Skip to main content

Electric-Field-Controlled MRAM: Physics and Applications

  • Chapter
  • First Online:
Emerging Non-volatile Memory Technologies
  • 1316 Accesses

Abstract

This chapter provides a comprehensive overview of the electric-field (or voltage) control of magnetic anisotropy, an emerging concept for the next-generation memory device. This approach has many technological appeals as it can enable ultra-low-latency data transfer and ultra-low power electronics. The underlying mechanisms governing magnetization switching from an applied electric-field are interfacial spin-charge coupling and Larmor precession. This allows for electric-field-driven MRAM as opposed to current-driven in conventional spin-torque MRAM. An exhaustive discussion in particular relevance to industry-friendly materials is provided in this chapter. The challenges in implementation and possible solutions including field-free approach are discussed. The chapter summarises the experimental and theoretical progress in electric-field-controlled MRAM, discusses our current understanding, and finally presents the prospects of utilising this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Apalkov, B. Dieny, J. Slaughter, Magnetoresistive random access memory. Proc. IEEE 104, 1796–1830 (2016). https://doi.org/10.1109/JPROC.2016.2590142

    Article  Google Scholar 

  2. L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996). https://doi.org/10.1103/PhysRevB.54.9353

    Article  ADS  Google Scholar 

  3. A. Brataas, A.D. Kent, H. Ohno, Current-induced torques in magnetic materials. Nat. Mater. 11, 372–381 (2012). https://doi.org/10.1038/nmat3311

    Article  ADS  Google Scholar 

  4. C. Chappert, A. Fert, D.F.N. Van, The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007). https://doi.org/10.1038/nmat2024

    Article  ADS  Google Scholar 

  5. Z. Diao, M. Pakala, A. Panchula et al., Spin-transfer switching in MgO-based magnetic tunnel junctions (invited). J. Appl. Phys. 99, 08G510 (2006). https://doi.org/10.1063/1.2165169

    Article  Google Scholar 

  6. J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996). https://doi.org/10.1016/0304-8853(96)00062-5

    Article  ADS  Google Scholar 

  7. Z. Diao, D. Apalkov, M. Pakala et al., Spin transfer switching and spin polarization in magnetic tunnel junctions with MgO and AlOx barriers. Appl. Phys. Lett. 87, 232502 (2005). https://doi.org/10.1063/1.2139849

  8. J. Hayakawa, S. Ikeda, Y.M. Lee et al., Current-driven magnetization switching in CoFeB/MgO/ CoFeB magnetic tunnel junctions. Jpn J. Appl. Phys. 44, L1267 (2005). https://doi.org/10.1143/JJAP.44.L1267

    Article  Google Scholar 

  9. H. Kubota, A. Fukushima, Y. Ootani et al., Evaluation of spin-transfer switching in CoFeB/MgO/CoFeB magnetic tunnel junctions. Jpn J. Appl. Phys. 44, L1237–L1240 (2005). https://doi.org/10.1143/JJAP.44.L1237

    Article  ADS  Google Scholar 

  10. S. Ikeda, K. Miura, H. Yamamoto et al., A perpendicular-anisotropy CoFeB—MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010). https://doi.org/10.1038/nmat2804

    Article  ADS  Google Scholar 

  11. S. Mangin, D. Ravelosona, J. Katine, a, et al., Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater. 5, 210–215 (2006). https://doi.org/10.1038/nmat1595

    Article  ADS  Google Scholar 

  12. H. Meng, J. Wang, Spin transfer in nanomagnetic devices with perpendicular anisotropy. Appl. Phys. Lett. 88, 172506 (2006). https://doi.org/10.1063/1.2198797

    Article  ADS  Google Scholar 

  13. J.Z. Sun, S.L. Brown, W. Chen et al., Spin-torque switching efficiency in CoFeB-MgO based tunnel junctions. Phys. Rev. B 88, 104426 (2013). https://doi.org/10.1103/PhysRevB.88.104426

    Article  ADS  Google Scholar 

  14. D.C. Worledge, G. Hu, D.W. Abraham et al., Spin torque switching of perpendicular Ta ∣ CoFeB ∣ MgO -based magnetic tunnel junctions. Appl. Phys. Lett. 98, 022501 (2011). https://doi.org/10.1063/1.3536482

