Skip to main content

Mycorrhiza: A Sustainable Option for Better Crop Production

  • Chapter
  • First Online:
Current Trends in Microbial Biotechnology for Sustainable Agriculture

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

Abstract

Agriculturists and farmers have been under pressure to fulfill the demands of the increasing population. Although the use of inorganic fertilizers benefited farmers by providing good and fast yields, but become progressively worse on the quality of soil by decreasing biomass and microbial activity. Therefore, now pressure to increase yield along with making sustainable progress has led to the usage of mycorrhizal fungi as biofertilizers. These fungi have been found to provide numerous and diverse benefits to soil, plants, and ecosystem by improving soil quality, concentrating nutrients in plants, providing resistance against drought and diseases, and helping in nutrient cycling. The AMF is known to be a very difficult fungus because its culture is difficult in vitro conditions and therefore proper procedures are needed to be followed and precautions are needed to be taken to get the desired pure yield of the fungus. The fungus if studied and researched properly can open many doors to new developments in the field of science and agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LK, Robson AD, De Boer G (1984) The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum. New Phytol 97:437–446

    Article  CAS  Google Scholar 

  • Akhtar MS, Abdullah SNA (2014) Mass production techniques of arbuscular mycorrhizal fungi: major advantages and disadvantages: a review. Biosci Biotechnol Res Asia 11:1199–1204

    Article  Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let's benefit from past successes. Front Microbiol 6:1559

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolan N (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Bridge P, Spooner B (2001) Soil fungi: diversity and detection. Plant Soil 232:147–154

    Article  CAS  Google Scholar 

  • Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MG (2015) The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci 20:283–290

    Article  CAS  PubMed  Google Scholar 

  • Chandrashekar M, Soumya P, Raju N (2014) Fungal diversity of rhizosphere soils in different agricultural fields of Nanjangud Taluk of Mysore District, Karnataka, India. Int J Curr Microbiol App Sci 3:559–566

    Google Scholar 

  • Chen C, Zhang J, Lu M, Qin C, Chen Y, Yang L, Shen Q (2016) Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers. Biol Fertil Soil 52:455–467

    Article  CAS  Google Scholar 

  • Declerck S, Cranenbrouck S, Dalpé Y, Séguin S, Grandmougin-Ferjani A, Fontaine J, Sancholle M (2000) Glomus proliferum sp. nov.: a description based on morphological, biochemical, molecular and monoxenic cultivation data. Mycologia 92:1178–1187

    Article  Google Scholar 

  • Diop TA (2003) In vitro culture of arbuscular mycorrhizal fungi: advances and future prospects. Afr J Biotechnol 2:692–697

    Article  CAS  Google Scholar 

  • Drouhet E, Gueho E, Gori S, Huerre M, Provost F, Borgers M, Dupont B (1998) Mycological, ultrastructural and experimental aspects of a new dimorphic fungus Emmonsia pasteuriana sp. nov. isolated from a cutaneous disseminated mycosis in AIDS. J Mycol Med 8:64–77

    Google Scholar 

  • Fernandez CW, Langley JA, Chapman S, McCormack ML, Koide RT (2016) The decomposition of ectomycorrhizal fungal necromass. Soil Biol Biochem 93:38–49

    Article  CAS  Google Scholar 

  • Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R et al (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microb 73:7059–7066

    Article  CAS  Google Scholar 

  • Gerdemann JW (1968) Vesicular-arbuscular mycorrhiza and plant growth. Annu Rev Phyto Pathol 6:397–418

    Article  Google Scholar 

  • Hart M, Ehret DL, Krumbein A, Leung C, Murch S, Turi C, Franken P (2015) Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza 25:359–376

    Article  CAS  PubMed  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, Aldubise A, Egamberdieva D (2015) Arbuscular mycorrhizal fungi enhance salinity tolerance of Panicum turgidum for ssk by altering photosynthetic and antioxidant pathways. J Plant Interact 10:230–242

    Article  Google Scholar 

  • Hassan SED, Liu A, Bittman S, Forge TA, Hunt DE, Hijri M, St-Arnaud M (2013) Impact of 12-year field treatments with organic and inorganic fertilizers on crop productivity and mycorrhizal community structure. Biol Fert Soils 49:1109–1121

    Article  Google Scholar 

  • Hawksworth D L, and Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. The fungal kingdom 79–95

    Google Scholar 

  • Hera C (1996) The role of inorganic fertilizers and their management practices. Fertil Environ:131–149

    Google Scholar 

  • Hijri I, Sýkorová Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    Article  CAS  PubMed  Google Scholar 

