its effect on potato pests, Phthorimaea operculella (Zeller)(Lepidoptera: Gelechiidae) and Leptinotarsa decemlineata (say)(Coleoptera: Chrysomelidae). Egypt J Biol Pest Co 25(1)

    Google Scholar 

  • Khachatourians GG, Qazi SS (2008) Entomopathogenic fungi: biochemistry and molecular biology. In: Human and animal relationships. Springer, Heidelberg, pp 33–61

    Chapter  Google Scholar 

  • Krieg AV, Huger AM, Langenbruch GA, Schnetter W (1983) Bacillus thuringiensis var. tenebrionis: einneuer, gegenĂĽberLarven von ColeopterenwirksamerPathotyp. Z Angew Entomo 96(1–5):500–508

    Google Scholar 

  • Krishna R, Karkute SG, Ansari WA, Jaiswal DK, Verma JP, Singh M (2019) Transgenic tomatoes for abiotic stress tolerance: status and way ahead. 3 Biotech 9(4):143

    Article  PubMed  PubMed Central  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

    Article  CAS  PubMed  Google Scholar 

  • Landsberg MJ, Jones SA, Rothnagel R, Busby JN, Marshall SDG, Simpson RM, Lott JS, Hankamer B, Hurst MRH (2011) 3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity. Proc Natl Acad Sci USA 108:20544–20549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MK, Walters FS, Hart H, Palekar N, Chen JS (2003) The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-endotoxin. Appl Environ Microbiol 69(8):4648–4657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WW, Shin TY, Bae SM, Woo SD (2015) Screening and evaluation of entomopathogenic fungi against the green peach aphid, Myzuspersicae, using multiple tools. J Asia Pac Entomol 18(3):607–615

    Article  Google Scholar 

  • Leuber M, Orlik F, Schiffler B, Sickmann A, Benz R (2006) Vegetative insecticidal protein (Vip1Ac) of Bacillus thuringiensis HD201: evidence for oligomer and channel formation. Biochemist 45(1):283–288

    Article  CAS  Google Scholar 

  • Liu JG, Yang AZ, Shen XH, Hua BG, Shi GL (2011) Specific binding of activated Vip3Aa10 to Helicoverpa armigera brush border membrane vesicles results in pore formation. J Invertebr Pathol 108(2):92–97

    Google Scholar 

  • Loong CY, Shamsudin SH, Chong TC (2017) The efficacy of entomopathogenic virus for the control of oil palm nettle caterpillar. Proceeding of Agriculture, Biotechnology and Sustainability Conference, Kuala Lumpur 121–124

    Google Scholar 

  • Lulamba TE, Green E, Serepa-Dlamini MH (2018) Entomopathogenic nematodes, potential industrial pest control agents: a south African perspective. J Entomol Nematol 11(1):1–12

    Google Scholar 

  • Malan AP, Moore SD (2016) Evaluation of local entomopathogenic nematodes for the control of false codling moth, Thaumatotibia leucotreta (Meyrick, 1913), in a citrus orchard in South Africa. Afr Entomol 24(2):489–501

    Google Scholar 

  • Miller LK (1997) The Baculoviruses. Plenum Press, New York, p 477

    Book  Google Scholar 

  • Mukherjee A, Debnath P, Ghosh SK, Medda PK (2019) Biological control of papaya aphid (Aphis gossypii glover) using entomopathogenic fungi. Vegetosp 1-10

    Google Scholar 

  • NermuĹĄ J, Zemek R, Mráček Z, Palevsky E, PĹŻĹľa V (2019) Entomopathogenic nematodes as natural enemies for control of Rhizoglyphus robini (Acari: acaridae)? Biol Control 128:102–110

    Google Scholar 

  • Nicolas L, Lecroisey A, Charles JF (1990) Role of the gut proteinases from mosquito larvae in the mechanism of action and the specificity of the Bacillus sphaericus toxin. Can J Microbiol 36(11):804–807

    Google Scholar 

  • Niu H, Liu B, Li Y, Guo H (2016) Identification of a bacterium isolated from the diseased brown planthopper and determination of its insecticidal activity. Biocontrol Sci Tech 26(2):217–226

    Article  Google Scholar 

  • Odendaal D, Addison MF, Malan AP (2016) Entomopathogenic nematodes for the control of the codling moth (Cydia pomonella L.) in field and laboratory trials. J Helminthol 90:615–623

    Google Scholar 

  • Oei C, Hindley J, Berry C (1992) Binding of purified Bacillus sphaericus binary toxin and its deletion derivatives to Culex quinquefasciatus gut: elucidation of functional binding domains. Microbio1 38(7):1515–1526

