Skip to main content

Domain Wall Programmable Magnetic Logic

  • Chapter
  • First Online:
Emerging Non-volatile Memory Technologies

Abstract

Traditional micro-electronics work by controlling the flow of electron charge through transistor switches. Spintronics, which exploits the spin degree of freedom of electron, can lead to devices that outstrip the performance of traditional semiconductor technology. The spin moment in magnetic nanostructures by virtue of their inherent non-volatility can potentially offer the opportunity of ultra-low power and high speed devices. This chapter describes proof-of-concept devices that utilize magnetic domain walls in nanowire network to perform logical operations. A magnetic reconfigurable logic device is discussed, whose operation is mediated via domain wall motion. The logical operation can be programmed at run-time and the whole booelan logic family, from simple NOT to complex operations such as NAND can be obtained. The second part of the chapter explores the feasibility of encoding logical bit within the internal state of domain wall, leading to mobile data bits. Simple single to double bits logical operations are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G.A. Prinz, Magnetoelectronics. Science 282, 1660 (1998)

    Article  Google Scholar 

  2. S.A. Wolf et al., Spintronics: a spin-based electronic vision for the future. Science 294, 1488 (2001)

    ADS  Google Scholar 

  3. A. Imre et al., Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205 (2006)

    Article  ADS  Google Scholar 

  4. I. Amlani et al., Digital logic gate using quantum-dot cellular automata. Science 284, 289–291 (1999)

    Article  ADS  Google Scholar 

  5. R.P. Cowburn, M.E. Welland, Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000)

    Article  ADS  Google Scholar 

  6. D.A. Allwood et al., Submicrometer ferromagnetic NOT gate and shift register. Science 296, 2003–2006 (2002)

    Article  ADS  Google Scholar 

  7. D.A. Allwood et al., Magnetic domain-wall logic. Science 309, 1688–1692 (2005)

    Article  ADS  Google Scholar 

  8. S. Goolaup, M. Ramu, C. Murapaka, W.S. Lew, Transverse domain wall profile for logic applications. Sci Rep 5, 9603 (2015)

    Article  ADS  Google Scholar 

  9. P. Xu, et al. An all-metallic logic gate based on current-induced domain wall motion. Nat. Nanotech. 3, 97–100 (2008)

    Google Scholar 

  10. G. Reiss et al., New materials and applications for magnetic tunnel junctions. Phys. Stat. Sol. 201, 1628–1634 (2004)

    Article  ADS  Google Scholar 

  11. B. Behin-Aein, D. Datta, S. Salahuddin, S. Datta, Proposal for an all-spin logic device with built-in memory. Nat. Nanotech. 5, 266–270 (2010)

    Article  ADS  Google Scholar 

  12. S. Patil, A. Lyle, J. Harms, D. Lilja, J.-P. Wang, Spintronic logic gates for spintronic data using magnetic tunnel junctions, in Proceedings of IEEE International Conference Computer Design, pp. 125–131 (2010)

    Google Scholar 

  13. Z. Navabi, Digital Design and Implementation with Field Programmable Devices (Kulwer Academic Publishers, Dordrecht, Netherlands, 2005)

    Book  Google Scholar 

  14. A. Ney, C. Pampuch, R. Koch, K.H. Ploog, Programmable computing with a single magnetoresistive element. Nature 425, 485–487 (2003)

    Article  ADS  Google Scholar 

  15. H. Dery, P. Dalal, L. Cywinski, L.J. Sham, Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007)

    Article  ADS  Google Scholar 

  16. S. Joo et al., Magnetic-field-controlled reconfigurable semiconductor logic. Nature 494, 72–76 (2013)

    Article  ADS  Google Scholar 

  17. S.S.P. Parkin, M. Hayashi, L. Thomas, Magnetic domain wall racetrack memory. Science 320, 190 (2008)

    Article  ADS  Google Scholar 

  18. M. Hayashi, L. Thomas, R. Moriya, C. Rettner, S.S.P. Parkin, Current controlled magnetic domain wall nanowire Shift register. Science 320, 209 (2008)

    Article  ADS  Google Scholar 

  19. J.H. Franken, H.J.K. Swagten, B. Koopmans, Shift registers based on magnetic domain wall ratchets with perpendicular anisotropy. Nat. Nanotech. 7, 499 (2012)

    Article  ADS  Google Scholar 

  20. S. Glathe et al., Splitting of a moving transverse domain wall in a magnetic nanostripe in a transverse field. Phys. Rev. B 81, 020412 (2010)

    Article  ADS  Google Scholar 

  21. Tretiakov, O. A. et al. Dynamics of domain walls in magnetic nanostrips. Phys. Rev. Lett. 100, 127204 (2008)

    Google Scholar 

  22. T. Ono et al., Propagation of a magnetic domain wall in a submicrometer magnetic wire. Science 284, 468 (1999)

    Article  ADS  Google Scholar 

  23. G.S.D. Beach et al., Dynamics of field driven domain wall propagation in ferromagnetic nanowires. Nat. Mater. 4, 741 (2005)

