Skip to main content

Evaluation Techniques of the Chemical and Microbiological Water Quality in the Coastal Environment

  • Chapter
  • First Online:
Microbial Enzymes and Biotechniques

Abstract

Historically, many people live in coastlines, the social importance of the coastal environments has increased especially because of economic resources. The water quality monitoring is necessary because the environment health is equivalent to human health. The common chemical and microbiological parameters for water quality analyses include the physicochemical indicators; inorganic nutrients; organic compounds; trace metals; chlorophyll concentration; biochemical oxygen demand; and fecal indicator organism (FIOs) to evaluate the influence on the physiology of aquatic organisms, reactivity, trophic state of the ecosystem and to infer pathogenic risk assessments of coastal waters. Different indexes can help scientists to explain many parameters of analysis in a single representation of the water quality but the use of a unique index in different locations around the world will become increasingly distant, especially because of the technological development and the population growth to produce new and different substances. For a better assessment it is necessary to understand what activities are developed and which are the water uses to monitor these environments to choose parameters that help indicate the environmental health, to scale the risks and to show these results to the population and the government for planning ways to mitigate impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi T, Abbasi SA (2012) Approaches to WQI formulation. In: Abbasi T (ed) Water quality indices, 1st edn. Elsevier, London, pp 9–24. https://doi.org/10.1016/b978-0-444-54304-2.00002-6

    Chapter  Google Scholar 

  • Abrahão R, Carvalho M, Da Silva WR et al (2007) Use of index analysis to evaluate the water quality of a stream receiving industrial effluents. Water SA 33:459–465

    Google Scholar 

  • Adimalla N, Qian H (2019) Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, South India. Ecotoxicol Environ Saf 176:153–161. https://doi.org/10.1016/j.ecoenv.2019.03.066

    Article  CAS  PubMed  Google Scholar 

  • Adolfsson-Erici M, Peterson M, Parkkoneo J et al (2002) Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 46:1485–1489

    Article  CAS  PubMed  Google Scholar 

  • Adyasari D, Oehler T, Afiati N et al (2018) Groundwater nutrient inputs into an urbanized tropical estuary system in Indonesia. Sci Total Environ 627:1066–1079

    Article  CAS  PubMed  Google Scholar 

  • Agrill S, Petit-Box A, Morales-Pinzón T et al (2017) Urban rainwater runoff quantity and quality – a potential endogenous resource in cities? J Environ Manag 189:14–21

    Article  CAS  Google Scholar 

  • Aguilar JAP, Campo J, Nebot S, Gimeno-García E (2019) Analysis of existing water information for the applicability of water quality indices in the fluvial-littoral area of turia and Jucar Rivers, Valencia, Spain. Appl Geogr 111:1–11. https://doi.org/10.1016/j.apgeog.2019.102062

    Article  Google Scholar 

  • Alkalay R, Pasternak G, Zask A (2007) Clean-coast index, a new approach for beach cleanliness assessment. Ocean Coast Manag 50:352–362. https://doi.org/10.1016/j.ocecoaman.2006.10.002

    Article  Google Scholar 

  • Almeida JC, Cardoso CED, Tavares DS et al (2019) Chromium removal from contaminated waters using nanomaterials – a review. TrAC Trends Anal Chem 118:277–291

    Article  CAS  Google Scholar 

  • Alvarez-Berastegui D, Amengual J, Coll J et al (2014) Multidisciplinary rapid assessment of coastal areas as a tool for the design and management of marine protected areas. J Nat Conserv 22:1–14. https://doi.org/10.1016/j.jnc.2013.07.003

    Article  Google Scholar 

  • Angulo RJ (2004) Aspectos físicos das dinâmicas de ambientes costeiros, seus usos e conflitos. Desenvolvimento Meio Ambiente 1(10):175–185

    Google Scholar 

  • Ashbolt NJ, Grabow WOK, Snozzi M (2001) Indicators of microbial water quality. In: Fewtrell L, Bartram J (eds) Water quality: guidelines, standards and health. World Health Organization, Geneva, pp 289–316

    Google Scholar 

  • Avio CG, Gorbi S, Regoli F (2017) Plastics and microplastics in the oceans: from emerging pollutants to emerged threat. Mar Environ Res 128:2–11. https://doi.org/10.1016/j.marenvres.2016.05.012

    Article  CAS  PubMed  Google Scholar 

  • Baeyens W, Mirlean N, Bundschuh J et al (2019) Arsenic enrichment in sediments and beaches of Brazilian coastal waters: a review. Sci Total Environ 681:143–154. https://doi.org/10.1016/j.scitotenv.2019.05.126

    Article  CAS  PubMed  Google Scholar 

  • Banerjee SK, Farber JM (2018) Trend and pattern of antimicrobial resistance in molluscan Vibrio species sourced to Canadian estuaries. Antimicrob Agents Chemother 62(10):e00799. https://doi.org/10.1128/AAC.00799-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barakat A, Meddah R, Afdali M et al (2018) Physicochemical and microbial assessment of spring water quality for drinking supply in Piedmont of Béni-Mellal Atlas (Morocco). Phys Chem Earth 104:39–46. https://doi.org/10.1016/j.pce.2018.01.006

    Article  Google Scholar 

  • Barletta M, Lima ARA, Costa MF (2019) Distribution, sources and consequences of nutrients, persistent organic pollutants, metals and microplastics in South American estuaries. Sci Total Environ 651:1199–1218. https://doi.org/10.1016/j.scitotenv.2018.09.276

    Article  CAS  PubMed  Google Scholar 

  • Baumgarten MGZ, Niencheski LFH, Wallner-Kersanach M (2010) Manual de análises em oceanografia química. Universidade Federal de Rio Grande, Centro