  • Igiehon NO, Babalola O (2017) Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Micro boil Biot 101:4871–4881

    Article  CAS  Google Scholar 

  • Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176

    Article  Google Scholar 

  • Johnson NC, Hoeksema JD, Bever JD, Chaudhary VB, Gehring C, Klironomos J et al (2006) From Lilliput to Brobdingnag: extending models of mycorrhizal function across scales. Bioscience 56:889–900

    Article  Google Scholar 

  • Koide RT (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117:365–386

    Article  CAS  PubMed  Google Scholar 

  • Koljalg U, Larsson E (1998) Pseudotomentella ochracea sp. Nov based on morphological and molecular data. Folia Cryptogamica Estonica 33:53–56

    Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through Fungi, Perspective for value-added products and environments, vol 2. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kour D, Kaur T, Devi R, Rana KL, Yadav N, Rastegari AA et al (2020a) Biotechnological applications of beneficial microbiomes for evergreen agriculture and human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 255–279. https://doi.org/10.1016/B978-0-12-820528-0.00019-3

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020b) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  PubMed  Google Scholar 

  • Kumar S, Adholeya A (2016) Impact of land use and soil types on arbuscular mycorrhizal fungal diversity in tropical soil of India. Afr J Microbiol Res 10:1595–1606

    Article  Google Scholar 

  • Kumar S, Adholeya A (2018) Congruence of morphology and fatty acid methyl ester profile (FAME profile) revealed low Mycorrhizal diversity in soil contaminated with tannery sludge. Pollut Res 37:S71–S81

    Google Scholar 

  • Larson BA, Frisvold GB (1996) Fertilizers to support agricultural development in sub-Saharan Africa: what is needed and why. Food Policy 21:509–525

    Article  Google Scholar 

  • Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant Soil 374:523–537

    Article  CAS  Google Scholar 

  • Lindahl BD, Tunlid A (2015) Ectomycorrhizal fungi–potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–1447

    Article  CAS  PubMed  Google Scholar 

  • Lotti M, Amicucci A, Stocchi V, Zambonelli A (2002) Morphological and molecular characterization of mycelia of some tuber species in pure culture. New Phytol 155:499–505

    Article  Google Scholar 

  • Madan R, Pankhurst C, Hawke B, Smith S (2002a) Use of fatty acid for identification of AM fungi and estimation of the biomass of AM spores in soil. Soil Biol Biochem 34:125–128

    Article  CAS  Google Scholar 

  • Madan R, Pankhurst C, Hawke B, Smith S (2002b) Use of fatty acid for identification of AM fungi and estimation of the biomass of AM spores in soil. Soil Biol Biochem 34:125–128

    Article  CAS  Google Scholar 

  • Mahmood F, Khan I, Ashraf U, Shahzad T, Hussain S, Shahid M et al (2017) Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. J Soil Sci Plant Nut 17:22–32

    CAS  Google Scholar 

  • Martini EA, Buyer JS, Bryant DC, Hartz TK, Denison RF (2004) Yield increases during the organic transition: improving soil quality or increasing experience? Field Crops Res 86:255–266

    Article  Google Scholar 

  • Martino E, Morin E, Grelet GA, Kuo A, Kohler A, Daghino S et al (2018) Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol 217:1213–1229

    Article  CAS  PubMed  Google Scholar 

  • Mathimaranhe N, Ruh R, Vullioud P, Frossard E, Jansa J (2005) Glomus intraradices dominates arbuscular mycorrhizal communities in a heavy textured agricultural soil. Mycorrhiza 16:61–66

    Article  Google Scholar 

  • Mirás-Avalos J, Antunes Pedro M, Koch A, Khosla K, Klironomos John N, Dunfield (2011) The influence of tillage on the structure of rhizosphere and root-associated arbuscular mycorrhizal fungal communities. Pedobiologia 54:235–241

    Article  Google Scholar 

  • Morton J (1988) Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon 32:267–324

    Google Scholar 

  • Morton JB, Msiska Z (2010) Phylogenies from genetic and morphological characters do not support a revision of Gigasporaceae (Glomeromycota) into four families and five genera. Mycorrhiza 20:483–496

    Article  PubMed  Google Scholar 

  • Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    Article  PubMed  Google Scholar 

  • Nkebiwe PM, Weinmann M, Bar-Tal A, Müller T (2016) Fertilizer placement to improve crop nutrient acquisition and yield: a review and meta-analysis. Field Crop Res 196:389–401

    Article  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microb 69:2816–2824

    Article  CAS  Google Scholar 

  • Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotropism. Biosystems 6:153–164

