Skip to main content

Molecular Mechanism of Lynch Syndrome

  • Chapter
  • First Online:
Lynch Syndrome
  • 578 Accesses

Abstract

Lynch syndrome is a cancer-predisposing syndrome inherited in an autosomal dominant manner, wherein colon cancer and endometrial cancer develop frequently in the family, it results from a loss of function of one of four different protein (MLH1, MSH2, MSH6, and PMS2), which are the products of mismatch repair genes. An abnormal EPCAM gene at the position adjacent to the MSH2 gene also inhibits MSH2 expression and causes Lynch syndrome.

Mismatch repair proteins are involved in repairing of incorrect pairing, including point mutations and deletion/insertion of simple repetitive sequences, so-called microsatellites, that can arise during DNA replication. MSH2 forms heterodimers with MSH6 or MSH3 (MutSĪ±, MutSĪ², respectively) and is involved in mismatch-pair recognition and initiation of repair. MLH1 forms a complex with PMS2 and functions as an endonuclease. If the mismatch repair system is thoroughly working, genome integrity is maintained at a high level. Lynch syndrome is a state of mismatch repair deficiency (MMRd) due to a monoallelic abnormality of the mismatch repair genes. The phenotype indicating the mismatch repair deficiency can be frequently observed as a microsatellite instability (MSI) in tumors.

Generally, Lynch syndrome develops in adulthood, but MMR gene abnormalities are observed in children with different genotypes and phenotypes. Children with germline biallelic mismatch repair gene abnormalities were reported to develop conditions such as gastrointestinal polyposis, colorectal cancer, brain cancer, leukemia, and so on. This condition is called constitutional mismatch repair deficiency (CMMRD).

In addition, for promoting cancer genome medicine in a new era, such as by utilizing immune checkpoints, it is important to understand the genetic and genomic molecular background, including the status of mismatch repair deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMMR-D:

Constitutional mismatch repair deficiency

CNS:

Central nervous system

CTE:

Congenital tufting enteropathy

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

IHC:

Immunohistochemical staining

ISI:

Immune checkpoint inhibitor

MLPA:

Multiple ligation-dependent probe amplification

MMR:

Mismatch repair

MSI:

Microsatellite instability

PCNA:

Proliferating cellular nuclear antigen

PD-1:

Programmed cell death protein 1

RFC:

Replication factor

TMB:

Tumor mutational burden

References

  1. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525ā€“32.

    CASĀ  PubMedĀ  Google ScholarĀ 

  2. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759ā€“67.

    CASĀ  PubMedĀ  Google ScholarĀ 

  3. Bodmer W, Bishop T, Karran P. Genetic steps in colorectal cancer. Nat Genet. 1994;6:217ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  4. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159ā€“70.

    CASĀ  PubMedĀ  Google ScholarĀ 

  5. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646ā€“74.

    CASĀ  PubMedĀ  Google ScholarĀ 

  6. Tamura K, Utsunomiya J, Iwama T, et al. Mechanism of carcinogenesis in familial tumors. Int J Clin Oncol. 2004;9:232ā€“45.

    PubMedĀ  Google ScholarĀ 

  7. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348:919ā€“32.

    CASĀ  PubMedĀ  Google ScholarĀ 

  8. Tamura K, Kaneda M, Futagawa M, et al. Genetic and genomic basis of the mismatch repair system involved in Lynch syndrome. Int J Clin Oncol. 2019;24:999ā€“1011.

    PubMedĀ  Google ScholarĀ 

  9. Holliday R. A mechanism for gene conversion in fungi. Genet Res. 1964;5:282ā€“304.

    Google ScholarĀ 

  10. Modrich P. Mechanisms in E. coli and mismatch repair. Angew Chem Int Ed Engl. 2016;55:8490ā€“501.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Nevers P, Spats HC. Escherichia coli mutants uvr D and uvr E deficient in gene conversion of lambda-heteroduplexes. Mol Gen Genet. 1975;139:233ā€“43.