    Google Scholar 

  • Benjamin-Chung J, Arnold BF, Wade TJ et al (2017) Coliphages and gastrointestinal illness in recreational waters pooled analysis of six coastal beach cohorts. Epidemiology 28:644–652

    Article  PubMed  PubMed Central  Google Scholar 

  • Benotti MJ, Brownawell BJ (2007) Distributions of pharmaceuticals in an urban estuary during both dry - and wet-weather conditions. Environ Sci Technol 41:5795–5802

    Article  CAS  PubMed  Google Scholar 

  • Bharti NK (2011) Water quality indices used for surface water vulnerability assessment. Int Environ 2:154–173

    CAS  Google Scholar 

  • Billen G, Garnier J, Ficht A et al (2001) Modeling the response of water quality in the Seine River estuary to human activity in its watershed over the last 50 years. Estuar Coast Shelf Sci 24(6B):977–993

    CAS  Google Scholar 

  • Bitton G (2011) Pathogens and parasites in domestic wastewater. In: Bitton G (ed) Wastewater microbiology, 4th edn. Wiley, Hoboken, pp 121–172

    Google Scholar 

  • Blackstock LKJ, Wawryk NJP, Jiang P (2019) Recent applications and critical evaluation of using artificial sweeteners to assess wastewater impact. Curr Opin Environ Sci Health 7:26–33

    Article  Google Scholar 

  • Boehm AB, Ashbolt NJ, Colford JM Jr et al (2009) A sea change ahead for recreational water quality criteria. J Water Health 7(1):9–20

    Article  PubMed  Google Scholar 

  • Boyd CE, Tucker CS, Viriyatum R (2011) Interpretation of pH, acidity, and alkalinity in aquaculture and fisheries. N Am J Aquac 73(4):403–408

    Article  Google Scholar 

  • Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82(11):1518–1532

    Article  CAS  PubMed  Google Scholar 

  • Brown RM, McLelland NJ, Deininger RA, Tozer RG (1970) A water quality index do we dare? Water Sew Works 117(10):339–343

    Google Scholar 

  • Buerge IJ, Poiger T, Müller MD (2003) Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ Sci Technol 37(4):691–700

    Article  CAS  PubMed  Google Scholar 

  • Cabelli VJ (1983) Health effects for marine recreation waters. USEPA 600/1–80–031. Health Effects Research Laboratory, Research Triangle Park

    Google Scholar 

  • Cabral AC, Stark JS, Kolm HE (2018) An integrated evaluation of some faecal indicator bacteria (FIB) and chemical markers as potential tools for monitoring sewage contamination in subtropical estuaries. Environ Pollut 235:739–749

    Article  CAS  PubMed  Google Scholar 

  • Cabral AC, Wilhelm MM, Figueira RCL et al (2019) Tracking the historical sewage input in South American subtropical estuarine systems based on faecal sterols and bulk organic matter stable isotopes (δ13C and δ15N). Sci Total Environ 655:855–864

    Article  CAS  PubMed  Google Scholar 

  • Cant MG, Katz DR, Sullivan J et al (2019) Evaluation of the artificial sweetener sucralose as a sanitary wastewater tracer in Narragansett Bay, Rhode Island, USA. Mar Pollut Bull 146:711–717

    Article  CAS  Google Scholar 

  • Cantwell MG, Katz DR, Sullivan J, Kuhn A (2019) Evaluation of the artificial sweetener sucralose as a sanitary wastewater tracer in Narragansett Bay, Rhode Island, USA. Mar Pollut Bull 146:711–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbery M, O’Connor W, Palanisami T (2018) Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ Int 115:400–409. https://doi.org/10.1016/j.envint.2018.03.007

    Article  PubMed  Google Scholar 

  • Casals-Casas C, Desvergne B (2011) Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol 73:135–162

    Article  CAS  PubMed  Google Scholar 

  • Celza P, Medana C, Raso E et al (2011) N,N-diethyl-m-toluamide transformation in river water. Sci Total Environ 409(19):3894–3901

    Google Scholar 

  • Chen L, Wang G, Zhong Y et al (2016) Evaluating the impacts of soil data on hydrological and nonpoint source pollution prediction. Sci Total Environ 563:9–28

    Google Scholar 

  • Chen Y, Wen X, Wang B et al (2017) Agricultural pollution and regulation: How to subsidize agriculture? J Clean Prod 164:258–264

    Article  Google Scholar 

  • Chen ZF, Wen HB, Dai X et al (2018) Contamination and risk profiles of triclosan and triclocarban in sediments from a less urbanized region in China. J Hazard Mater 357:376–383

    Article  CAS  PubMed  Google Scholar 

  • Chitanand MP, Kadam TA, Gyananath G (2010) Multiple antibiotic resistance indexing of coliforms to identify high risk contamination sites in aquatic environment. Indian J Microbiol 50:216–220. https://doi.org/10.1007/s12088-010-0042-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow MI, Lundin JI, Mitchell CJ (2019) An urban stormwater runoff mortality syndrome in juvenile coho salmon. Aquat Toxicol 214:1–10

    Article  CAS  Google Scholar 

  • Clara M, Windhofer G, Hartl W, Braun K, Simon M, Gans O, Scheffknecht C, Chovanec A (2010) Occurrence of phthalates in surface runoff, untreated and treated wastewater and fate during wastewater treatment. Chemosphere 78(9):1078–1084

    Article  CAS  PubMed  Google Scholar 

  • Coffin MRS, Courtenay SC, Pater CC et al (2018) An empirical model using dissolved oxygen as an indicator for eutrophication at a regional scale. Mar Pollut Bull 133:261–270

