Skip to main content

Plant- and Microbes-Mediated Secondary Metabolites: Remunerative Venture for Discovery and Development

  • Chapter
  • First Online:
Current Trends in Microbial Biotechnology for Sustainable Agriculture

Abstract

Secondary metabolites derived from plants and microbes are natural substances that can be used for potential drug production. Simultaneously, there is very little concern in the current implementation of research and drug development. None other than combinational chemistry that shows the prospects for new low molecular weight lead substances provides continuing unique structural diversity through these natural products. Biodiversity, in the world of essential biological activities, only less than 10% has been reported and many more are expected to be found through determined research and classification of biochemical miscellaneous natural products. There have been a few instances about the predominant wellspring of data of regular substances’ use from therapeutic herbs that are a result of human testing by preliminaries and disappointment for a considerable length of time through heavenliness of preliminaries or disastrous passings, and discovering the accessible nourishments for sickness medicines. Moreover, secondary (minor) metabolites are manufactured by consequences of the mother creature taking on to its near environment or by defense means in opposition of predators to aid the continued existence of the organisms. These metabolites are in general not required for the growth, reproduction, and development of an organism. The essential progressions of glycolysis, photosynthesis, and the Krebs cycle are the sources of biosynthesis of optional metabolites that can manage the cost of biosynthetic intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham EP, Chain E, Fletcher CM (1941) Further observations on penicillin. Lancet 16:177–189

    Article  Google Scholar 

  • Aicher TD, Buszek KR, Fang FG, Forsyth CJ, Jung SH, Kishi Y, Matelich MC, Scola PM, Spero DM, Yoon SK (1992) Total synthesis of halichondrin B and norhalichondrin B. J Am Chem Soc 114:3162–3164

    Article  CAS  Google Scholar 

  • Alder AL (1970) The history of penicillin production. American Institute of Chemical Engineers, New York, NY

    Google Scholar 

  • Alejandro M, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, McIntosh JM, Newman DJ, Potts BC, Shuster DE (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends PharmSci 31:255–265

    Article  CAS  Google Scholar 

  • Allen DE, Hatfield G (2004) Medicinal plants in folk tradition: an Ethnobotany of Britain and Ireland. Timber Press, Cambridge, UK, p 431

    Google Scholar 

  • Alvarez-Miranda M, Rodriguez-Gonzalez A, Ptero G, Lacal JC (2003) Characterization of the mechanism of action of ES-285, a novel antitumor drug from Mactomeris polynyma. Clin Cancer Res 9:Abstract C17

    Google Scholar 

  • Aniszewski T (2007) Alkaloids—secrets of life. In: Alkaloid chemistry, biological significance, applications and ecological role. Elsevier Science, Amsterdam, p 334

    Google Scholar 

  • Baker DD, Chu M, Oza U, Rajgarhia V (2007) The value of natural products to future pharmaceutical discovery. Nat Prod Rep 24:1225–1244

    Article  CAS  PubMed  Google Scholar 

  • Baslow MN (1969) Marine pharmacology; a study of toxins and other biologically active substances of marine origin, vol 286. Williams & Wilkins Co, Baltimore, MD

    Google Scholar 

  • Beckles DM, Roessner U (2011) Plant metabolomics—applications and opportunities for agricultural biotechnology. In: Altmann A, Hasegawa PM (eds) Plant biotechnology and agriculture: prospects for the 21st century. Elsevier/Academic Press, Boston, MA, USA

    Google Scholar 

  • Beith M (1999) Healing threads: traditional medicines of the highlands and islands Edinburgh. Edinburgh, UK, Polygon

    Google Scholar 

  • Bhakuni DS, Rawat DS (2005) Bioactive marine natural products, 1st edn. Springer-Verlag, New Delhi, p 404

    Book  Google Scholar 

  • Biao-Yi Z, Yan Yu Y, Zeng-Liang Y (2008) Investigation of antimicrobial model of Hemsleya pengxianensis W.J.Chang and its main active component by metabolomics technique. J Ethnopharmacol 116:89–95