    Google Scholar 

  • Opisa S, Du Plessis H, Akutse KS, Fiaboe KKM, EkesiS (2018) Effects of Entomopathogenic fungi and Bacillus thuringiensis based biopesticides on Spoladea recurvalis (Lepidoptera: Crambidae). J Appl Entomol 142(6): 617–626

    Google Scholar 

  • Oppert B, Kramer KJ, Beeman RW, Johnson D, McGaughey WH (1997) Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J Biol Chem 272(38):23473–23476

    Google Scholar 

  • Oulebsir-Mohandkaci H, Khemili-Talbi S, Benzina F, Halouane F (2015) Isolation and identification of Entomopathogenic Bacteria from Algerian Desert soil and their effects against the migratory locust, Locusta migratoria (Linnaeus, 1758)(Orthoptera: Acrididae). Egypt J Biol Pest Co 25(3):739

    Google Scholar 

  • Ownley BH, Gwinn KD, Vega FE (2010) Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. Biol Control 55(1):113–128

    Google Scholar 

  • Plantey RL, Papura D, Couture C, ThiĂ©ry D, Pizzuolo PH, Bertoldi MV, Lucero GS (2019) Characterization of entomopathogenic fungi from vineyards in Argentina with potential as biological control agents against the European grapevine moth Lobesia botrana. BioControl 64(5):501–511

    Google Scholar 

  • Prasanna HC, Sinha DP, Rai GK, Krishna R, Kashyap SP, Singh NK et al (2015) Pyramiding T y2 and T y3 genes for resistance to monopartite and bipartite tomato leaf curl viruses of India. Plant Pathol J 64(2):256–264

    Article  CAS  Google Scholar 

  • Pu YC, Ma TL, Hou YM, Sun M (2017) An entomopathogenic bacterium strain, Bacillus thuringiensis, as a biological control agent against the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Pest Manag Sci 73(7):1494–1502

    Google Scholar 

  • Qazi SS, Khachatourians GG (2005) Insect pests of Pakistan and their management practices: prospects for the use of entomopathogenic fungi. Biopestic Int 1:13–24

    Google Scholar 

  • Rahatkhah Z, Karimi J, Ghadamyari M, Brivio MF (2015) Immune defenses of Agriotes lineatus larvae against entomopathogenic nematodes. BioControl 60(5):641–653

    Google Scholar 

  • Ramanujam B, Rangeshwaran R, Sivakmar G, Mohan M, Yandigeri MS (2014) Management of Insect Pests by microorganisms. Proc Natl Acad Sci U S A 80(2):455–471

    Google Scholar 

  • Raymond B, Johnston PR, Nielsen-LeRouxC LD, Crickmore N (2010) Bacillus thuringiensis: an impotent pathogen? Trends Microbiol 18(5):189–194

    Article  CAS  PubMed  Google Scholar 

  • Rezaei N, Karimi J, Hosseini M, Goldani M, Campos-Herrera R (2015) Pathogenicity of two species of entomopathogenic nematodes against the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), in laboratory and greenhouse experiments. J Nematol 47(1):60

    PubMed  PubMed Central  Google Scholar 

  • Roberts DW (1981) Toxins of entomopathogenic fungi. In: Microbial control of pests and plant diseases 1970–1980. In: Burges HD (ed)

    Google Scholar 

  • Rocha LFN, Sousa NA, Rodrigues J, AML C, Marques CS, Fernandes ÉK, Luz C (2015) Efficacy of Tolypocladium cylindrosporum against Aedes aegypti eggs, larvae and adults. J Appl Microbiol 119(5):1412–1419

    Google Scholar 

  • Rohlfs M, Churchill AC (2011) Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genet Biol 48(1):23–34

    Article  CAS  PubMed  Google Scholar 

  • Ruiu L, Satta A, Floris I (2013) Emerging entomopathogenic bacteria for insect pest management. Bull Insectol 66(2):181–186

    Google Scholar 

  • Ruiu L, Virdis B, Mura ME, Floris I, Satta A, Tarasco E (2017) Oral insecticidal activity of new bacterial isolates against insects in two orders. Biocontrol Sci Tech 27(7):886–902

    Article  Google Scholar 

  • Ruiu L, Lazzeri AM, Nuvoli MT, Floris I, Satta A (2020) Safety evaluation of the entomopathogenic bacterium Brevibacillus laterosporus for the green lacewing Chrysoperla agilis (Neuroptera: Chrysopidae). J Invertebr Pathol 169:107281