    Article  ADS  Google Scholar 

  15. H. Liu, D. Bedau, D. Backes et al., Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl. Phys. Lett. 97, 242510 (2010). https://doi.org/10.1063/1.3527962

    Article  ADS  Google Scholar 

  16. J. Lourembam, B. Chen, A. Huang et al., (2018a) A non-collinear double MgO based perpendicular magnetic tunnel junction. Appl. Phys. Lett. 113, 022403 (2018). https://doi.org/10.1063/1.5038060

    Article  ADS  Google Scholar 

  17. S. Matsunaga, J. Hayakawa, S. Ikeda et al., Fabrication of a nonvolatile full adder based on logic-in-memory architecture using magnetic tunnel junctions. Appl. Phys. Express 1, 0913011–0913013 (2008). https://doi.org/10.1143/APEX.1.091301

    Article  Google Scholar 

  18. F. Ren, D. Markovic, True energy-performance analysis of the MTJ-based logic-in-memory architecture (1-bit full adder). IEEE Trans. Electron. Devices 57, 1023–1028 (2010). https://doi.org/10.1109/TED.2010.2043389

    Article  ADS  Google Scholar 

  19. S. Kanai, F. Matsukura, H. Ohno, Electric-field-induced magnetization switching in CoFeB/MgO magnetic tunnel junctions with high junction resistance. Appl. Phys. Lett. 108, 192406 (2016). https://doi.org/10.1063/1.4948763

    Article  ADS  Google Scholar 

  20. P.K. Amiri, J.G. Alzate, X.Q. Cai et al., Electric-field-controlled magnetoelectric RAM: progress, challenges, and scaling. IEEE Trans. Magn. 51, 1–7 (2015). https://doi.org/10.1109/TMAG.2015.2443124

  21. S. Kanai, Y. Nakatani, M. Yamanouchi et al., Magnetization switching in a CoFeB/MgO magnetic tunnel junction by combining spin-transfer torque and electric field-effect. Appl. Phys. Lett. 104, 212406 (2014). https://doi.org/10.1063/1.4880720

    Article  ADS  Google Scholar 

  22. S. Kanai, Y. Nakatani, M. Yamanouchi et al., In-plane magnetic field dependence of electric field-induced magnetization switching. Appl. Phys. Lett. 103, 072408 (2013). https://doi.org/10.1063/1.4818676

    Article  ADS  Google Scholar 

  23. S. Kanai, M. Yamanouchi, S. Ikeda et al., Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Appl. Phys. Lett. 101, 122403 (2012). https://doi.org/10.1063/1.4753816

    Article  ADS  Google Scholar 

  24. J. Lourembam, J. Huang, S.T. Lim, E.F. Gerard, Role of CoFeB thickness in electric field controlled sub-100 nm sized magnetic tunnel junctions. AIP Adv. 8, 055915 (2018). https://doi.org/10.1063/1.5006368

  25. F. Matsukura, Y. Tokura, H. Ohno, Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015). https://doi.org/10.1038/nnano.2015.22

    Article  ADS  Google Scholar 

  26. T. Nozaki, A. Koziol-Rachwal, W. Skowronski, et al., Large voltage-induced changes in the perpendicular magnetic anisotropy of an MgO-based tunnel junction with an ultrathin fe layer. Phys. Rev. Appl. 5, 044006 (2016). https://doi.org/10.1103/PhysRevApplied.5.044006

  27. T. Nozaki, Y. Shiota, S. Miwa et al., Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer. Nat. Phys. 8, 491–496 (2012). https://doi.org/10.1038/nphys2298

    Article  Google Scholar 

  28. T. Nozaki, Y. Shiota, M. Shiraishi et al., Voltage-induced perpendicular magnetic anisotropy change in magnetic tunnel junctions. Appl. Phys. Lett. 96, 022506 (2010). https://doi.org/10.1063/1.3279157

    Article  ADS  Google Scholar 

  29. A. Rajanikanth, T. Hauet, F. Montaigne et al., Magnetic anisotropy modified by electric field in V/Fe/MgO(001)/Fe epitaxial magnetic tunnel junction. Appl. Phys. Lett. 103, 062402 (2013). https://doi.org/10.1063/1.4817268