    Article  PubMed  CAS  Google Scholar 

  • Blunt JW, Munro MHG (2009) Dictionary of Marine Natural Products. http://dmnp.chemnetbase.com/. Accessed 21 July 2009

  • Blunt JW, Munro MHG, Laatsch H (2012) AntiMarin Database. http://www.chem.canterbury.ac.nz/marinlit/marinlit.shtml. Accessed 10 April 2012

  • Brkljaca R, Urban S (2011) Recent advances in HPLC-NMR and applications for natural product profiling and identification. J Liq Chroma Rel Technol 34:1063–1076

    Article  CAS  Google Scholar 

  • Buss AD, Waigh RD (1995) Antipearasitic drugs. In: Wolff ME (ed) Burger's medicinal chemistry and drug discovery, vol 1, 5th edn. Wiley-Interscience, New York, NY, pp 1021–1028

    Google Scholar 

  • Butler MS (2004) The role of natural product in chemistry in drug discovery. J Nat Prod 67:2141–2153

    Article  CAS  PubMed  Google Scholar 

  • Cameron J (1900) The Gaelic names of plants (Scottish, Irish and Mnax) collected and Artanged in scientific order, with notes on their etymology, uses, plant superstitions, etc., among the Celts, with copious Gaelic, English and scientific indices. John Mackay, Glasgow, Scotland, p 160

    Google Scholar 

  • Cardoso-Taketa AT, Pereda-Miranda R, Choi YH, Verpoorte R, Villarreal ML (2008) Metabolic profiling of the Mexican anxiolytic and sedative plant Galphimia glauca using nuclear magnetic resonance spectroscopy and multivariate data analysis. Planta Med 74:1295–1301

    Article  CAS  PubMed  Google Scholar 

  • Carroll AR, Arumugan G, Quinn RJ, Redburn J, Guymer G, Grimshaw P (2005) GrandisineA and B, novel indolizidine alkaloids with -opioid receptor binding affinity from the leaves of the human australian rainforest tree Elaeocarpus grandis. J Org Chem 70:1889–1892

    Article  CAS  PubMed  Google Scholar 

  • Chin YW, Balunas MJ, Chai HB, Kinghorn AD (2006) Drug discovery from natural sources. AAPSJ 8:239–253

    Article  Google Scholar 

  • Clarkson C, Stærk D, Hansen SH, Smith PJ, Jaroszewski JW (2006) Discovering new natural products directly from crude extracts by HPLC-SPE-NMR: Chinane diterpenes Harpagophytum procumbens. J Nat Prod 69:527–530

    Article  CAS  PubMed  Google Scholar 

  • Cogne AL, Queiroz EF, Marston A, Wolfender JL, Mavi S, Hostettmann K (2006) On-line identification of unstable iridoids from Jamesbrittenia fodina by HPLC-MS and HPLC-NMR. Phytochem Anal 16:429–439

    Google Scholar 

  • Colegate SM, Molyneux RJ (2008) Bioactive natural products: detection, isolation and structure determination. CRC Press, Boca Raton, FL, USA, pp 421–437

    Google Scholar 

  • Cordell GA, Shin YG (1999) Finding the needle in the haystack. The dereplication of natural product extracts. Pure ApplChem 71:1089–1094

    Article  CAS  Google Scholar 

  • Cortina NS, Krug D, Plaza A, Revermann O, Muller R (2012) Myxoprincomide: a natural product from Myxococcus xanthus discovered by comprehensive analysis of the secondary metabolome. Angew Chem Int Ed 51:811–816

    Article  CAS  Google Scholar 

  • Cox PA (2001) Saving the Ethnopharmacological heritage of Samoa. Pharm Biol 39:33–40

    Google Scholar 

  • Cragg GM (1998) Paclitaxel (Taxol): a success story with valuable lessons for natural product drug discovery and development. Med Res Rev 18:315–331

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2005) Biodiversity: a continuing source of novel drug leads. Pure Appl Chem 77:7–24

    Article  CAS  Google Scholar 

  • Cuadros R, Montejo de Garcini E, Wandosell F, Faircloth G, Fernandez-Sousa JM, Avila J (2000) The marine compound spisulosine, an inhibitor of cell proliferation, promotes the disassembly of actin stress fibers. Cancer Lett 152:23