    Article  CAS  PubMed  Google Scholar 

  • Colla NSL, Botté SE, Marcovecchio JE (2019) Mercury cycling and bioaccumulation in a changing coastal system: from water to aquatic organisms. Mar Pollut Bull 140:40–50

    Article  CAS  PubMed  Google Scholar 

  • Costanzo SD, Watkinson AJ, Murby EJ, Kolpin DW, Sandstrom MW (2007) Is there a risk associated with the insect repellent DEET (N,N-diethyl-m-toluamide) commonly found in aquatic environments? Sci Total Environ 384(1–3):214–220

    Article  CAS  PubMed  Google Scholar 

  • Da Costa RL, Carreira RS (2005) A comparison between faecal sterols and coliform counts in the investigation of sewage contamination in sediments. Braz J Oceanogr 53(3–4):157–167

    Article  Google Scholar 

  • Da Costa LAA, Pessoa DMM, Carreira RS (2018) Chemical and biological indicators of sewage river input to an urban tropical estuary (Guanabara Bay, Brazil). Ecol Indic 90:513–518

    Article  CAS  Google Scholar 

  • Dafouz R, Cáceres N, Rodríguez-Gil JL et al (2018) Does the presence of caffeine in the marine environment represent an environmental risk? A regional and global study. Sci Total Environ 615:632–642

    Article  CAS  PubMed  Google Scholar 

  • Davene ML, Moriarty EM, Robson B et al (2019) Relationships between chemical and microbial faecal source tracking markers in urban river water and sediments during and post-discharge of human sewage. Sci Total Environ 651(1):1588–1604

    Article  CAS  Google Scholar 

  • De Lorenzo ME, Keller JM, Arthur CD et al (2008) Toxicity of the antimicrobial compound triclosan and formation of the metabolite methyl-triclosan in estuarine systems. Environ Toxicol 23(2):224–232

    Article  CAS  Google Scholar 

  • Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44(9):842–852. https://doi.org/10.1016/S0025-326X(02)-00220-5

    Article  CAS  PubMed  Google Scholar 

  • Derrien M, Yang L, Hur J (2017) Lipid biomarkers and spectroscopic indices for identifying organic matter sources in aquatic environments: a review. Water Res 112:58–71

    Article  CAS  PubMed  Google Scholar 

  • Dey S, Bano F, Malik A (2019) Pharmaceuticals and personal care product (PPCP) contamination—a global discharge inventory. In: Prasad M, Vithanage M, Kaple A (eds) Pharmaceuticals and personal care products: waste management and treatment technology, 1st edn. Elsevier, London, pp 1–26

    Google Scholar 

  • Di Lorenzo T, Castaño-Sánchez A, Di Marzio WD (2019) The role of freshwater copepods in the environmental risk assessment of caffeine and propranolol mixtures in the surface water bodies of Spain. Chemosphere 220:227–236

    Article  CAS  PubMed  Google Scholar 

  • Dodds WK, Whiles MR (2017) Freshwater ecology, 3rd edn. Elsevier, London

    Google Scholar 

  • Durán-Álvarez JC, Prado-Pano B, Jiménez-Cisneros B (2012) Sorption and desorption of carbamazepine, naproxen and triclosan in a soil irrigated with raw wastewater: Estimation of the sorption parameters by considering the initial mass of the compounds in the soil. Chemosphere 88:84–90

    Article  CAS  PubMed  Google Scholar 

  • Ebele AJ, Abdallah MA, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3:1–16. https://doi.org/10.1016/j.emcon.2016.12.004

    Article  Google Scholar 

  • Edge TA, Hill S (2005) Occurrence of antibiotic resistance in Escherichia coli from surface waters and fecal pollution sources near Hamilton, Ontario. Can J Microbiol 51:501–505

    Article  CAS  PubMed  Google Scholar 

  • Effendi H (2016) River water quality preliminary rapid assessment using pollution index. Procedia Environ Sci 33:562–567. https://doi.org/10.1016/j.proenv.2016.03.108

    Article  CAS  Google Scholar 

  • Effendi H, Wardiatno Y (2015) Water quality status of Ciambulawung River, Banten Province, based on pollution index and NSF-WQI. Procedia Environ Sci 24:228–237. https://doi.org/10.1016/j.proenv.2015.03.030

    Article  CAS  Google Scholar 

  • Eganhouse RP (1997) Molecular markers in environmental geochemistry, ACS symposium series, 671. American Chemical Society, Washington

    Book  Google Scholar 

  • Eisler R (1987) Mercury hazards to fish, wildlife, and invertebrates: a synoptic review. Fish and Wildlife Service, U.S. Department of the Interior, Laurel, MD, 90 p

    Google Scholar 

  • Ejoh AS, Unuakpa BA, Ibadin FH, Edeki SO (2018) Data in brief dataset on the assessment of water quality and water quality index of Ubogo and Egini rivers, Udu LGA, Delta State Nigeria. Data Br 19:1716–1726. https://doi.org/10.1016/j.dib.2018.06.053

    Article  CAS  Google Scholar 

  • Espejo W, Padilha JA, Gonçalves RA et al (2019) Accumulation and potential sources of lead in marine organisms from coastal ecosystems of the Chilean Patagonia and Antarctic Peninsula area. Mar Pollut Bull 140:60–64

    Article  CAS  PubMed  Google Scholar 

  • European Community (2008) European Union up dated risk assessment report: bisphenol A, CAS No: 80-05-7. Office for Official Publications of the European Communities, Institute for Health and Consumer Protection, European Chemicals Bureau, European Commission Joint Research Centre, Luxembourg