    Article  ADS  Google Scholar 

  30. T. Seki, M. Kohda, J. Nitta, K. Takanashi, Coercivity change in an FePt thin layer in a Hall device by voltage application. Appl. Phys. Lett. 98, 212505 (2011). https://doi.org/10.1063/1.3595318

    Article  ADS  Google Scholar 

  31. Y. Shiota, S. Miwa, T. Nozaki et al., Pulse voltage-induced dynamic magnetization switching in magnetic tunneling junctions with high resistance-area product. Appl. Phys. Lett. 101, 102406 (2012). https://doi.org/10.1063/1.4751035

    Article  ADS  Google Scholar 

  32. Y. Shiota, T. Nozaki, F. Bonell et al., Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11, 39–43 (2012). https://doi.org/10.1038/nmat3172

    Article  ADS  Google Scholar 

  33. W.-G. Wang, M. Li, S. Hageman, C.L. Chien, Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2012). https://doi.org/10.1038/nmat3171

    Article  ADS  Google Scholar 

  34. W.G. Wang, C.L. Chien, Voltage-induced switching in magnetic tunnel junctions with perpendicular magnetic anisotropy. J. Phys. D Appl. Phys. 46, 074004 (2013). https://doi.org/10.1088/0022-3727/46/7/074004

    Article  ADS  Google Scholar 

  35. M. Weisheit, S. Fähler, A. Marty et al., Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007). https://doi.org/10.1126/science.1136629

    Article  ADS  Google Scholar 

  36. C. Grezes, F. Ebrahimi, J.G. Alzate et al., Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product. Appl. Phys. Lett. 108, 012403 (2016). https://doi.org/10.1063/1.4939446

    Article  ADS  Google Scholar 

  37. H. Cai, W. Kang, Y. Wang et al., High performance MRAM with spin-transfer-torque and voltage-controlled magnetic anisotropy effects. Appl. Sci. 7, 929 (2017). https://doi.org/10.3390/app7090929

  38. K. Kita, D.W. Abraham, M.J. Gajek et al., Electric-field-control of magnetic anisotropy of Co0.6Fe0.2B0.2/oxide stacks using reduced voltage. J. Appl. Phys. 112, 033919 (2012). https://doi.org/10.1063/1.4745901

    Article  ADS  Google Scholar 

  39. X. Li, G. Yu, H. Wu et al., Thermally stable voltage-controlled perpendicular magnetic anisotropy in Mo|CoFeB|MgO structures. Appl. Phys. Lett. 107, 142403 (2015). https://doi.org/10.1063/1.4932553

    Article  ADS  Google Scholar 

  40. P.V. Ong, N. Kioussis, D. Odkhuu et al., Giant voltage modulation of magnetic anisotropy in strained heavy metal/magnet/insulator heterostructures. Phys. Rev. B 92, 020407(R) (2015). https://doi.org/10.1103/PhysRevB.92.020407

    Article  ADS  Google Scholar 

  41. S. Kanai, M. Tsujikawa, Y. Miura et al., Magnetic anisotropy in Ta/CoFeB/MgO investigated by x-ray magnetic circular dichroism and first-principles calculation Magnetic anisotropy in Ta/CoFeB/MgO investigated by x-ray magnetic circular dichroism and first-principles calculation. Appl. Phys. Lett. 105, 222409 (2014). https://doi.org/10.1063/1.4903296

    Article  ADS  Google Scholar 

  42. T. Maruyama, Y. Shiota, T. Nozaki et al., Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4, 158–161 (2009). https://doi.org/10.1038/nnano.2008.406

    Article  ADS  Google Scholar 

  43. S. Zhang, Spin-dependent surface screening in ferromagnets and magnetic tunnel junctions. Phys. Rev. Lett. 83, 640–643 (1999). https://doi.org/10.1103/PhysRevLett.83.640

  44. M. Zeng, J. Lourembam, S.T. Lim, Electric-field Effect on Magnetic Anisotropy of MgO/CoFe/capping structures. J. Appl. Phys. 126, 153902 (2019). https://doi.org/10.1063/1.5082610

  45. K.H. He, J.S. Chen, Y.P. Feng, First principles study of the electric field effect on magnetization and magnetic anisotropy of FeCo/MgO(001) thin film. Appl. Phys. Lett. 99, 072503 (2011). https://doi.org/10.1063/1.3626598