    Article  CAS  PubMed  Google Scholar 

  • Cuevas C, Francesch A (2009) Development of Yondelis® (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat Prod Rep 26:322–337

    Article  CAS  PubMed  Google Scholar 

  • Davidson RN, den Boer M, Ritmeijer K (2009) Paromomycin. Trans R Soc Trop Med Hyg 103:653–660

    Article  CAS  PubMed  Google Scholar 

  • Deleu D, Hanssens Y, Northway MG (2004) Subcutaneous apomorphine: an evidence-based review of its use in Parkinson's disease. Drugs Aging 21:687–709

    Article  CAS  PubMed  Google Scholar 

  • DerMarderosian A, Beutler JA (2002) The review of natural products, 2nd edn. Facts and Comparisons, Seattle, WA, pp 13–43

    Google Scholar 

  • Dewick PM (2002) Medicinal natural products: a Biosynthentic approach, 2nd edn. John Wiley and Son, West Sussex, p 520

    Google Scholar 

  • Deyrupa ST, Eckman LE, McCarthy PH, Smedley SR, Meinwald J, Schroeder FC (2011) 2D NMR-spectroscopic screening reveals polyketides in ladybugs. Proc Natl Acad Soc USA 108:9753–9758

    Article  Google Scholar 

  • Dias D, Urban S (2008) Phytochemical analysis of the southern australian marine alga, Plocamium mertensii using HPLC-NMR. Phytochem Anal 19:453–470

    Google Scholar 

  • Dias DA, White JM, Urban S (2009) Laurencia filiformis: phytochemical profiling by conventional and HPLC-NMR approaches. Nat Prod Commun 4:157–172

    Google Scholar 

  • Dillenius JJ (1724) Synopsis Methodica Stirpium Britannicarum, 3rd edn. G. and J.Innys, London, UK, p 482

    Google Scholar 

  • Duke SO, Menn JJ, Plimmer JR (1993) In: Duke SO, Menn JJ, Plimmer JR (eds) Pest control with enhanced environmental safety; ACS symposium series no. 514. American Chemical Society, Washington, DC

    Chapter  Google Scholar 

  • Duke JA, Duke PAK, du Cellier JL (2008) Duke's handbook of medicinal plants of the bible. CRC Press Taylor and Francis Group, Boca Raton, FL, USA, p 552

    Google Scholar 

  • El Sayed KA, Dunbar DC, Perry TL, Wilkins SP, Hamann MT, Greenplate JT, Wideman MA (1997) Marine natural products as prototype insecticidal agents. J Agric Food Chem 45:2735–2739

    Article  Google Scholar 

  • Elsworth JM (1989) A new chamigrane from Laurencia glomerata. J Nat Prod 52:893–895

    Google Scholar 

  • Fabbretti A, Gualerzi CO, Brandi L (2011) How to cope with the quest for new antibiotics. FEBS Lett 585:1673–1681

    Article  CAS  PubMed  Google Scholar 

  • Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109:69–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farnsworth NR, Akerele RO, Bingel AS, Soejarto DD, Guo Z (1985) Medicinal plants in therapy. Bull WHO 63:965–981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faulkner DJ (1988) Marine natural products. Nat Prod Rep 20:269–309

    Google Scholar 

  • Faulkner DJ (2002) Marine natural products. J Nat Prod Rep 19:1–48

    Article  CAS  Google Scholar 

  • Fellows L, Scofield A (1995) Chemical diversity in plants. In: Intellectual property rights and biodiversity conservation—an interdisciplinary analysis of the values of medicinal plants. University Press, Cambridge, UK

    Google Scholar 

  • Fukuzawa A, Masamune T (1981) Laurepinnacin and isolaurepinnacin, new acetylenic cyclic ethers from the marine red alga Laurencia pinnata Yamada. Tetrahedron Lett 22:4081–4084

    Article  CAS  Google Scholar 

  • Georghiou GP (1990) Overview of insecticide resistance. In: Green MB, Le Baron HM, Moberg WK (eds) Managing resistance to agrochemicals: from fundamental research to practical strategies. ACSSymp. Ser. 421. Am ChemSoc, Washington, DC, pp 18–41