    CASĀ  PubMedĀ  Google ScholarĀ 

  12. Rydberg B. Bromouracil mutagenesis and mismatch repair in mutator strains of Esherichia coli. Mutat Res. 1978;52:11ā€“24.

    CASĀ  PubMedĀ  Google ScholarĀ 

  13. Glickman BW, Radman M. Esherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc Natl Acad Sci U S A. 1980;77:1063ā€“7.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Lauhe RS, Su SS, Morich P. Requirement for d(GATC) sequences in Esherichia coli mutHLS mismatch correction. Proc Natl Acad Sci U S A. 1987;84:1482ā€“6.

    Google ScholarĀ 

  15. Su SS, Morrich P. Esherichia coli mutS-encoded protein binds to mismatched DNA base pairs. Proc Natl Acad Sci USA. 1986;83:5057ā€“61.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Meselson M. Methyl-directed repair of DNA mismatches. In: Low KB, editor. Recombination of the genetic material. San Diego, CA: Academic Press; 1988. p. 91ā€“113.

    Google ScholarĀ 

  17. Modrich P. Methyl-directed DNA mismatch correction. J Biol Chem. 1989;264:6597ā€“600.

    CASĀ  PubMedĀ  Google ScholarĀ 

  18. Grilley M, Holmes J, Yashar B, et al. Mechanisms of DNA-mismatch correction. Mutat Res. 1990;236:253ā€“67.

    CASĀ  PubMedĀ  Google ScholarĀ 

  19. Modrich P. Mechanisms and biological effects of mismatch repair. Annu Rev Genet. 1991;25:229ā€“53.

    CASĀ  PubMedĀ  Google ScholarĀ 

  20. Ligtenberg MJL, Kuiper RP, Chan TL, et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3-prime exons of TACSTD1. Nat Genet. 2009;41:112ā€“7.

    CASĀ  PubMedĀ  Google ScholarĀ 

  21. Fishel R, Lescoe MK, Rao MRS, et al. The human mutator gene homolog MSH2 and its association. Cell. 1993;75:1027ā€“38.

    CASĀ  PubMedĀ  Google ScholarĀ 

  22. Leach FS, Nicolaides NC, Papadopoulos N, et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 1993;75:1215ā€“25.

    CASĀ  PubMedĀ  Google ScholarĀ 

  23. Kolodner RD, Hall NR, Lipford J, et al. Structure of the human MSH2 locus and analysis of two Muir-Torre kindreds for msh2 mutations. Genomics. 1994;24:516ā€“26.

    CASĀ  PubMedĀ  Google ScholarĀ 

  24. Fishel R, Ewel A, Lee S, et al. Binding of mismatched microsatellite DNA sequences by the human MSH2 protein. Science. 1993;266:1403ā€“5.

    Google ScholarĀ 

  25. Papadopoulos N, Nicolaides NC, Wei Y-F, et al. Mutation of a mutL homolog in hereditary colon cancer. Science. 1994;263:1625ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  26. Bronner CE, Baker SM, Morrison PT, et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature. 1994;368:258ā€“61.

    CASĀ  PubMedĀ  Google ScholarĀ 

  27. Han H-J, Maruyama M, Baba S, et al. Genomic structure of human mismatch repair gene, hMLH1, and its mutation analysis in patients with hereditary non-polyposis colorectal cancer (HNPCC). Hum Mol Genet. 1995;4:237ā€“42.

    CASĀ  PubMedĀ  Google ScholarĀ 

  28. Drummond JT, Li G-M, Longley MJ, et al. Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumor cells. Science. 1995;268:1909ā€“12.

    CASĀ  PubMedĀ  Google ScholarĀ 

  29. Palombo F, Gallinari P, Iaccarino I, et al. GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science. 1995;268:1912ā€“4.