    Google Scholar 

  • Fakadu S, Alemayehu E, Dewil R et al (2019) Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge. Sci Total Environ 654:324–337

    Article  CAS  Google Scholar 

  • Farady SE (2019) Microplastics as a new, ubiquitous pollutant: Strategies to anticipate management and advise seafood consumers. Mar Policy 104:103–107. https://doi.org/10.1016/j.marpol.2019.02.020

    Article  Google Scholar 

  • Fattore E, Benfenati E, Marelli R et al (1996) Sterols in sediment samples from Venice Lagoon, Italy. Chemosphere 33(12):2383–2393

    Article  CAS  Google Scholar 

  • Fernandino G, Elliffa CI, Silva IR et al (2015) How many pellets are too many? The pellet pollution index as a tool to assess beach pollution by plastic resin pellets in Salvador, Bahia, Brazil. J Int Coast Zone Manage 15(3):325–332. https://doi.org/10.5894/rgci566

    Article  Google Scholar 

  • Ferreira AP, Lourdes C, Cunha N (2005) Anthropic pollution in aquatic environment: development of a caffeine indicator. Int J Environ Health Res 15(4):303–311

    Article  CAS  PubMed  Google Scholar 

  • Fromme H, Kücher T, Otto T et al (2002) Occurrence of phthalates and bisphenol A and F in the environment. Water Res 36:1429–1438

    Article  CAS  PubMed  Google Scholar 

  • Galus M, Jeyaranjaan J, Smith E et al (2013) Chronic effects of exposure to a pharmaceutical mixture and municipal wastewater in zebrafish. Aquat Toxicol 132-133:212–222

    Article  CAS  PubMed  Google Scholar 

  • Gan Z, Sun H, Feng B et al (2013) Occurrence of seven artificial sweeteners in the aquatic environment and precipitation of Tianjin, China. Water Res 47(14):4928–4937

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Lin J, Kunlin O, Chen Y, Li H, Dai Q, Yu Z, Zuo Z, Wang C (2018) Embryonic exposure to benzo(a)pyrene inhibits reproductive capability in adult female zebrafish and correlation with DNA methylation. Environ Pollut 240:403–411

    Article  CAS  PubMed  Google Scholar 

  • Gheorghe S, Petre J, Lucaciu I et al (2016) Risk screening of pharmaceutical compounds in Romanian aquatic environment. Environ Monit Assess 188(6):379. https://doi.org/10.1007/s10661-016-5375-3

    Article  CAS  PubMed  Google Scholar 

  • Gogoi A, Mazumder P, Tyagi VK, Tushara Chaminda GG, An AK, Kumar M (2018) Occurrence and fate of emerging contaminants in water environment: a review. Groundw Sustain Dev 6:169–180

    Article  Google Scholar 

  • Gopal V, Shanmugasundaramb A, Nithya B (2018) Water quality of the uppanar estuary, Southern India: Implications on the level of dissolved nutrients and trace elements. Mar Pollut Bull 130:279–286

    Article  CAS  PubMed  Google Scholar 

  • Graziani NS, Carreras H, Wannaz E (2019) Atmospheric levels of BPA associated with particulate matter in an urban environment. Heliyon 5(4):e01419

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimalt JO, Fernandez P, Bayona JM et al (1990) Assessment of fecal sterols and ketones as indicators of urban sewage inputs to coastal waters. Environ Sci Technol 24(3):357–363

    Article  CAS  Google Scholar 

  • Guan S, Xu R, Chen S et al (2002) Development of a procedure for discriminating among Escherichia coli isolates from animal and human sources. Appl Environ Microbiol 68(6):2690–2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta N, Pandey P, Hussain J (2017) Effect of physicochemical and biological parameters on the quality of river water of Narmada, Madhya Pradesh, India. Water Sci 31:11–23. https://doi.org/10.1016/j.wsj.2017.03.002

    Article  Google Scholar 

  • Hanisah K, Kumar S, Tajul AY (2013) The management of waste cooking oil: a preliminar survey. Health Environ J 4(1):76–81

    Google Scholar 

  • Harrison S, McAree C, Mulville W et al (2019) The problem of agricultural ‘diffuse’ pollution: getting to the point. Sci Total Environ 677:700–717

    Article  CAS  PubMed  Google Scholar 

  • He D, Zhang K, Tang J (2018) Using fecal sterols to assess dynamics of sewage input in sediments along a human-impacted river-estuary system in eastern China. Sci Total Environ 636:787–797

    Article  CAS  PubMed  Google Scholar 

  • Henry R, Schnag C, Kolotelo P et al (2016) Effect of environmental parameters on pathogen and faecal indicator organism concentrations within an urban estuary. Estuar Coast Shelf Sci 174:18–26. https://doi.org/10.1016/j.ecss.2016.03.012

    Article  Google Scholar 

  • Heredia-García G, Gómez-Olivan LM, Orozco-Hérnandez JM (2019) Alterations to DNA, apoptosis and oxidative damage induced by sucralose in blood cells of Cyprinus carpio. Sci Total Environ 692:411–421

    Article  CAS  PubMed  Google Scholar 

  • Horn O, Nalli S, Cooper D, Nicell J (2004) Plasticizer metabolites in the environment. Water Res 38(17):3693–3698

    Article  CAS  PubMed  Google Scholar 

  • Huggett DB, Stoddard KI (2011) Effects of the artificial sweetener sucralose on Daphnia magna and Americamysis bahia survival, growth and reproduction. Food Chem Toxicol 49(10):2575–2579

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Das KR, Naik MM (2019) Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: an emerging health threat. Chemosphere 215:846–857. https://doi.org/10.1016/j.chemosphere.2018.10.114