    Chapter  Google Scholar 

  • Guoxiang X, Robert P, Mingming S, Zhaohui X, Aihua Z, Mingfeng Q, Xiangbao L, Zhong L, Wei J (2008) Ultra-performance LC/TOF MS analysis of medicinal Panax herbs for metabolomic research. J Sep Sci 31:1015–1026

    Article  CAS  Google Scholar 

  • Gustafson KR, Cardellin JH, McMahon JB, Gulakowski RJ, Ishitoya J, Szallasi Z, Lewin NE, Blumberg PM, Weislow OS, Beutler JA (1992) A nonpromoting phorbol from the Samoan medicinal plant Homalanthus nutans inhibits cell killing by HIV-1. J MedChem 35:1978–1986

    CAS  Google Scholar 

  • Gwinn KD, Schardl CL, Friburg A (1992) Southern regional information exchange group (SRIEG-37) on the tall fescue endophyte. J Prod Agric 5:189–190

    Google Scholar 

  • Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8:536–544

    Article  CAS  PubMed  Google Scholar 

  • Hatfield G (2005) Country remedies: traditional east Anglian plant remedies in the twentieth century. Boydell Press, Woodbridge, UK

    Google Scholar 

  • Heinrich M, Teoh HL (2004) Galanthamine from snowdrop-the development of a modern drug against Alzheimer's disease from local Caucasian knowledge. J Ethnopharmacol 92:147–162

    Article  CAS  PubMed  Google Scholar 

  • Henríquez R, Faircloth G, Cuevas C (2005) In Ecteinascidin 743 (ET-743, Yondelis), aplidin, and kahalalide F. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. Taylor and Francis, Boca Raton, FL, p 215

    Google Scholar 

  • Hicks S (2014) Desert plants and people, 1st edn. Naylor Co, San Antonio, TX, p 75

    Google Scholar 

  • Holwell SE, Cooper PA, Grosios JW, Lippert JW, Pettit GR, Snyder SD, Bibby MC (2002) Combretastatin A-1 phosphate, a novel tubulin-binding agent with in-vivo anti-vascular effects in experimental tumors. Anticancer Res 22:707–712

    CAS  PubMed  Google Scholar 

  • Howes MJR, Perry NSL, Houghton PJ (2003) Plants with traditional uses and activitities, relevant to the management of Alzheimer's disease and other cognitive disorders. Phytother Res 17:1–18

    Article  CAS  PubMed  Google Scholar 

  • Ishitsuka MO, Kusumi TKH (1988) Antitumor xenicane and norxenicane lactones from the brown alga Dictyota dichotoma. J OrgChem 53:5010–5013

    Google Scholar 

  • Kashiwada Y, Hashimoto F, Cosentino LM (1996) Betulinic acid and dihydrobetulinic acid derivatives as potent HIV agents. J Med Chem 39:1016–1017

    Article  CAS  PubMed  Google Scholar 

  • Kashman Y, Gustafson KR, Fuller RW, Cardellin JH, McMahon JB, Currens MJ, et al. (1992) The Calanolides, a novel HIVinhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J Med Chem 35:2735–2743

    Google Scholar 

  • Kedei N, Lundberg DJ, Toth A, Welburn P, Garfield SH, Blumberg PM (2004) Characterization of the interaction of ingenol 3-angelate with protein kinase C. Cancer Res 64:3243–3255

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5:536–549

    Article  CAS  PubMed  Google Scholar 

  • Kinghorn AD, Pan L, Fletcher JN, Chai H (2011) The relevance of higher plants in lead compound discovery programs. J Nat Prod 74:1539–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiviharju TM, Lecane PS, Sellers RG, Peehl DM (2002) Antiproliferative and proapoptic of triptolide (PG490), a natural product entering clinical trials, on primary cultures of human prostatic epithelial cells. Clin Cancer Res 8:2666–2674