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Lu K, Strong PJ, Xu Q, Wu Q, Xu Z et al (2015) Long-term fertilizer application effects on the soil, root arbuscular mycorrhizal fungi and community composition in rotation agriculture. Appl Soil Ecol 89:35–43

    Article  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al (2019) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through Fungi, Diversity and enzymes perspectives, vol 1. Springer, Switzerland, pp 1–62

    Google Scholar 

  • Rapparini F, Peñuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growth. Use of microbes for the alleviation of soil stresses 1. Springer, New York, NY, pp 21–42

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020) New and Future Developments in Microbial Biotechnology and Bioengineering: Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Diversity and Functional Perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Ryberg M, Kristiansson E, Sjökvist E, Nilsson RH (2009) An outlook on fungal internal transcribed spacer sequences in Gene Bank and the introduction of a web-based tool for the exploration of fungal diversity. New Phytol 181:471–477

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Marumoto T (2002) Inoculation with arbuscular mycorrhizal fungi: the status quo in Japan and the future prospects. Diversity and integration in Mycorrhizas. Springer, Dordrecht, pp 273–279

    Google Scholar 

  • Savci S (2012a) An agricultural pollutant: chemical fertilizer. APCBEE Proc 3:73

    Google Scholar 

  • Savci S (2012b) Investigation of effect of chemical fertilizers on environment. APCBEE Proc 1:287–292

    Article  CAS  Google Scholar 

  • Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M et al (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248

    Article  Google Scholar 

  • Selvakumar G, Shagol CC, Kang Y, Chung BN, Han SG, Sa TM (2018) Arbuscular mycorrhizal fungi spore propagation using single spore as starter inoculum and a plant host. J Appl Microbiol 124:1556–1565

    Article  CAS  PubMed  Google Scholar 

  • Shah F, Nicolás C, Bentzer J, Ellström M, Smits M, Rineau F et al (2016) Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol 209:1705–1719

    Article  CAS  PubMed  Google Scholar 

  • Shennan C (2007) Biotic interactions, ecological knowledge and agriculture. Philos T Roy Soc B 363:717–739

    Article  Google Scholar 

  • Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Cah Rev The 362:67–69

    Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Phys 39:221–244

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, New York, USA

    Google Scholar 

  • Song Y, Chen D, Lu K, Sun Z, Zeng R (2015) Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front Plant Sci 6:786

    PubMed  PubMed Central  Google Scholar 

  • Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474

    Article  CAS  PubMed  Google Scholar 

  • Tadesse T, Dechassa N, Bayu W, Gebeyehu S (2013) Effects of farmyard manure and inorganic fertilizer application on soil physico-chemical properties and nutrient balance in rain-fed lowland rice ecosystem. Am J Plant Sc 4:309

    Article  Google Scholar 

  • Toljander JF, Santos-González JC, Tehler A, Finlay RD (2008) Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Micro biol Ecol 65:323–338

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK et al (2019) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26:1882–1895. https://doi.org/10.1016/j.sjbs.2016.01.042

    Article  PubMed  Google Scholar 

  • Walker C, Vestberg M, Demircik F, Stockinger H, Saito M, Sawaki H, NishmuraI (2007) Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica gen. Sp. nov., Ambisporaceae fam. Nov., and emendation of Archaeospora and Archaeosporaceae. Mycol Res 111:137–153

    Article  PubMed  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Li T, Wen X, Liu Y, Han J, Liao Y, De Bruyn JM (2017) Fungal communities in rhizosphere soil under conservation tillage shift in response to plant growth. Front Microbiol 8:1301

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through Fungi. Volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019b) Recent advancement in white biotechnology through Fungi. Volume 3: perspective for sustainable environments. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020a) Agriculturally important Fungi for sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020b) Agriculturally important Fungi for sustainable agriculture, volume 2: functional annotation for crop protection. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020c) Plant microbiomes for sustainable agriculture. Springer, Cham

    Google Scholar 

  • Young AW, Hay DC, McWeeny KH, Flude BM, Ellis AW (1985) Matching familiar and unfamiliar faces on internal and external features. Perception 14:737–746

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank the University Grants Commission (UGC), the Government of India for the award of a doctoral fellowship to carry out research work at The Energy and Resources Institute (TERI), New Delhi. This research was supported by funds provided to TERI by the Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Saxena, S., Samiksha (2021). Mycorrhiza: A Sustainable Option for Better Crop Production. In: Yadav, A.N., Singh, J., Singh, C., Yadav, N. (eds) Current Trends in Microbial Biotechnology for Sustainable Agriculture . Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6949-4_12

Download citation

Publish with us

Policies and ethics