    Article  CAS  PubMed  Google Scholar 

  • International Agency for Research on Cancer (ed) (2012) Review of Human Carcinogens - monographs on the evaluation of carcinogenic risks to humans. IARC, Lyon

    Google Scholar 

  • Ivar do Sul JA, Costa MF (2014) The present and future of microplastic pollution in the marine environment. Environ Pollut 185:352–364. https://doi.org/10.1016/j.envpol.2013.10.036

    Article  CAS  PubMed  Google Scholar 

  • Jardim WF, Montagner CC, Pescara IC et al (2012) An integrated approach to evaluate emerging contaminants in drinking water. Sep Purif Technol 84:3–8. https://doi.org/10.1016/j.seppur.2011.06.020

    Article  CAS  Google Scholar 

  • Jeng WL, Wang J, Han BC (1996) Coprostanol distribution in marine sediments off southwestern Taiwan. Environ Pollut 94(1):47–52

    Article  CAS  PubMed  Google Scholar 

  • Jha DK, Devi Prashanthi M, Vidyalakshmi R et al (2015) Water quality assessment using water quality index and geographical information system methods in the coastal waters of Andaman Sea, India. Mar Pollut Bull 100:555–561. https://doi.org/10.1016/j.marpolbul.2015.08.032

    Article  CAS  PubMed  Google Scholar 

  • Jurzik L, Hamzaa IA, Puchertb W (2010) Chemical and microbiological parameters as possible indicators for human enteric viruses in surface water. Int J Hyg Environ Health 213:210–216

    Article  CAS  PubMed  Google Scholar 

  • Kacar A, Omuzbuken B (2017) Assessing the seawater quality of a coastal city using fecal indicators and environmental variables (eastern Aegean Sea). Mar Pollut Bull 123(1-2):400–403. https://doi.org/10.1016/j.marpolbul.2017.08.052

    Article  CAS  PubMed  Google Scholar 

  • Kachroud M, Trolard F, Kefi M et al (2019) Water quality indices: challenges and application limits in the literature. Water 11:1–26. https://doi.org/10.3390/w11020361

    Article  CAS  Google Scholar 

  • Kieling-Rubio MA, Benvenuti T, Costa GM et al (2015) Integrated environmental assessment of streams in the sinos river basin in the state of Rio Grande do Sul, Brazil. Braz J Bil 75:105–113

    Article  CAS  Google Scholar 

  • Krepsky N, Bispo MGS, Fontana LF (2019) Effects of aeration on the suspended matter from a tropical and eutrophic estuary. J Environ Sci 86:175–186

    Article  Google Scholar 

  • Krumperman PH (1983) Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol 46(1):165–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuśmierz M, Oleszczuk P, Kraska P (2016) Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil. Chemosphere 146:272–279. https://doi.org/10.1016/j.chemosphere.2015.12.010

    Article  CAS  PubMed  Google Scholar 

  • Le TX, Munekage Y (2014) Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Vietnam. Mar Pollut Bull 49:922–929

    Article  CAS  Google Scholar 

  • Leeming R, Ball A, Ashbolt N et al (1996) Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters. Water Res 30(12):2893–2900

    Article  CAS  Google Scholar 

  • Leeming R, Latham V, Rayner M et al (eds) (1997) Molecular markers in environmental geochemistry. American Chemical Society, Washington

    Google Scholar 

  • Leeming R, Bate N, Hewlett R et al (1998) Discriminating faecal pollution: a case study of stormwater entering Port Phillip Bay, Australia. Water Sci Technol 38(10):15–22

    Article  CAS  Google Scholar 

  • Li W, Hua T, Zhou Q et al (2011) Toxicity identification and high-efficiency treatment of aging chemical industrial wastewater from the Hangu Reservoir, China. J Environ Qual 40(6):1714–1721. https://doi.org/10.2134/jeq2010.0319

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Xian W (2018) Changjiang nutrient distribution and transportation and their impacts on the estuary. Cont Shelf Res 165:137–145

    Article  Google Scholar 

  • Lim FY, Ong SL, Hu J (2017) Recent advances in the use of chemical markers for tracing wastewater contamination in aquatic environment: a review. Water 9(143):1–26

    Google Scholar 

  • Liu J, Diao Z, Xu X et al (2019a) In situ arsenic speciation and release kinetics in coastal sediments: a case study in Daya Bay, South China Sea. Sci Total Environ 650:2221–2230

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Tang Z, Kong M et al (2019b) Tracing the potential pollution sources of the coastal water in Hong Kong with statistical models combining APCS-MLR. J Environ Manag 245:143–150. https://doi.org/10.1016/j.jenvman.2019.05.066

    Article  CAS  Google Scholar 

  • Lorenzo M, Campo J, Picó Y (2018) Analytical challenges to determine emerging persistent organic pollutants in aquatic ecosystems. TrAC Trends Anal Chem 103:137–155. https://doi.org/10.1016/j.trac.2018.04.003

    Article  CAS  Google Scholar 

  • Lou J, Zhang Q, Cao M et al (2019) Ecotoxicity and environmental fates of newly recognized contaminants-artificial sweeteners: a review. Sci Total Environ 653:149–1160

    Google Scholar 

  • Mackenzie AS, Brassel SC, Eglinton G et al (1982) Chemical fossils: the geological fate of steroids. Science 217(4559):491–503

    Article  CAS  PubMed  Google Scholar 

  • Marcirella R, Sisti S, Bernabòa I et al (2019) Lead toxicity in seawater teleosts: a morphofunctional and ultrastructural study on the gills of the Ornate wrasse (Thalassoma pavo L.). Aquat Toxicol 211:193–201