    CAS  PubMed  Google Scholar 

  • Lang G, Mayhudin NA, Mitova MI, Sun L, van der Sar S, Blunt JW, et al. (2008) Evolving trends in the dereplication of natural product extracts: new methodology for rapid, small-scale investigation of natural product extracts. J Nat Prod 19:1595–1599

    Google Scholar 

  • Lax E (2004) The Mold in Dr.Florey’s coat: the story of the Penicillian miracle. John Macrae/Henry Hol, New York, NY, p 308

    Google Scholar 

  • Lee JC, Strobel GA, Lobkovsky E, Clardy JC (1996) Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Org Chem 61:3232–3233

    Google Scholar 

  • Lewis RJ, Bernstein MA, DuncanSJ SCJA (2005) Comparison of capillary-scale LC-NMR with alternative techniques: spectroscopic and practical considerations. Magn Reson Chem 43:783–789

    Article  CAS  PubMed  Google Scholar 

  • Li C, Johnson RP, Porco JA (2003) Total synthesis of the quinine epoxide dimer (+)-torreyanic acid: application of a biomimetic oxidation/electrocyclization/Diels-Alder dimerization cascade. J Am ChemSoc 125:5059–5106

    Article  Google Scholar 

  • Lightfoot J (1977) FloraScotica, vol 2. BenjaminWhite, London

    Google Scholar 

  • Lin Y, Schiavo S, Orjala J, Vouros P, Kautz R (2008) Microscale LC-MS-NMR platform applied to the identification of active cyanobacterial metabolites. Anal Chem 80:8045–8054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litaudon M, Hart JB, Blunt JW, Lake RJ, Munro MHG (1994) Isohomohalichondrin B, a new antitumour polyether macrolide from the New Zealand deep-water sponge, Lyssodendoryx sp. Tetrahedron Lett 35:9435

    Article  CAS  Google Scholar 

  • Luzhetskyy A, Pelzer S, Bechthold A (2007) The future of natural products as a source of new antibiotics. Curr Opin Investig Drugs 8:608–613

    CAS  PubMed  Google Scholar 

  • MacFarlane AM (1929) Gaelic names of plants: study of their uses and lore. Trans Gaelic Soc Inverness 32:1–48

    Google Scholar 

  • Mann J (1994) Murder, magic, and medicine. OxfordUniversity Press, New York, NY, pp 164–170

    Google Scholar 

  • Mann J (1999) The elusive magic bullet: the search for the perfect drug. Oxford University Press, New York, NY, USA

    Google Scholar 

  • Manzanares I, Cuevas C, Garcia-Nieto R, Marco E, Gago F (2001) Advances in the chemistry and pharmacology of ecteinascidins, a promising new class of anticancer agents. Curr Med Chem Antican Agents 1:257

    Google Scholar 

  • Maplestone RA, Stone MJ, Williams DH (1992) The evolutionary role of secondary metabolites—a review. Gene 115:151–157

    Article  CAS  PubMed  Google Scholar 

  • Marin Lit. 2011. http://www.chem.canterbury.ac.nz/marinlit/marinlit.shtml. Accessed 23 June 2011

  • Marris E (2006) Marine natural products: drugs from the deep. Nature 443:904–905

    Article  CAS  PubMed  Google Scholar 

  • Martin MA (1934) In: Macleod DJ (ed) Description of the Western isles of Scotland, 4th edn. Stirling: EneasMackay, Cornhill, UK

    Google Scholar 

  • Martin DE, Blum R, Wilton J (2007) Safety and pharmacokinetics of beririmat (PA-457) a novel inhibitor of human immunodeficiency virus maturation, in healthy volunteers. Antimicrob. Agents Chem 51:3063–3066

    Article  CAS  Google Scholar 

  • McConnell O, Longley RE, Koehn FE (1994) In: Gullo VP (ed) The discovery of natural products with therapeutic potential. Butterworth-Heinemann, Boston, MA, pp 109–174

    Google Scholar 

  • McRae J, Yang Q, Crawford R, Palombo W (2007) Review of the methods used for isolating pharmaceutical lead compounds from traditional medicinal plants. Environment 27:165–174