    CASĀ  PubMedĀ  Google ScholarĀ 

  30. Miyaki M, Konishi M, Tanaka K, et al. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet. 1997;17:271ā€“2.

    CASĀ  PubMedĀ  Google ScholarĀ 

  31. Akiyama Y, Sato H, Yamada T, et al. Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res. 1997;57:3920ā€“3.

    CASĀ  PubMedĀ  Google ScholarĀ 

  32. Nicolaides NC, Papadopoulos N, Liu B, et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature. 1994;371:75ā€“80.

    CASĀ  PubMedĀ  Google ScholarĀ 

  33. De Vos M, Hayward BE, Picton S, et al. Novel PMS2 pseudogenes can conceal recessive mutations causing a distinctive childhood cancer syndrome. Am J Hum Genet. 2004;74:954ā€“64.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Ban C, Juno M, Yang W. Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell. 1999;97:85ā€“97.

    CASĀ  PubMedĀ  Google ScholarĀ 

  35. Tran PT, Liskay RM. Functional studies on the candidate ATPase domains of Saccharomyces cerevisiae MutLalpha. Mol Cell Biol. 2000;20:6390ā€“8.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. RƤschle M, Dufner P, Marra G, et al. Mutations within the hMLH1 and hPMS2 subunits of the human MutLalpha mismatch repair factor affect its ATPase activity, but not its ability to interact with hMutSalpha. J Biol Chem. 2002;277:21810ā€“20.

    PubMedĀ  Google ScholarĀ 

  37. Guerrette S, Acharya S, Fishel R. The interaction of the human MutL homologues in hereditary nonpolyposis colon cancer. J Biol Chem. 1999;274:6336ā€“41.

    CASĀ  PubMedĀ  Google ScholarĀ 

  38. Kondo E, Horii A, Fukushige S. The interaction domains of three MutL heterodimers in man: hMLH1 interacts with 36 homologous amino acid residues within hMLH3, hPMS1 and hPMS2. Nucleic Acids Res. 2001;29:1695ā€“708.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Reenan RA, Kolodner RD. Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. Genetics. 1992;132:963ā€“73.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Li GM, Modrich P. Restoration of mismatch repair to nuclear extracts of H6 colorectal tumor cells by a heterodimer of human MutL homologs. Proc Natl Acad Sci U S A. 1995;92:1950ā€“4.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Johnson RE, Kovvali GK, Guzder SN, et al. Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair. J Biol Chem. 1996;271:27987ā€“90.

    CASĀ  PubMedĀ  Google ScholarĀ 

  42. Umar A, Buermeyer AB, Simon JA, et al. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell. 1996;87:65ā€“73.

    CASĀ  PubMedĀ  Google ScholarĀ 

  43. Tishkoff DX, Boerger AL, Bertrand P, et al. Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. Proc Natl Acad Sci U S A. 1997;94:7487ā€“92.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Longley MJ, Pierce AJ, Modrich P. DNA polymerase delta is required for human mismatch repair in vitro. J Biol Chem. 1997;272:10917ā€“21.

    CASĀ  PubMedĀ  Google ScholarĀ 

  45. Schmutte C, Marinescu RC, Sadoff MM, et al. Human exonuclease I interacts with the mismatch repair protein hMSH2. Cancer Res. 1998;58:4537ā€“42.

    CASĀ  PubMedĀ  Google ScholarĀ 

  46. Tishkoff DX, Amin NS, Viars CS, et al. Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination. Cancer Res. 1998;58:5027ā€“31.

    CASĀ  PubMedĀ  Google ScholarĀ 

  47. Lin YL, Shivji MK, Chen C, et al. The evolutionarily conserved zinc finger motif in the largest subunit of human replication protein A is required for DNA replication and mismatch repair but not for nucleotide excision repair. J Biol Chem. 1998;273:1453ā€“61.

    CASĀ  PubMedĀ  Google ScholarĀ 

  48. Gu L, Hong Y, McCulloch S, et al. ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair. Nucleic Acids Res. 1998;26:1173ā€“8.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Zhang Y, Yuan F, Presnell SR, et al. Reconstitution of 5ā€²-directed human mismatch repair in a purified system. Cell. 2005;122:693ā€“705.