    Google Scholar 

  • Sajnaga E, Kazimierczak W, Skowronek M, Lis M, Skrzypek T, WaĹ›ko A (2018) Steinernema poinari (Nematoda: Steinernematidae): a new symbiotic host of entomopathogenic bacteria Xenorhabdus bovienii. Arch Microbiol 200(9):1307–1316

    Google Scholar 

  • Sattar S, Maiti MK (2011) Molecular characterization of a novel vegetative insecticidal protein from Bacillus thuringiensis effective against sap-sucking insect pest. J Microbiol Biotechnol 21(9):937–946

    Article  CAS  PubMed  Google Scholar 

  • Saxena AK, Padaria JC, Gurjar GT, Yadav AN, Lone SA, Tripathi M et al. (2020) Insecticidal formulation of novel strain of Bacillus thuringiensis AK 47. Indian Patent 340541

    Google Scholar 

  • Sharma A, Thakur DR, Chandla VK (2018) Pathogenicity of entomopathogenic bacteria isolated from white grub Brahmina coriacea on its lifestages. Ind J Entomol 80(3):668–676

    Google Scholar 

  • Siegel JP (1997) Testing the pathogenicity and infectivity of entomopathogens to mammals. In: Manual of techniques in insect pathology. Academic Press, pp 325–336

    Google Scholar 

  • Singkhamanan K, Promdonkoy B, Chaisri U, Boonserm P (2010) Identification of amino acids required for receptor binding and toxicity of the Bacillus sphaericus binary toxin. FEMS Microbiol Lett 303(1):84–91

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar S, Rajagopal R, Venkatesh GR, Srivastava A, Bhatnagar RK (2007) Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac. J Biol Chem 282(10):7312–7319

    Google Scholar 

  • Soberon M, Lopez-Diaz JA, Bravo A (2013) Cyt toxins produced by Bacillus thuringiensis: a protein fold conserved in several pathogenic microorganisms. Peptides 41:87–93

    Article  CAS  PubMed  Google Scholar 

  • Sönmez E, Sevim A, DemirbaÄź Z, Demir Ä° (2016) Isolation, characterization and virulence of entomopathogenic fungi from Gryllotalpa gryllotalpa (Orthoptera: Gryllotalpidae). Appl Entomol Zool 51(2):213–223

    Article  CAS  Google Scholar 

  • Soumia PS, Srivastava C, Dikshit HK, Guru Pirasanna Pandi G (2015) Screening for resistance against pulse beetle, Callosobruchus analis (F.) in Greengram (Vigna radiata (L.) Wilczek) accessions. Proc Natl Acad Sci India Sect B Biol Sci 87(2):551–558

    Google Scholar 

  • Srisucharitpanit K, Yao M, Promdonkoy B, Chimnaronk S, Tanaka I, Boonserm P (2014) Crystal structure of B inB: a receptor binding component of the binary toxin from Lysinibacillus sphaericus. Proteins: Struct Funct Bioinf 82(10):2703–2712

    Google Scholar 

  • Steinhaus EA (1975) Disease in a minor chord: being a semihistorical and semibiographical account of a period in science when one could be happily yet seriously concerned with the diseases of lowly animals without backbones, especially the insects. The OhioState University Press

    Google Scholar 

  • Tanaka S, Miyamoto K, Noda H, Jurat-Fuentes JL, Yoshizawa Y, Endo H, Sato R (2013) The ATP-binding cassette transporter subfamily C member 2 in Bombyx mori larvae is a functional receptor for cry toxins from Bacillus thuringiensis. FEBS J 280(8):1782–1794

    Article  CAS  PubMed  Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial pesticides: current status and advancement for sustainable environments. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282. https://doi.org/10.1016/B978-0-12-820526-6.00016-6

    Chapter  Google Scholar 

  • Thomas MB, Read AF (2007) Can fungal biopesticides control malaria? Nat Rev Microbiol 5(5):377–383

    Article  CAS  PubMed  Google Scholar 

  • Tsuda Y, Nakatani F, Hashimoto K, Ikawa S, Matsuura C, Fukada T, Himeno M (2003) Cytotoxic activity of Bacillus thuringiensis Cry proteins on mammalian cells transfected with cadherin-like Cry receptor gene of Bombyx mori (silkworm). Biochem J 369(3):697–703

    Google Scholar 

  • Van Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101(1):1–16

    Article  PubMed  CAS  Google Scholar 

  • Van Damme VM, Beck B, Berckmoes E, Moerkens R, Wittemans L, De Vis R et al. (2016) Efficacy of entomopathogenic nematodes against larvae of Tuta absoluta in the laboratory. Pest Manag Sci 72(9): 1702–1709