    Article  ADS  Google Scholar 

  46. M.K. Niranjan, C.-G. Duan, S.S. Jaswal, E.Y. Tsymbal, Electric field effect on magnetization at the Fe/MgO(001) interface. Appl Phys Lett 96, 222504 (2010). https://doi.org/10.1063/1.3443658

    Article  ADS  Google Scholar 

  47. X.W. Guan, X.M. Cheng, T. Huang et al., Effect of metal-to-metal interface states on the electric-field modified magnetic anisotropy in MgO/Fe/non-magnetic metal. J. Appl. Phys . 119, 133905 (2016). https://doi.org/10.1063/1.4945025

  48. M. Tsujikawa, S. Haraguchi, T. Oda et al., A comparative ab initio study on electric-field dependence of magnetic anisotropy in MgO/Fe/Pt and MgO/Fe/Au films. J. Appl. Phys. 109, 07C107 (2011). https://doi.org/10.1063/1.3540677

    Article  Google Scholar 

  49. M. Tsujikawa, S. Haraguchi, T. Oda, Effect of atomic monolayer insertions on electric-field-induced rotation of magnetic easy axis. J.. Appl. Phys. 111, 083910 (2012). https://doi.org/10.1063/1.3703682

    Article  ADS  Google Scholar 

  50. M. Zeng, J. Lourembam, L.S. Ter, Large electric field modulation of magnetic anisotropy in MgO/CoFe/Ta structures with monolayer oxide insertion. Appl. Phys. Lett. 113, 192404 (2018). https://doi.org/10.1063/1.5043443

    Article  ADS  Google Scholar 

  51. M. Endo, S. Kanai, S. Ikeda et al., Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Appl. Phys. Lett. 96, 212503 (2010). https://doi.org/10.1063/1.3429592

  52. Y. Lau, P. Sheng, S. Mitani et al., Electric field modulation of the non-linear areal magnetic anisotropy energy in CoFeB/MgO. Appl. Phys. Lett. 110, 022405 (2017). https://doi.org/10.1109/INTMAG.2017.8008024

  53. F. Bonell, S. Murakami, Y. Shiota et al., Large change in perpendicular magnetic anisotropy induced by an electric field in FePd ultrathin films. Appl Phys. Lett. 98, 232510 (2011). https://doi.org/10.1063/1.3599492

  54. A. Okada, S. Kanai, M. Yamanouchi et al., Electric-field effects on magnetic anisotropy and damping constant in Ta/CoFeB / MgO investigated by ferromagnetic resonance. Appl. Phys. Lett. 105, 052415 (2014). https://doi.org/10.1063/1.4892824

    Article  ADS  Google Scholar 

  55. Y. Shiota, S. Murakami, F. Bonell et al., Quantitative evaluation of voltage-induced magnetic anisotropy change by magnetoresistance measurement. Appl. Phys. Express 4, 043005 (2011). https://doi.org/10.1143/APEX.4.043005

    Article  ADS  Google Scholar 

  56. J.C. Slonczewski, Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995–7002 (1989). https://doi.org/10.1103/PhysRevB.39.6995

    Article  ADS  Google Scholar 

  57. V.B. Naik, H. Meng, J.X. Xiao, et al., Effect of electric-field on the perpendicular magnetic anisotropy and strain properties in CoFeB/MgO magnetic tunnel junctions. Appl. Phys. Lett. 105, 052403 (2014). https://doi.org/10.1063/1.4892410

  58. J. Huang, M. Tran, L.S. Ter et al., Determination of the electric field induced anisotropy change in sub-100 nm perpendicularly magnetized devices. AIP Adv. 6, 055805 (2016). https://doi.org/10.1063/1.4942822

    Article  ADS  Google Scholar 

  59. W. Skowroński, T. Nozaki, D.D. Lam et al., Underlayer material influence on electric-field controlled perpendicular magnetic anisotropy in CoFeB/MgO magnetic tunnel junctions. Phys. Rev. B 91, 184410 (2015). https://doi.org/10.1103/PhysRevB.91.184410

    Article  ADS  Google Scholar 

  60. A.J. Lohn, P.R. Mickel, M.J. Marinella, Mechanism of electrical shorting failure mode in resistive switching. J. Appl. Phys. 116, 034506 (2014). https://doi.org/10.1063/1.4890635