    CASĀ  PubMedĀ  Google ScholarĀ 

  50. Genschel J, Littman SJ, Drummond JT, et al. Isolation of MutSbeta from human cells and comparison of the mismatch repair specificities of MutSbeta and MutSalpha. J Biol Chem. 1998;273(31):19895ā€“901.

    CASĀ  PubMedĀ  Google ScholarĀ 

  51. Iyer RR, Pluciennik A, Genschel J, et al. MutLalpha and proliferating cell nuclear antigen share binding sites on MutSbeta. J Biol Chem. 2010;285(15):11730ā€“9.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  52. Plotz G, Raedle J, Brieger A, et al. N-terminus of hMLH1 confers interaction of hMutLalpha and hMutLbeta with hMutSalpha. Nucleic Acids Res. 2003;31(12):3217ā€“26.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  53. Dahal BK, Kadyrova LY, Delfino KR, et al. Involvement of DNA mismatch repair in the maintenance of heterochromatic DNA stability in Saccharomyces cerevisiae. PLoS Genet. 2017;13(10):e1007074.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Villahermosa D, Christensen O, Knapp K, et al. Schizosaccharomyces pombe MutSĪ± and MutLĪ± maintain stability of tetra-nucleotide repeats and Msh3 of hepta-nucleotide repeats. G3 (Bethesda). 2017;7(5):1463ā€“73.

    CASĀ  Google ScholarĀ 

  55. Prolla TA, Baker SM, Harris AC, et al. Tumour susceptibility and spontaneous mutation in mice deficient in Mlh1, Pms1 and Pms2 DNA mismatch repair. Nat Genet. 1998;18(3):276ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  56. JƤger AC, Rasmussen M, Bisgaard HC, et al. HNPCC mutations in the human DNA mismatch repair gene hMLH1 influence assembly of hMutLalpha and hMLH1-hEXO1 complexes. Oncogene. 2001;20(27):3590ā€“5.

    PubMedĀ  Google ScholarĀ 

  57. Cannavo E, Marra G, Sabates-Bellver J, et al. Expression of the MutL homologue hMLH3 in human cells and its role in DNA mismatch repair. Cancer Res. 2005;65(23):10759ā€“66.

    CASĀ  PubMedĀ  Google ScholarĀ 

  58. Kadyrov FA, Dzantiev L, Constantin N, et al. Endonucleolytic function of MutLalpha in human mismatch repair. Cell. 2006;126(2):297ā€“308.

    CASĀ  PubMedĀ  Google ScholarĀ 

  59. Peng M, Litman R, Xie J, Sharma S, Brosh RM Jr, Cantor SB. The FANCJ/MutLalpha interaction is required for correction of the cross-link response in FA-J cells. EMBO J. 2007;26(13):3238ā€“49.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  60. Pluciennik A, Dzantiev L, Iyer RR, et al. PCNA function in the activation and strand direction of MutLĪ± endonuclease in mismatch repair. Proc Natl Acad Sci U S A. 2010;107(37):16066ā€“71.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  61. Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem. 2005;74:681ā€“710.

    CASĀ  PubMedĀ  Google ScholarĀ 

  62. Li GM. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008;18(1):85ā€“98.

    CASĀ  PubMedĀ  Google ScholarĀ 

  63. Kunkel TA, Erie DA. Eukaryotic mismatch repair in relation to DNA replication. Annu Rev Genet. 2015;49:291ā€“313.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  64. Marti TM, Kunz C, Fleck O. DNA mismatch repair and mutation avoidance pathways. J Cell Physiol. 2002;191(1):28ā€“41.

    CASĀ  PubMedĀ  Google ScholarĀ 

  65. Friedberg EC. DNA damage and repair. Nature. 2003;421(6921):436ā€“40.

    PubMedĀ  Google ScholarĀ 

  66. Martin SA, Lord CJ, Ashworth A. Therapeutic targeting of the DNA mismatch repair pathway. Clin Cancer Res. 2010;16(21):5107ā€“13.