    Google Scholar 

  • Min BS, Nakamura N, Miyashiro H, Bae KW, Hattori M (1998) Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem Pharm Bull 46:1607–1612

    Google Scholar 

  • Moloney MF (1919) In: Dublin MH (ed) Irish ethno-botany and the evolution of medicine in Ireland. Gill and Son, Dublin, Ireland

    Google Scholar 

  • Müller K (2001) Pharmaceutically relevant metabolites from lichens. ApplMicrobiolBiotechnol 56:9

    Google Scholar 

  • Napralert. 2011. http://www.napralert.org/. Accessed 3 May 2011

  • Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51:2589–2599

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2005) In: Zhang L, Fleming A, Demain AL (eds) In drug discovery, therapeutics, and preventive medicine. Humana Press, Totowa, NJ, p 74

    Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  PubMed  Google Scholar 

  • Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, et al. (1994) Total synthesis of Taxol. Nature 367:630–634

    Google Scholar 

  • Nussbaum FV, Brands M, Hinzen B, Weigand S, Habich D (2006) Antibacterial natural products in medicinal chemistry - exodus or revival? Angew Chem Int Ed 45:5072–5129

    Article  CAS  Google Scholar 

  • Ogbourne SM, Suhrbier A, Jones B (2004) Antitumour activity of ingenol 3-angelate: plasma membrane and mitochondrial disruption and necrotic cell death. Cancer Res 64:2833–2839

    Article  CAS  PubMed  Google Scholar 

  • ÓhEithir R (1983) Folk medical beliefs and practices in the Aran Islands. Master’s thesis. National University of Ireland, Galway, Ireland

    Google Scholar 

  • Ojima I (2008) Modern natural products chemistry and drug discovery. J Med Chem 51:2587–2588

    Article  CAS  PubMed  Google Scholar 

  • Paquette LA, Barriault L, Pissarnitski D, Johnston JN (2000) Stereocontrolled elaboration of natural (−)-Polycavernoside a, a powerfully toxic metabolite of the red alga Polycavernosa tsudai. J Am ChemSoc 122:619–631

    Article  CAS  Google Scholar 

  • Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: Fokkema NJ, van den Heuvel J (eds) Microbiology of Phyllosphere. Cambridge University Press, Cambridge, pp 175–187

    Google Scholar 

  • Pettit GR, Herald CL, Boyd MR, Leet JE, Dufresne C, Doubek DL, et al. (1991) Antineoplastic agents. 219. Isolation and structure of the cell growth inhibitory constituents from the western Pacific marine sponge Axinella sp. J Med Chem 34:3339–3340

    Google Scholar 

  • Pettit GR, Srirangam JK, Herald DL, Erickson KL, Doubek DL, Schmidt JM, et al. (1993) Antineoplastic agents. 251. Isolation and structure of stylostatin 1 from the Papua New Guinea marine sponge Stylotella sp. J Org Chem 58:3222

    Google Scholar 

  • Politi M, Peschel W, Wilson N, Zloh M, Prieto JM, Heinrich M (2008) Cannabis water extracts and tinctures analysed by NMR spectroscopy; different strategies to reduce the content of D9-THC. Phytochemistry 69:562–570

    Article  CAS  PubMed  Google Scholar 

  • Purvis W (2000) Lichens. Natural History Museum, London/Smithsonian Institution, WashingtonD.C., USA, p 112

    Google Scholar 

  • Ramakrishna NVS, Nadkarni SR, Bhat RG, Naker SD, Kumar EKSV, Lal B (1993) Screening of natural product extracts for antibacterial activity: early identification and elimination of known compounds by dereplication. Ind J Chem 38:1384–1387

    Google Scholar 

  • Rinehart KL, Lithgow-Bertelloni AM (1991) Novel antiviral and cytotoxic agent, dehydrodidemnin B. PCT Int Pat Appl 15:248086q

    Google Scholar 

  • Rinehart KL, Holt TG, Fregeau NL, Stroh JG, Keifer PA, Sun F, Li LH, Martin DG (1990) Ecteinascidins 729, 743, 745, 759A, 759B, and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata. J OrgChem 55:4512–4515