    Google Scholar 

  • Varani AM, Lemos MV, Fernandes CC, Lemos EG, Alves EC, DesidĂ©rio JA (2013) Draft genome sequence of Bacillus thuringiensis var. thuringiensis strain T01-328, a Brazilian isolate that produces a soluble pesticide protein, Cry1Ia. Genome Announc 1(5):e00817–e00813

    Article  PubMed  PubMed Central  Google Scholar 

  • Varela LG, Haviland DR, Bentley WJ, Zalom FG, Bettiga LJ, Smith RJ, Daane KM (2015) UC IPM Pest Management Guidelines: Grape. UCANR Pub. 3448

    Google Scholar 

  • Vega FE, Kaya HK (2012) Insect pathology. Academic press, London

    Google Scholar 

  • Vey A, Hoagland R, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford, pp 311–346

    Chapter  Google Scholar 

  • Vodovar N, Vinals M, Liehl P, Basset A, Degrouard J, Spellman P et al (2005) Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. PNAS 102(32):11414–11419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters FS, Stacy CM, Lee MK, Palekar N, Chen JS (2008) An engineered chymotrypsin/cathepsin G site in domain I renders Bacillus thuringiensis Cry3A active against western corn rootworm larvae. ApplEnviron Microbiol 74(2):367–374

    CAS  Google Scholar 

  • Wang W, Zhou L, Dong G, Chen F (2019) Isolation and identification of entomopathogenic fungi and an evaluation of their actions against the larvae of the fall webworm, Hyphantria cunea (Drury)(Lepidoptera: Arctiidae). BioControl:1–11

    Google Scholar 

  • Wang P, Yang G, Shi N, Huang B (2020) Molecular characterization of a new partitivirus, MbPV1, isolated from the entomopathogenic fungus Metarhizium brunneum in China. Arch of Virol:1–5

    Google Scholar 

  • Yaman M, ErtĂĽrk Ă– (2016) Isolation, identification and insecticidal effects of entomopathogenic bacteria from the willow flea beetle, Crepidodera aurata (Coleoptera; Chrysomelidae). Prog Plant Prot 56(2):225–229

    Google Scholar 

  • Yan X, Lin Y, Huang Z, Han R (2018) Characterisation of biological and biocontrol traits of entomopathogenic nematodes promising for control of striped flea beetle (Phyllotreta striolata). Nematology 20(6):503–518

    Google Scholar 

  • Yang JI, Stadler M, Chuang WY, Wu S, Ariyawansa HA (2020) In vitro inferred interactions of selected entomopathogenic fungi from Taiwan and eggs of Meloidogyne graminicola. Mycol Prog 19(1):97–109

    Article  CAS  Google Scholar 

  • Yun HG, Kim DJ, Gwak WS, Shin TY, Woo SD (2017) Entomopathogenic fungi as dual control agents against both the pest Myzuspersicae and phytopathogen Botrytis cinerea. Mycobiol 45(3):192–198

    Article  Google Scholar 

  • Zalom FG, Bolda MP, Dara SK, Joseph S (2014) UC IPM Pest Management Guidelines: Strawberry. UCANR Pub 3468

    Google Scholar 

  • Zorzetti J, Ricietto APS, Fazion FAP, Meneghin AM, Neves PMOJ, Vilas-Boas LA, Vilas-BĂ´as GT (2018) Isolation, morphological and molecular characterization of Bacillus thuringiensis strains against Hypothenemus hampei Ferrari (Coleoptera: Curculionidae: Scolytinae). Rev Bras Entomol 62(3):198–204

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Director, ICAR-DOGR, Pune for providing necessary facilities and timely guidance in improving the manuscript. Also express their heartfelt gratitude to Head (Dept. of ESD) and Director of Institute of Environment & Sustainable Development, Banaras Hindu University, for providing the necessary facilities during research and constant encouragement. Also, special thanks to the reviewers for their valuable suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durgesh Kumar Jaiswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soumia, P.S., Krishna, R., Jaiswal, D.K., Verma, J.P., Yadav, J., Singh, M. (2021). Entomopathogenic Microbes for Sustainable Crop Protection: Future Perspectives. In: Yadav, A.N., Singh, J., Singh, C., Yadav, N. (eds) Current Trends in Microbial Biotechnology for Sustainable Agriculture . Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6949-4_19

Download citation

Publish with us

Policies and ethics