    CASĀ  PubMedĀ  Google ScholarĀ 

  67. Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138(6):2073ā€“87.

    CASĀ  PubMedĀ  Google ScholarĀ 

  68. Fishel R. Mismatch repair. J Biol Chem. 2015;290(44):26395ā€“403.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  69. Groothuizen FS, Sixma TK. The conserved molecular machinery in DNA mismatch repair enzyme structures. DNA Repair (Amst). 2016;38:14ā€“23.

    CASĀ  Google ScholarĀ 

  70. Hingorani MM. Mismatch binding, ADP-ATP exchange and intramolecular signaling during mismatch repair. DNA Repair (Amst). 2016;38:24ā€“31.

    CASĀ  Google ScholarĀ 

  71. Kadyrova LY, Kadyrov FA. Endonuclease activities of MutLĪ± and its homologs in DNA mismatch repair. DNA Repair (Amst). 2016;38:42ā€“9.

    CASĀ  Google ScholarĀ 

  72. PeltomƤki P. update on Lynch syndrome genomics. Familial Cancer. 2016;15:385ā€“93.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  73. Liu D, Keijzers G, Rasmussen LJ. DNA mismatch repair and its many roles in eukaryotic cells. Mutat Res. 2017;773:174ā€“87.

    CASĀ  Google ScholarĀ 

  74. Lee JB, Cho WK, Park J, et al. Single-molecule views of MutS on mismatched DNA. DNA Repair (Amst). 2014;20:82ā€“93.

    CASĀ  Google ScholarĀ 

  75. Plotz G, Raedle J, Brieger A, et al. hMutSalpha forms an ATP-dependent complex with hMutLalpha and hMutLbeta on DNA. Nucleic Acids Res. 2002;30(3):711ā€“8.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  76. Plotz G, Piiper A, Wormek M, et al. Analysis of the human MutLalpha.MutSalpha complex. Biochem Biophys Res Commun. 2006;340(3):852ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  77. Friedhoff P, Li P, Gotthardt J. Protein-protein interactions in DNA mismatch repair. DNA Repair (Amst). 2016;38:50ā€“7.

    CASĀ  Google ScholarĀ 

  78. Jeon Y, Kim D, Martin-Lopez JV, et al. Dynamic control of strand excision during human DNA mismatch repair. Proc Natl Acad Sci U S A. 2016;113(12):3281ā€“6.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  79. Fishel R. Mismatch repair, molecular switches, and signal transduction. Genes Dev. 1998;12(14):2096ā€“101.

    CASĀ  PubMedĀ  Google ScholarĀ 

  80. Ban C, Junop M, Yang W. Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell. 1999;97(1):85ā€“97.

    CASĀ  PubMedĀ  Google ScholarĀ 

  81. Spampinato C, Modrich P. The MutL ATPase is required for mismatch repair. J Biol Chem. 2000;275(13):9863ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  82. Lamers MH, Winterwerp HH, Sixma TK. The alternating ATPase domains of MutS control DNA mismatch repair. ENBO J. 2003;22(3):746ā€“56.

    CASĀ  Google ScholarĀ 

  83. Kolodner RD, Marsischky GT. Eukaryotic DNA mismatch repair. Curr Opin Genet Dev. 1999;9(1):89ā€“96.

    CASĀ  PubMedĀ  Google ScholarĀ 

  84. PeltomƤki P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum Mol Genet. 2001;10(7):735ā€“40.

    PubMedĀ  Google ScholarĀ 

  85. Bellacosa A. Functional interactions and signaling properties of mammalian DNA mismatch repair proteins. Cell Death Differ. 2001;8(11):1076ā€“92.

    CASĀ  PubMedĀ  Google ScholarĀ 

  86. Scmidt MHM, Pearson CE. Disease associated repeat instability and mismatch repair. DNA Repair (Amst). 2016;38:117ā€“26.