    Google Scholar 

  • Rochfort S (2005) Metabolomics reviewed: a new “Omics” platform technology for systems biology and implications for natural products research. J Nat Prod 68:1813–1820

    Article  CAS  PubMed  Google Scholar 

  • Roessner U, Beckles DM (2009) Metabolite measurements. In: Junker B, Schwender J (eds) Plant metabolic networks. Springer, Heidelberg, Germany

    Google Scholar 

  • Roessner U, Nahid A, Hunter A, Bellgard M (2011) Metabolomics—the combination of analytical chemistry, biology and informatics. In: Moo-Young M (ed) Comprehensive biotechnology, vol 1, 2nd edn. Springer, Heidelberg, pp 447–459

    Chapter  Google Scholar 

  • Salcedo M, Cuevas C, Otero G, Sanchez-Puelles JM, Fernandez-Sousa JM, Avila J, Wandosell F (2003a) The marine antitmor compound ES 285 activates EGD receptors. Clin Cancer Res 9:Abstract C24

    Google Scholar 

  • Salcedo M, Cuevas C, Sanchez-Puelles JM, Otero G, Sousa JMF, Avila J, Wandosell F (2003b) ES-285, a novel antitumoral compound, interacts with EDG receptors. Proceedings of American Association for Cancer Research 94th Meeting, Washington, 11–14 July, 2003, Abstract 3649

    Google Scholar 

  • San-Martin A, Negrete R, Rovirosa J (1991) Insecticide and acaricide activities of polyhalogenated monoterpenes from Chilean Plocamium cartilagineum. Phytochemistry 30:2165–2169

    Article  CAS  Google Scholar 

  • San-Martin A, Darias J, Soto H, Contreras C, Herrera JS, Rovirosa J (1997) A new C15 acetogenin from the marine alga Laurencia claviformis. Nat Prod Lett 10:303–311

    Google Scholar 

  • Sarker SD, Latif Z, Gray AI (2006) In: Satyajit D (ed) Methods in biotechnology: natural product isolation. Human Press Inc, Totowa, NJ, USA, p 528

    Google Scholar 

  • Sashidhara KV, Rosaiah JN (2007) Various dereplication strategies using LC-MS for rapid natural product lead identification and drug discovery. Nat Prod Commun 2:193–202

    CAS  Google Scholar 

  • Schroeder FC, Gronquist M (2006) Extending the scope of NMR spectroscopy with microcoil probes. Angew Chem Int Ed 245:7122–7131

    Google Scholar 

  • Sci Finder Scholar. 2011. http://www.cas.org/SCIFINDER/SCHOLAR/. Accessed 2 July 2011

  • SCOPUS. 2011. http://www.scopus.com/home.url. Accessed 25 August 2011

  • Stamets P (2002) Novel antimicrobials from mushrooms. Herbal Gram 54:28–33

    Google Scholar 

  • Sun Lin J, Mahyudin NA, Chamyuang S, Blunt JW, Cole T, Lang G, et al. (2007) Less is more: Dereplication and discovery using CapNMR techniques. In Proceedings of ManaproXII: 12th International Symposium of Marine Natural Products, Queenstown, New Zealand, Feb 4th–9th, 2007

    Google Scholar 

  • Svabo JC (1959) Indberetninger fra en Reise I Færøe 1781 og 1782. Selskabet til Udgivelse af FærøskeKildeskrifter og Studier, Copenhagen, Denmark, p 497

    Google Scholar 

  • Swanton EW (1915) Economic and folklore notes. Trans Br MycolSoc 5:408–409

    Article  Google Scholar 

  • Swanton EW (1932) Sussex County magazine, vol 6. T.R. Beckett, Eastbourne, UK, p 709

    Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites (1987 to 2000). Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Trimurtulu G, Ohtani I, Patterson GML, Moore RE, Corbett TH, Valeriote FA, Demchik L (1994) Total structures of cryptophycins, potent antitumor depsipeptides from the bluegreen alga Nostoc sp. strain GSV 224. J Am ChemSoc 116:4729–4737