    Article  CAS  Google Scholar 

  • Marin CB et al (2016) An overview of potential health hazards in recreational water environments and monitoring programme in Porto Belo Bay, Brazil. In: Shukla P (ed) Frontier discoveries and innovations in interdisciplinary microbiology, 1st edn. Springer, New Delhi, pp 167–183. https://doi.org/10.1007/978-81-322-2610-9_10

    Chapter  Google Scholar 

  • Marin CB et al (2019) Marine debris and pollution indexes on the beaches of Santa Catarina State, Brazil. Reg Stud Mar Sci 31:1–10. https://doi.org/10.1016/j.rsma.2019.100771

    Article  Google Scholar 

  • Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157:2893–2902

    Article  CAS  PubMed  Google Scholar 

  • Martins CC, Aguiar SN, Wisnieski E et al (2014) Baseline concentrations of faecal sterols and assessment of sewage input into different inlets of Admiralty Bay, King George Island, Antarctica. Mar Pollut Bull 7(1-2):218–223

    Article  CAS  Google Scholar 

  • Mladenovic-Ranisavljevic II, Zerajic SA (2018) Comparison of different models of water quality index in the assessment of surface water quality. Int J Environ Sci Technol 15:665–674. https://doi.org/10.1007/s13762-017-1426-8

    Article  Google Scholar 

  • Molins-Delgado D, Távora J, Díaz-Cruz MS et al (2017) UV filters and benzotriazoles in urban aquatic ecosystems: The footprint of daily use products. Sci Total Environ 601:975–986

    Article  CAS  PubMed  Google Scholar 

  • Montes-Grajales D, Fennix-Agudelo M, Miranda-Castroa W (2017) Occurrence of personal care products as emerging chemicals of concern in water resources: a review. Sci Total Environ 595:601–614

    Article  CAS  PubMed  Google Scholar 

  • Moretto DL, Panta RE, Ben A et al (2012) Calibration of water quality index (WQI) based on Resolution no 357/2005 of the Environment National Council (CONAMA). Acta Bras Limnol 24(1):29–42. https://doi.org/10.1590/S2179-975X2012005000024

    Article  Google Scholar 

  • Munguia-Lopez EM, Gerardo-Lugo S, Peralta E et al (2005) Migration of bisphenol A (BPA) from can coatings into a fatty-food simulant and tuna fish. Food Addit Contam 22:892–898

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa K, Amano H, Berndtssonc R et al (2019) Use of sterols to monitor surface water quality change and nitrate pollution source. Ecol Indic 107:1–9

    Article  CAS  Google Scholar 

  • Niemuth NJ, Klaper RD (2015) Emerging wastewater contaminant metformin causes intersex and reduced fecundity in fish. Chemosphere 135:38–45

    Article  CAS  PubMed  Google Scholar 

  • Noori R, Berndtsson R, Hosseinzadeh M et al (2019) A critical review on the application of the National Sanitation Foundation Water Quality Index. Environ Pollut 244:575–587. https://doi.org/10.1016/j.envpol.2018.10.076

    Article  CAS  PubMed  Google Scholar 

  • Nour HE et al (2019) Contamination and ecological risk assessment of heavy metals pollution from the Shalateen coastal sediments, Red Sea, Egypt. Mar Pollut Bull 144:167–172. https://doi.org/10.1016/j.marpolbul.2019.04.056

    Article  CAS  PubMed  Google Scholar 

  • O’Boyle S, Mcdermontt G, Wilkes R (2009) Dissolved oxygen levels in estuarine and coastal waters around Ireland. Mar Pollut Bull 58:1657–1663

    Article  CAS  PubMed  Google Scholar 

  • Obade VDP, Moore R (2018) Synthesizing water quality indicators from standardized geospatial information to remedy water security challenges: a review. Environ Int 119:220–231. https://doi.org/10.1016/j.envint.2018.06.026

    Article  CAS  Google Scholar 

  • Oehlmann J, Schulte-Oehlmann U, Kloas W, Jagnystch O, Lutz I, Kusk KO, Wollenberg L, Santos EM, Paull GC, Look KJWV, Tyler CR (2009) A critical analysis of the biological impacts of plasticizers on wildlife. Philos Trans R Soc B 364:2047–2062

    Article  CAS  Google Scholar 

  • Oliveira AJFC, Pinhata JMW (2008) Antimicrobial resistance and species composition of Enterococcus spp. isolated from waters and sands of marine recreational beaches in Southeastern Brazil. Water Res 42:2242–2250

    Article  CAS  PubMed  Google Scholar 

  • Pang Q, Li Y, Meng L, Li G et al (2019) Neurotoxicity of BPA, BPS, and BPB for the hippocampal cell line (HT-22): An implication for the replacement of BPA in plastics. Chemosphere 226:545–552

    Article  CAS  PubMed  Google Scholar 

  • Peña-Guzmán C et al (2019) Emerging pollutants in the urban water cycle in Latin America: a review of the current literature. J Environ Manag 237:408–423. https://doi.org/10.1016/j.jenvman.2019.02.100

    Article  CAS  Google Scholar 

  • Peng X, Zhang G, Mai B et al (2005) Tracing anthropogenic contamination in the Pearl River estuarine and marine environment of South China Sea using sterols and other organic molecular markers. Mar Pollut Bull 50(8):856–865

    Article  CAS  PubMed  Google Scholar 

  • Perron MM, Ho KT, Cantwell MG et al (2012) Effects of triclosan on marine benthic and epibenthic organisms. Environ Toxicol 31(8):1861–1866