    Google ScholarĀ 

  87. Campregher C, Schmid G, Ferk F, et al. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells. PLoS One. 2012;7(11):e50541. https://doi.org/10.1371/journal.pone.0050541.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  88. Tseng-Rogenski SS, Chung H, Wilk M, et al. Oxidative stress induces nuclear-to-cytosol shift of hMSH3, a potential mechanism for EMAST in colorectal cancer cells. PLoS One. 2012;7(11):e50616. https://doi.org/10.1371/journal.pone.0050616.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  89. Watson MMC, Berg M, SĆøreide K. Prevalence and implications of elevated microsatellite alterations at selected tetranucleotides in cancer. Br J Cancer. 2014;111(5):823ā€“7.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  90. Carethers JM, Koi M, Tseng-Rogenski SS. EMAST is a form of microsatellite instability that is initiated by inflammation and modulates colorectal cancer progression. Genes (Basel). 2015;6(2):185ā€“205.

    CASĀ  PubMed CentralĀ  Google ScholarĀ 

  91. Venderbosch S, van Lent-van Vliet S, de Haan AF, et al. EMAST is associated with a poor prognosis in microsatellite instable metastatic colorectal cancer. PLoS One. 2015;10(4):e0124538. https://doi.org/10.1371/journal.pone.0124538.

  92. DollĆ© E, Theise ND, Schmelzer E, et al. EpCAM and the biology of hepatic stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol. 2015;308:G233ā€“50.

    PubMedĀ  Google ScholarĀ 

  93. Huang L, Yang Y, Yang F, et al. Functions of EpCAM in physiological processes and diseases. Int J Mol Med. 2018;42(4):1771ā€“85.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  94. Kovacs ME, Papp J, Szentirmay Z, et al. Deletions removing the last exon of TACSTD1 constitute a distinct class of mutations predisposing to Lynch syndrome. Hum Mutat. 2009;30(2):197ā€“203.

    CASĀ  PubMedĀ  Google ScholarĀ 

  95. Reifen RM, Cutz E, Griffiths AM, et al. Tufting enteropathy: a newly recognized clinicopathological entity associated with refractory diarrhea in infants. J Pediatr Gastroenterol Nutr. 1994;18(3):379ā€“85.

    CASĀ  PubMedĀ  Google ScholarĀ 

  96. Goulet O, Salomon J, Ruemmele F, et al. Intestinal epithelial dysplasia (tufting enteropathy). Orphanet J Rare Dis. 2007;2(1):20.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  97. Sivagnanam M, Mueller JL, Lee H, et al. Identification of EpCAM as the gene for congenital tufting enteropathy. Gastroenterology. 2008;135(2):429ā€“37.

    CASĀ  PubMedĀ  Google ScholarĀ 

  98. Pathak SJ, Mueller JL, Okamoto K, et al. EPCAM mutation update: variants associated with congenital tufting enteropathy and Lynch syndrome. Hum Mutat. 2019;40(2):142ā€“61.

    CASĀ  PubMedĀ  Google ScholarĀ 

  99. Wimmer K, Kratz CP, Vasen HFA, et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium ā€˜care for CMMRDā€™ (C4CMMRD). J Med Genet. 2014;51(6):355ā€“65.

    CASĀ  PubMedĀ  Google ScholarĀ 

  100. Ricciardone MD, OzƧelik T, Cevher B, et al. Human MLH1 deficiency predisposes to hematological malignancy and neurofibromatosis type 1. Cancer Res. 1999;59(2):290ā€“3.

    CASĀ  PubMedĀ  Google ScholarĀ 

  101. Wang Q, Lasset C, Desseigne F, et al. Neurofibromatosis and early onset of cancers in hMLH1-deficient children. Cancer Res. 1999;59(2):294ā€“7.

    CASĀ  PubMedĀ  Google ScholarĀ 

  102. Turcot J, Despres JP, St Pierre F, et al. Malignant tumors of the central nervous system associated with familial polyposis of the colon: report of two cases. Dis Colon Rectum. 1959;2:465ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  103. Hamilton SR, Liu B, Parsons RE, et al. The molecular basis of Turcotā€™s syndrome. N Engl J Med. 1995;332(13):839ā€“47.