  61. X. Li, K. Fitzell, D. Wu et al., Enhancement of voltage-controlled magnetic anisotropy through precise control of Mg insertion thickness at CoFeB|MgO interface. Appl. Phys. Lett. 10, 052401 (2017). https://doi.org/10.1063/1.4975160

    Article  ADS  Google Scholar 

  62. S.E. Barnes, J. Ieda, S. Maekawa, Rashba spin-orbit anisotropy and the electric field control of magnetism. Sci. Rep. 4, 1–5 (2014). https://doi.org/10.1038/srep04105

    Article  Google Scholar 

  63. Y. Shiota, F. Bonell, S. Miwa et al., Opposite signs of voltage-induced perpendicular magnetic anisotropy change in CoFeB∣MgO junctions with different underlayers. Appl. Phys. Lett. 103, 082410 (2013). https://doi.org/10.1063/1.4819199

    Article  ADS  Google Scholar 

  64. T. Inokuchi, H. Yoda, Y. Kato et al., Improved read disturb and write error rates in voltage-control spintronics memory (VoCSM) by controlling energy barrier height. Appl. Phys. Lett. 110, 252404 (2017). https://doi.org/10.1063/1.4986923

  65. W. Skowroński, T. Nozaki, Y. Shiota et al., Perpendicular magnetic anisotropy of Ir/CoFeB/MgO trilayer system tuned by electric fields. Appl. Phys. Expr. 8, 053003 (2015). https://doi.org/10.7567/APEX.8.053003

  66. T. Nozaki, K. Yakushiji, S. Tamaru et al., Voltage-induced magnetic anisotropy changes in an ultrathin FeB layer sandwiched between two MgO layers. Appl. Phys. Express. 6, 073005 (2013). https://doi.org/10.7567/APEX.6.073005

    Article  ADS  Google Scholar 

  67. T. Nozaki, A. Kozioł-Rachwał, M. Tsujikawa et al., Highly efficient voltage control of spin and enhanced interfacial perpendicular magnetic anisotropy in iridium-doped Fe/MgO magnetic tunnel junctions. NPG Asia Mater. 9, 1–10 (2017). https://doi.org/10.1038/am.2017.204

    Article  Google Scholar 

  68. D. Chien, X. Li, K. Wong et al., Enhanced voltage-controlled magnetic anisotropy in magnetic tunnel junctions with an MgO/PZT/MgO tunnel barrier. Appl. Phys. Lett. 108, 112402 (2016). https://doi.org/10.1063/1.4943023

    Article  ADS  Google Scholar 

  69. H. Sato, M. Yamanouchi, K. Miura et al., Junction size effect on switching current and thermal stability in CoFeB/MgO perpendicular magnetic tunnel junctions. Appl. Phys. Lett. 99, 042501 (2011). https://doi.org/10.1063/1.3617429

    Article  ADS  Google Scholar 

  70. C. Yoshida, M. Kurasawa, M.L. Young, et al., A study of dielectric breakdown mechanism in CoFeB/MgO/CoFeB magnetic tunnel junction. in IEEE International Reliability Physics Symposium Proceedings, Montreal, QC, p 139–142 (2009). https://doi.org/10.1109/IRPS.2009.5173239

  71. M. Schäfers, V. Drewello, G. Reiss et al., Electric breakdown in ultrathin MgO tunnel barrier junctions for spin-transfer torque switching. Appl. Phys. Lett. 95, 232119 (2009). https://doi.org/10.1063/1.3272268

    Article  ADS  Google Scholar 

  72. Y. Shiota, T. Nozaki, S. Tamaru et al., Evaluation of write error rate for voltage-driven dynamic magnetization switching in magnetic tunnel junctions with perpendicular magnetization. Appl. Phys. Expr. 9, 013001 (2016). https://doi.org/10.7567/APEX.9.013001

  73. J.G. Alzate, P.K. Amiri, P. Upadhyaya et al., Voltage-induced switching of nanoscale magnetic tunnel junctions. in Technical Digest—International Electron Devices Meeting, IEDM. San Francisco, CA p 29.5.1–29.5.4 (2012). https://doi.org/10.1109/IEDM.2012.6479130 