    Article  CAS  Google Scholar 

  • Philippi A Jr (2010) Saneamento, saúde e ambiente: fundamentos para um desenvolvimento sustentável. Coleção ambiental 2. Manole, Barueri

    Google Scholar 

  • Pietrogrande C, Basaglia G (2007) GC-MS analytical methods for thedetermination of personal-careproducts in water matrices. Trends Anal Chem 26(11):1086–1094

    Article  CAS  Google Scholar 

  • Quérméneur M, Marty Y (1994) Fatty acids and sterols in domestic wastewaters. Water Res 28(5):1217–1226

    Article  Google Scholar 

  • Qui W, Liu S, Yang F et al (2019) Metabolism disruption analysis of zebrafish larvae in response to BPA and BPA analogs based on RNA-Seq technique. Ecotoxicol Environ Saf 174:181–188

    Article  CAS  Google Scholar 

  • Raper E et al (2018) Industrial wastewater treatment through bioaugmentation. Process Saf Environ Prot 118:178–187. https://doi.org/10.1016/j.psep.2018.06.035

    Article  CAS  Google Scholar 

  • Ravva SV, Sarreal CZ (2016) Persistence of F-specific RNA coliphages in surface waters from a produce production region along the central coast of California. PLoS ONE 11(1):1–13. https://doi.org/10.1371/journal.pone.0146623

    Article  CAS  Google Scholar 

  • Ribeiro H, Ramos S, Homem V et al (2017) Can coastline plant species be used as biosamplers of emerging contaminants? — UV-filters and synthetic musks as case studies. Chemosphere 184:1134–1140. https://doi.org/10.1016/j.chemosphere.2017.06.084

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues C, Cunha MA (2017) Assessment of the microbiological quality of recreational waters: indicators and methods. Euro Mediterr J Environ Integr 2(25):2–18

    Google Scholar 

  • Rodríguez-Gil JL, Cáceres N, Dafouz R et al (2018) Caffeine and paraxanthine in aquatic systems: Global exposure distributions and probabilistic risk assessment. Sci Total Environ 612:1058–1071

    Article  CAS  PubMed  Google Scholar 

  • Saeed T, Al-Shimmari F, Al-Mutairi A et al (2015) Spatial assessment of the sewage contamination of Kuwait’s marine areas. Mar Pollut Bull 94(1-2):307–317

    Article  CAS  PubMed  Google Scholar 

  • Saley AM et al (2019) Microplastic accumulation and biomagnification in a coastal marine reserve situated in a sparsely populated area. Mar Pollut Bull 146:54–59. https://doi.org/10.1016/j.marpolbul.2019.05.065

    Article  CAS  PubMed  Google Scholar 

  • Samsudin MS et al (2019) Comparison of prediction model using spatial discriminant analysis for marine water quality index in mangrove estuarine zones. Mar Pollut Bull 141:472–481. https://doi.org/10.1016/j.marpolbul.2019.02.045

    Article  CAS  PubMed  Google Scholar 

  • Sánchez E et al (2007) Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecol Indic 7(2):315–328. https://doi.org/10.1016/j.ecolind.2006.02.005

    Article  Google Scholar 

  • Sanganyado E, Rajput IR, Liu W (2018) Bioaccumulation of organic pollutants in Indo-Pacific humpback dolphin: a review on current knowledge and future prospects. Environ Pollut 237:111–125. https://doi.org/10.1016/j.envpol.2018.01.055

    Article  CAS  PubMed  Google Scholar 

  • Saucedo-Vence K, Elizalde-Velázquez A, Dublán-García O et al (2017) Toxicological hazard induced by sucralose to environmentally relevant concentrations in common carp (Cyprinus carpio). Sci Total Environ 575:347–357

    Article  CAS  PubMed  Google Scholar 

  • Sauvé S, Desrosiers MA (2014) Review of what is an emerging contaminant. Chem Cent J 8(15):1–7

    Google Scholar 

  • Scott TM, Rose JB, Jenkins TM et al (2002) Microbial source tracking: current methodology and future directions. Appl Environ Microbiol 68(12):5796–5803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma BM, Becanová J, Scheringer M et al (2019) Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Sci Total Environ 646:1459–1467

    Article  CAS  PubMed  Google Scholar 

  • Silva CP, Lima DLD, Schneider RJ et al (2014) Evaluation of the anthropogenic input of caffeine in surface waters of the north and center of Portugal by ELISA. Sci Total Environ 479:227–232

    Article  CAS  PubMed  Google Scholar 

  • Singh RL, Mondal S (2019) Food safety and human health. Academic, Cambridge

    Google Scholar 

  • Soumaila KI, Mohamed C, Mustapha N (2019) Water quality assessment using a new proposed water quality index: a case study from Morocco. Int J Environ Agric Biotechnol 4(4):957–972. https://doi.org/10.22161/ijeab.4411

    Article  Google Scholar 

  • Sun W, Xia C, Xu M et al (2016) Application of modified water quality indices as indicators to assess the spatial and temporal trends of water quality in the Dongjiang River. Ecol Indic 66:306–312. https://doi.org/10.1016/j.ecolind.2016.01.054

    Article  CAS  Google Scholar 

  • Tian Y, Jiang Y, Liu Q et al (2019) Using a water quality index to assess the water quality of the upper and middle streams of the Luanhe River, northern China. Sci Total Environ 667:142–151. https://doi.org/10.1016/j.scitotenv.2019.02.356

    Article  CAS  PubMed  Google Scholar 

  • Titilawo Y, Sibanda T, Obi L et al (2015) Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of faecal contamination of water. Environ Sci Pollut Res 22:10969–10980