    Google Scholar 

  • Tringali C, Oriente G, Piattelli M, Geraci C, Nicolosi G, Breitmaier E (1988) Crenuladial, an antimicrobial diterpenoid from the brown alga Dilophus ligulatus. Can J Chem 66:2799–2802

    Google Scholar 

  • Uemura D, Takahashi K, Yamamoto T, Katayama C, Tanaka J, Okumura Y, Hirata Y (1985) Norhalichondrin a: an antitumor polyether macrolide from a marine sponge. J Am ChemSoc 107:4796–4798

    Article  CAS  Google Scholar 

  • Urban S, Separovic F (2005) Developments in hyphenated spectroscopic methods in natural product profiling. Front Drug Des Discov 1:113–166

    CAS  Google Scholar 

  • Urdiales JL, Morata P, De Castro IN, Sanchez-Jimenez F (1996) Anti-proliferative effect of dehydrodidemnin B (DDB), a depsipeptide isolated from Mediterranean tunicates. Cancer Lett 102:31–37

    Google Scholar 

  • Verpoorte R, Choi YH, Kim HK (2005) Ethnopharmacology and systems biology: a perfect holistic match. J Ethnopharmacol 100:53–56

    Article  CAS  PubMed  Google Scholar 

  • Vickery R (1995) A dictionary of plant-Lore. Oxford University Press, Oxford, UK

    Google Scholar 

  • Wainwright M (1990) Miracle cure: the story of penicillin and the Golden age of antibiotics. Blackwell Scientific, Oxford, p 57

    Google Scholar 

  • Wang M, Lamers RJAN, Korthout HA, Van Nesselrooij JHJ, Witkamp RF, Van der Heijden R (2005) Metabolomics in the context of systems biology: bridging traditional Chinese medicine and molecular pharmacology. Phytother Res 3:173–182

    Article  CAS  Google Scholar 

  • Watanabe K, Umeda K, Miyakado M (1989) Isolation and identification of three insecticidal principles from the red alga Laurencia nipponica Yamada. Agric Biol Chem 53:2513–2515

    Google Scholar 

  • White JD, Blakemore PR, Browder CC, HongJ LCM, Nagornyy PA, Robarge LA, Wardrop DJ (2001) Total synthesis of the marine toxin polycavernoside a via selective macrolactonization of a trihydroxy carboxylic acid. J Am Chem Soc 123:8593–8595

    Article  CAS  PubMed  Google Scholar 

  • Wolfender JL, Ndjoko K, Hostettman K (2003) Liquid chromatography with ultraviolet absorbance-mass spectrometric detection and with nuclear magnetic resonance spectroscopy: a powerful combination for the on-line structural investigation of plant metabolites. J Chromatogr A1000:437–455

    Article  CAS  Google Scholar 

  • Wright AE, Forleo DA, Gunawardana GP, Gunasekera SP, Koehn FE, McConnell OJ (1990) Antitumor tetrahydroisoquinoline alkaloids from the colonial ascidian Ecteinascidia turbinata. J Org Chem 55:4508–4512

    Google Scholar 

  • Yogeeswari P, Sriram D (2005) Betulinic acid and its derivatives: a review on their biological properties. Curr Med Chem 12:763–771

    Article  Google Scholar 

  • Yotsu-Yamashita M, Haddock RL, Yasumoto T (1993) PolycavernosideA: a novel glycosidic macrolide from the red alga Polycavernosa tsudai (Gracilaria edulis). J Am Chem Soc 115:1147–1148

    Google Scholar 

  • Zjawiony JK (2004) Biologically active compounds from aphyllophorales (polypore) fungi. J Nat Prod 67:300–310

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

P.K. and S.R.D. gratefully acknowledge the support provided by Lovely Professional University. The P.D gratefully acknowledged the support provided by Banaras Hindu University, Varanasi.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, P., Dey, S.R., Dwivedi, P. (2021). Plant- and Microbes-Mediated Secondary Metabolites: Remunerative Venture for Discovery and Development. In: Yadav, A.N., Singh, J., Singh, C., Yadav, N. (eds) Current Trends in Microbial Biotechnology for Sustainable Agriculture . Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6949-4_15

Download citation

Publish with us

Policies and ethics