    Article  ADS  Google Scholar 

  24. X. Jiang et al., Enhanced stochasticity of domain wall in magnetic racetracks due to dynamic pinning. Nat. Comm. 1, 25 (2010)

    Article  ADS  Google Scholar 

  25. D. Atkinson et al., Magnetic domain wall dynamics in a submicrometer ferromagnetic structure. Nat. Mater. 2, 85 (2003)

    Article  ADS  Google Scholar 

  26. L.K. Bogart et al., Dependence of domain wall pinning potential landscapes on domain wall chirality and pinning site geometry in planar nanowires. Phys. Rev. B 79, 054414 (2009)

    Article  ADS  Google Scholar 

  27. S. Lepadatu, A. Vanhaverbeke, D. Atkinson, R. Allenspach, C.H. Marrows, Dependence of domain-wall depinning threshold current on pinning profile. Phys. Rev. Lett. 102, 127203 (2009)

    Article  ADS  Google Scholar 

  28. H.K. Teoh, S. Goolaup, W.S. Lew, Programmable logic operation via domain wall profile manipulation. IEEE Magn. Lett. https://doi.org/10.1109/lmag.2015.2434801 (2015)

  29. C. Murapaka et al., Reconfigurable logic via gate-controlled domain wall trajectory in magnetic network structure. Sci. Rep. 6, 20130 (2016)

    Article  ADS  Google Scholar 

  30. O. Tchernyshyov, G.W. Chern, Fractional vortices and composite Domain walls in flat nanomagnets. Phys. Rev. Lett. 95, 197204 (2005)

    Article  ADS  Google Scholar 

  31. M.J. Donahue, D.G. Porter, OOMMF User’s Guide, Version 1.0 Interagency Report NISTIR 6376. National Institute of Standards and Technology, Gaithersburg, MD (Sept 1999)

    Google Scholar 

  32. C.H. Marrows, Adv. Phys. 54, 585 (2005)

    Article  ADS  Google Scholar 

  33. E.R. Lewis, D. Petit, A.-V. Jausovec, L.O’Brien, D.E. Read, H.T. Zeng, R.P. Cowburn, Phys. Rev. Lett. 102, 057209 (2009)

    Google Scholar 

  34. C. Murapaka et al., Appl. Phys. Express 7, 113003 (2014)

    Article  ADS  Google Scholar 

  35. A. Pushp, T. Phung, C. Rettner, B.P. Hughes, S.-H. Yang, L. Thomas, S.S.P. Parkin, Nat. Phys. 9, 505 (2013)

    Article  Google Scholar 

  36. T. Phung et al., Appl. Phys. Lett. 105, 222404 (2014)

    Article  ADS  Google Scholar 

  37. P. Sethi et al., Direct observation of deterministic domain wall trajectory in magnetic network structures. Sci. Rep. 6, 19027 (2016)

    Article  ADS  Google Scholar 

  38. N.L. Schryer, L.R. Walker, The motion of 180o domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406 (1974)

    Article  ADS  Google Scholar 

  39. D. Atkinson, D.S. Eastwood, L.K. Bogart, Controlling domain wall pinning in planar nanowires by selecting domain wall type and its application in a memory concept. Appl. Phys. Lett. 92, 022510 (2008)

    Article  ADS  Google Scholar 

  40. M. Chandra Sekhar, S. Goolaup, I. Purnama, W.S. Lew, Depinning assisted by domain wall deformation in cylindrical NiFe nanowires. J. Appl. Phys. 115, 083913 (2014)

    Article  ADS  Google Scholar 

  41. S. Goolaup, S.C. Low, M. Chandra Sekhar, W.S. Lew, Dependence of pinning on domain wall spin structure and notch geometry. J. Phys. Conf. Ser. 266, 012079 (2011)

    Google Scholar 

  42. A. Himeno, T. Okuno, T. Ono, K. Mibu, S. Nasu, T. Shinjo, Temperature dependence of depinning fields in submicron magnetic wires with an artificial neck. J. Magn. Magn. Mat. 286, 167 (2005)

    Article  ADS  Google Scholar 

  43. Y. Nakatani, A. Thiaville, J. Miltat, Faster magnetic walls in rough wires. Nat. Mater. 2, 251 (2003)

    Google Scholar 

  44. D. Burn, D. Atkinson, Suppression of Walker breakdown in magnetic domain wall propagation through structural control of spin wave emission. Appl. Phys. Lett. 102, 242414 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Siang Lew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goolaup, S., Murapaka, C., Lew, W.S. (2021). Domain Wall Programmable Magnetic Logic. In: Lew, W.S., Lim, G.J., Dananjaya, P.A. (eds) Emerging Non-volatile Memory Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-6912-8_7

Download citation

Publish with us

Policies and ethics