    Article  CAS  Google Scholar 

  • Tollefsen KE, Nizzetto L, Hugget DB (2012) Presence, fate and effects of the intense sweetener sucralose in the aquatic environment. Sci Total Environ 438:510–516

    Article  CAS  PubMed  Google Scholar 

  • Tomas D, Mirjana Č, Senta A (2017) Assessing the surface water status in Pannonian ecoregion by the water quality index model. Ecol Indic 79:182–190. https://doi.org/10.1016/j.ecolind.2017.04.033

    Article  CAS  Google Scholar 

  • Tong Y, Chen L, Wang Y et al (2019) Distribution, sources and ecological risk assessment of PAHs in surface seawater from coastal Bohai Bay, China. Mar Pollut Bull 142:520–524

    Article  CAS  PubMed  Google Scholar 

  • Tosic M, Martins F, Lonin S et al (2019) A practical method for setting coastal water quality targets : Harmonization of land-based discharge limits with marine ecosystem thresholds. Mar Policy 108:1–11. https://doi.org/10.1016/j.marpol.2019.103641

    Article  Google Scholar 

  • Tripathi M (2019) Use of principal component analysis for parameter selection for development of a novel water quality index: a case study of river Ganga. Ecol Indic 96:430–436. https://doi.org/10.1016/j.ecolind.2018.09.025

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (2002) Guidance on cumulative risk assessment of pesticide chemicals that have a common mechanism of toxicity. Office of Pesticide Programs, Office of Prevention, Pesticides and Toxic Substances, Washington, DC, 90 p

    Google Scholar 

  • Vajda AM, Barber LB, Gray JL et al (2008) Reproductive disruption in fish downstream from an estrogenic wastewater effluent. Environ Sci Technol 42:3407–3414

    Article  CAS  PubMed  Google Scholar 

  • Valcárcel Y, González SA, Rodríguez-Gil JL et al (2011) Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid region (Spain) and potential ecotoxicological risk. Chemosphere 84:1336–1348

    Article  CAS  PubMed  Google Scholar 

  • Vandenberg LN, Hauser R, Marcus M et al (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24:139–177

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos FP, Coriolano LNMT (2008) Socioenvironmental impacts in coastal environments: focus on tourism and integrated coastal zone management in Ceará State/Brazil. Rev Gestão Costeira Integr 8(2):259–275

    Article  Google Scholar 

  • Vasconcelos RP, Reis-Santos P, Costa MJ et al (2011) Connectivity between estuaries and marine environment: Integrating metrics to assess estuarine nursery function. Ecol Indic 11(5):1123–1133

    Article  Google Scholar 

  • Volkman JK (1986) A review of sterol markers for marine and terrigenous organic-matter. Org Geochem 9:83–99

    Article  CAS  Google Scholar 

  • Wayland D, Megson DP, Mudge SM et al (2007) Identifying the source of nutrient contamination in a lagoon system. Environ Forensic 9(2-3):231–239

    Article  CAS  Google Scholar 

  • Weisbrod CJ, Kunz PY, Zenker AK et al (2007) Effects of the UV filter benzophenone-2 on reproduction in fish. Toxicol Appl Pharmacol 225:255–266

    Article  CAS  PubMed  Google Scholar 

  • WHO (2003) Guidelines for safe recreational water environments: coastal and fresh waters, vol 1. WHO, Geneva

    Google Scholar 

  • WHO (2012) Animal waste, water quality and human health, 1st edn. IWA Publishing, London

    Google Scholar 

  • Wiklund AKE, Breitholtz M, Bengtsson B et al (2012) Sucralose – an ecotoxicological challenger? Chemosphere 86(1):50–55

    Article  CAS  PubMed  Google Scholar 

  • Woodling JD, Lopez EM, Maldonado TA (2006) Intersex and other reproductive disruption of fish in wastewater effluent dominated Colorado streams. Comparat Biochem Physiol Pt C 144:10–15

    Google Scholar 

  • Writer JH, Leenheer JA, Barber LB et al (1995) Sewage contamination in the upper Mississippi River as measured by the fecal sterol, coprostanol. Water Resour 24(6):1427–1436

    Google Scholar 

  • Wu Z et al (2018) Assessing river water quality using water quality index in Lake Taihu Basin, China. Sci Total Environ 612:914–922. https://doi.org/10.1016/j.scitotenv.2017.08.293

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Liu J, Wang Q et al (2019) Geochemical and probabilistic human health risk of chromium in mangrove sediments: a case study in Fujian, China. Chemosphere 233:503–511

    Article  CAS  PubMed  Google Scholar 

  • Yazdi MN, Sample DJ, Scott D et al (2019) Water quality characterization of storm and irrigation runoff from a container nursery. Sci Total Environ 667:166–178

    Article  CAS  PubMed  Google Scholar 

  • Yukie M, Isobe T, Takada H et al (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35:318–324. https://doi.org/10.1021/es0010498

    Article  CAS  Google Scholar 

  • Zhang H, Reynolds M (2019) Cadmium exposure in living organisms: a short review. Sci Total Environ 678:761–767

    Article  CAS  PubMed  Google Scholar 

  • Zheng Q, Klemas VV (2018) Coastal ocean environment. Compr Remote Sens 8:89–12. https://doi.org/10.1016/b978-0-12-409548-9.10518-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marin, C.B., Kuroshima, K.N., Santos, A.P.S., da Silva, M.A.C. (2020). Evaluation Techniques of the Chemical and Microbiological Water Quality in the Coastal Environment. In: Shukla, P. (eds) Microbial Enzymes and Biotechniques. Springer, Singapore. https://doi.org/10.1007/978-981-15-6895-4_11

Download citation

Publish with us

Policies and ethics