    CASĀ  PubMedĀ  Google ScholarĀ 

  104. Lavoine N, Colas C, Muleris M, et al. Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort. J Med Genet. 2015;52(11):770ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  105. Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group. Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet Med. 2009;11(1):35ā€“41.

    Google ScholarĀ 

  106. Giardiello FM, Allen JI, Axilbund JE, et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multisociety Task Force on colorectal cancer. Am J Gastroenterol. 2014;109(8):1159ā€“79.

    PubMedĀ  Google ScholarĀ 

  107. Syngal S, Brand RE, Church JM, et al. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110(2):223ā€“62.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  108. Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248ā€“57.

    CASĀ  PubMedĀ  Google ScholarĀ 

  109. Ionov Y, Peinado MA, Malkhosyan S, et al. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363(6429):558ā€“61.

    CASĀ  PubMedĀ  Google ScholarĀ 

  110. PeltomƤki P, Aaltonen LA, Sistonen P, et al. Genetic mapping of a locus predisposing to human colorectal cancer. Nature. 1993;260:810ā€“2.

    Google ScholarĀ 

  111. Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Nature. 1993;260(5109):816ā€“9.

    CASĀ  Google ScholarĀ 

  112. Rodriguez-Bigas MA, Boland CR, Hamilton SR, et al. A National Cancer Institute Workshop on hereditary nonpolyposis colorectal cancer syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst. 1997;89(23):1758ā€“62.

    CASĀ  PubMedĀ  Google ScholarĀ 

  113. Leach FS, Polyak K, Burrell M, et al. Expression of the human mismatch repair gene hMSH2 in normal and neoplastic tissues. Cancer Res. 1996;56(2):235ā€“40.

    CASĀ  PubMedĀ  Google ScholarĀ 

  114. Thibodeau SN, French AJ, Roche PC, et al. Altered expression of hMSH2 and hMLH1 in tumors with microsatellite instability and genetic alterations in mismatch repair genes. Cancer Res. 1996;56(21):4836ā€“40.

    CASĀ  PubMedĀ  Google ScholarĀ 

  115. Hendriks Y, Franken P, Dierssen JW, et al. Conventional and tissue microarray immunohistochemical expression analysis of mismatch repair in hereditary colorectal tumors. Am J Pathol. 2003;162(2):469ā€“77.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  116. de Jong AE, van Puijenbroek M, Hendriks Y, et al. Microsatellite instability, immunohistochemistry, and additional PMS2 staining in suspected hereditary nonpolyposis colorectal cancer. Clin Cancer Res. 2004;10(39):972ā€“80.

    PubMedĀ  Google ScholarĀ 

  117. Lipkin SM, Wang V, Jacoby R, et al. MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat Genet. 2000;24(1):27ā€“35.

    CASĀ  PubMedĀ  Google ScholarĀ 

  118. Rigau V, Sebbagh N, Olschwang S, et al. Microsatellite instability in colorectal carcinoma. The comparison of immunohistochemistry and molecular biology suggests a role for hMSH6 [correction of hMLH6] immunostaining. Arch Pathol Lab Med. 2003;127(6):694ā€“700.

    CASĀ  PubMedĀ  Google ScholarĀ 

  119. Hampel H, Frankel WL, Martin E, et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med. 2005;352(18):1851ā€“60.

    CASĀ  PubMedĀ  Google ScholarĀ 

  120. Hendriks YMC, de Jong AE, Morreau H, et al. Diagnostic approach and management of Lynch syndrome (hereditary nonpolyposis colorectal carcinoma): a guide for clinicians. CA Cancer J Clin. 2006;56(4):213ā€“25.