  74. J.M. Iwata-Harms, G. Jan, H. Liu et al., High-temperature thermal stability driven by magnetization dilution in CoFeB free layers for spin-transfer-torque magnetic random access memory. Sci. Rep. 8, 14409 (2018). https://doi.org/10.1038/s41598-018-32641-6

  75. T. Newhouse-Illige, Y. Liu, M. Xu, et al., Voltage-controlled interlayer coupling in perpendicularly magnetized magnetic tunnel junctions. Nat. Commun. 8, 15232 (2017). https://doi.org/10.1038/ncomms15232

  76. S. Wang, H. Lee, F. Ebrahimi et al., Comparative evaluation of spin-transfer-torque and magnetoelectric random access memory. IEEE J. Emerg. Sel. Top Circuits Syst. 6, 134–145 (2016). https://doi.org/10.1109/JETCAS.2016.2547681

    Article  Google Scholar 

  77. A.V. Khvalkovskiy, D. Apalkov , S. Watts, et al., Basic principles of STT-MRAM cell operation in memory arrays. J. Phys. D Appl. Phys. 46, 074001 (2013). https://doi.org/10.1088/0022-3727/46/7/074001

  78. Y. Shiota, T. Nozaki, S. Tamaru et al., Reduction in write error rate of voltage-driven dynamic magnetization switching by improving thermal stability factor. Appl. Phys. Lett. 10(1063/1), 4990680 (2017). https://doi.org/10.1063/1.4990680

    Google Scholar 

  79. H. Cheng, N. Deng, Influence of thermal agitation on the electric field induced precessional magnetization reversal with perpendicular easy axis. AIP Adv. 3, 122124 (2013). https://doi.org/10.1063/1.4858423

  80. S. Shirotori, H. Yoda, Y. Ohsawa, et al., Voltage-control spintronics memory with a self-aligned heavy-metal electrode. IEEE Trans. Magn. 53, 3401104 (2017). https://doi.org/10.1109/TMAG.2017.2691764

  81. J. Deng, G. Liang, G.Gupta, Ultrafast and low-energy switching in voltage-controlled elliptical pMTJ. Sci. Rep. 7, 16562 (2017). https://doi.org/10.1038/s41598-017-16292-7

  82. R. Matsumoto, T. Nozaki, S. Yuasa, H. Imamura, Voltage-Induced precessional switching at zero-bias magnetic field in a conically magnetized free layer. Phys Rev Appl 9, 14026 (2018). https://doi.org/10.1103/PhysRevApplied.9.014026

    Article  Google Scholar 

  83. H. Stillrich, C. Menk, R. Frömter, H.P. Oepen, Magnetic anisotropy and the cone state in Co/Pt multilayer films. J. Appl. Phys. 105, 07C308 (2009). https://doi.org/10.1063/1.3070644

  84. J.W. Lee, J.R. Jeong, S.C. Shin et al., Spin-reorientation transitions in ultrathin Co films on Pt(111) and Pd(111) single-crystal substrates. Phys. Rev. B 66, 172409 (2002). https://doi.org/10.1103/PhysRevB.66.172409

  85. R. Dorrance, J.G. Alzate, S.S. Cherepov et al., Diode-MTJ crossbar memory cell using voltage-induced unipolar switching for high-density MRAM. IEEE Electron. Device Lett. 34, 753–755 (2013). https://doi.org/10.1109/LED.2013.2255096

  86. A. Driskill-Smith, D. Apalkov, V. Nikitin et al., Latest advances and roadmap for in-plane and perpendicular STT-RAM. in 2011 3rd IEEE International Memory Workshop IMW 2011, pp. 1–3 (2011). https://doi.org/10.1109/IMW.2011.5873205

  87. J.H. Oh, J.H. Park, Y.S. Lim, et al., Full integration of highly manufacturable 512Mb PRAM based on 90nm technology. in Technical Digest—International Electron Devices Meeting, IEDM, 1-4 (2006). https://doi.org/10.1109/IEDM.2006.346905

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Lourembam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lourembam, J., Huang, J. (2021). Electric-Field-Controlled MRAM: Physics and Applications. In: Lew, W.S., Lim, G.J., Dananjaya, P.A. (eds) Emerging Non-volatile Memory Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-6912-8_4

Download citation

Publish with us

Policies and ethics