    PubMedĀ  Google ScholarĀ 

  121. Snowsill T, Coelho H, Huxley N, et al. Molecular testing for Lynch syndrome in people with colorectal cancer: systematic reviews and economic evaluation. Health Technol Assess. 2017;21(51):1ā€“238.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  122. Jin M, Hampel H, Zhou X, et al. BRAF V600E mutation analysis simplifies the testing algorithm for Lynch Syndrome. Am J Clin Pathol. 2013;140(2):177ā€“83.

    CASĀ  PubMedĀ  Google ScholarĀ 

  123. Lagerstedt-Robinson K, Rohlin A, Aravidis C, et al. Mismatch repair gene mutation spectrum in the Swedish Lynch syndrome population. Oncol Rep. 2016;36(5):2823ā€“35.

    CASĀ  PubMedĀ  Google ScholarĀ 

  124. Lorans M, Dow E, Macrae FA, et al. Update on hereditary colorectal cancer: improving the clinical utility of multigene panel testing. Clin Colorectal Cancer. 2018;17(2):e293ā€“305. https://doi.org/10.1016/j.clcc.2018.01.001.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  125. Gallego CJ, Shirts BH, Bennette CS, et al. Next-generations sequencing panels for the diagnosis of colorectal cancer and polyposis syndromes: a cost-effectiveness analysis. J Clin Oncol. 2015;33(18):2084ā€“91.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  126. Espenschied CR, LaDuca H, Li S, et al. Multigene panel testing provides a new perspective on Lynch syndrome. J Clin Oncol. 2017;35(22):2568ā€“75.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  127. Yurgelun MB, Kulke MH, Fuchs CS, et al. Cancer susceptibility gene mutations in individuals with colorectal cancer. J Clin Oncol. 2017;35(10):1086ā€“95.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  128. Thompson BA, Spurdle AB, Plazzer JP, et al. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat Genet. 2014;46(12):107ā€“15.

    CASĀ  PubMedĀ  Google ScholarĀ 

  129. Roberts ME, Jackson SA, Susswein LR, et al. MSH6 and PMS2 germ-line pathogenic variants implicated in Lynch syndrome are associated with breast cancer. Genet Med. 2018;20(10):1167ā€“74.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  130. Plazzer JP, Sijmons RH, Woods MO, et al. The InSiGHT database: utilizing 100 years of insights into Lynch syndrome. Familial Cancer. 2013;12(2):175ā€“80.

    CASĀ  PubMedĀ  Google ScholarĀ 

  131. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734ā€“6.

    CASĀ  PubMedĀ  Google ScholarĀ 

  132. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887ā€“95.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  133. Tivol EA, Borriello F, Schweitzer AN, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3(5):541ā€“7.

    CASĀ  PubMedĀ  Google ScholarĀ 

  134. Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11(2):141ā€“51.

    CASĀ  PubMedĀ  Google ScholarĀ 

  135. Topalian SL, Hodi S, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443ā€“54.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  136. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509ā€“20.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  137. Yarchoan M, Hopkins A, Jaffee EM, et al. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 2018;377(25):2500ā€“1.

    Google ScholarĀ 

  138. Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189ā€“99.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  139. Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1blockade in non-small cell lung cancer. Science. 2015;348(6230):124ā€“8.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  140. Charmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):34. https://doi.org/10.1186/s13073-017-0424-2.

    ArticleĀ  CASĀ  Google ScholarĀ 

  141. Dudley JC, Lin MT, Le DT, et al. Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res. 2016;22(4):813ā€“20.

    CASĀ  PubMedĀ  Google ScholarĀ 

  142. Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409ā€“13.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Acknowledgments

This work was supported in part by a grant from the Japanese Ministry of Education, Science, Sports and Culture of Japan (19K07763).

Disclosure Statement of COI

The author declares no potential conflicts of interest.

ORCID: https://orcid.org/0000-0002-1087-9851

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Tamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tamura, K. (2020). Molecular Mechanism of Lynch Syndrome. In: Tomita, N. (eds) Lynch Syndrome. Springer, Singapore. https://doi.org/10.1007/978-981-15-6891-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6891-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6890-9

  • Online ISBN: 978-981-15-6891-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics