Skip to main content

Advent of Graphene Oxide and Carbon Nanotubes in Removal of Heavy Metals from Water: A Review

Part of the Lecture Notes in Civil Engineering book series (LNCE,volume 93)

Abstract

Heavy metals like lead, arsenic, cadmium, chromium and mercury are often found in freshwater sources, and their dissolution is due to many natural and artificial factors. These heavy metals are known to be bio-accumulants and non-biodegradable in nature and hence can cause a number of diseases in humans. Their removal has, hence, become an issue of prime concern in the field of water and wastewater engineering. Recent studies have shown the potential of carbon-based nanomaterials in uptake and removal of these metals by the process of adsorption. This study has focused on the two major carbon-based adsorbents, namely graphene oxide and carbon nanotubes. The major researches carried out with the help of these nanomaterials in removal of heavy metals have been highlighted in this literature along with their adsorption capacities. This paper will help the readers to select the appropriate nanomaterial for removal of the required heavy metal from water with respect to the ambient reaction parameters.

Keywords

  • Graphene Oxide
  • Carbon Nanotubes
  • Heavy Metals
  • Adsorption Capacity
  • pH

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cheraghi M, Lorestani B, Yousefi N (2009) Effect of waste water on heavy metal accumulation in Hamedan province vegetables. J Bot 5:190–193

    Google Scholar 

  2. Jiang T, Yan L, Zhang L (2015) Fabrication of a novel graphene oxide/b-FeOOH composite and its adsorption behavior for copper ions from aqueous solution. J Dalt Trans 44:10448–10456

    CrossRef  Google Scholar 

  3. González-Muñoz MJ, Rodríguez MA, Luque S, Álvarez JR (2006) Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration. J Desalination 200:742–744

    CrossRef  Google Scholar 

  4. Verbych S, Hilal N, Sorokin G, Leaper M (2004) Ion exchange extraction of heavy metal ions from wastewater. J Separat Sci Technol 39:2031–2040

    CrossRef  Google Scholar 

  5. Sudilovskiy PS, Kagramanov GG, Trushin AM, Kolesnikov VA (2007) Use of membranes for heavy metal cationic wastewater treatment: flotation and membrane filtration. J Clean Technol Environ. Policy 9:189–198

    CrossRef  Google Scholar 

  6. Liu L, Li C, Bao C (2012) Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 93:350–357

    CrossRef  Google Scholar 

  7. Erturk U, Yerlikaya C, Sivritepe N (2007) In vitrophytoextraction capacity of blackberry for copper and zinc. J Asian Chem 19:2161–2168

    Google Scholar 

  8. Khan NA, Hasan Z, Jhung SH (2013) Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J Hazard Mater 244–245:444–456

    CrossRef  Google Scholar 

  9. Iijima S (1991) Helical microtubules of graphitic carbon. J Nature 354:56–58

    CrossRef  Google Scholar 

  10. Popov VN (2004) Carbon nanotubes: properties and application. J Mater Sci Eng R 43:61–102

    Google Scholar 

  11. Endo M, Kroto HW (1992) Formation of carbon nanofibers. J Phys Chem 96:6941–6944

    CrossRef  Google Scholar 

  12. Iijima, S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    Google Scholar 

  13. Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363 (6430):605–607

    Google Scholar 

  14. Thostenson ET, Ren ZF, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. J Compos Sci Technol 61:1899–1912

    CrossRef  Google Scholar 

  15. Avouris P (2002) Molecular electronics with carbon nanotubes. J Acc Chem Res 35:1026–1034

    CrossRef  Google Scholar 

  16. Dai H (2001) Nanotube growth and characterization. J Carbon Nanotubes. Springer, Berlin, Germany

    Google Scholar 

  17. Kong J, Soh HT, Cassell, AM, Quate CF, Dai H (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705):878–881

    Google Scholar 

  18. Fan S (1999) Self-Oriented regular arrays of carbon nanotubes and their field emission properties. Sci 283(5401):512–514

    Google Scholar 

  19. Agnihotri S, Mota JPB, Rostam-Abadi M, Rood MJ (2006) Theoretical and experimental investigation of morphology and temperature effects on adsorption of organic vapors in single-walled carbon nanotubes. J Phys Chem B 110:7640–7647

    CrossRef  Google Scholar 

  20. Agnihotri S, Mota JPB, Rostam-Abadi M, Rood MJ (2005) Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation. J Lang 21:896–904

    CrossRef  Google Scholar 

  21. Gatica SM, Bojan MJ, Stan G, Cole MW (2001) Quasi-one-dimensional and two-dimensional transitions of gases adsorbed on nanotube bundles. J Chem Phys 114:3765–3769

    CrossRef  Google Scholar 

  22. Hayati B, Maleki A, Najafi F, Gharibi F, Mckay G, Gupta VK, Marzban N (2018) Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems. J Chem Eng 346:258–270

    CrossRef  Google Scholar 

  23. Tawabini BS, Al-Khaldi SF, Khaled MM, Atieh MA (2011) Removal of arsenic from water by iron oxide nanoparticles impregnated on carbon nanotubes. J Environ Sci Health A 46:215–223

    CrossRef  Google Scholar 

  24. Alijani H, Shariatinia Z (2017) Effective aqueous arsenic removal using zero valent iron doped MWCNT synthesized by in situ CVD method using natural α-Fe2O3 as a precursor. J Chemosphere 171:502–511

    CrossRef  Google Scholar 

  25. Chen B, Zhu Z, Ma J, Yang M, Hong J, Hu X, Qiu Y, Chen J (2014a) One-pot, solid-phase synthesis of magnetic multiwalled carbon nanotube/iron oxide composites and their application in arsenic removal. J Colloid Interface Sci 434:9–17

    Google Scholar 

  26. Hsieh SH, Horng JJ, Tsai CK (2006) Growth of carbon nanotube on micro-sized Al2O3 particle and its application to adsorption of metal ions. J Mater Res 21:1269–1273

    CrossRef  Google Scholar 

  27. Li YH, Ding J, Lun Z, Di Z, Zhu Y, Xu C, Wu D, Wei B (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792

    CrossRef  Google Scholar 

  28. Li YH, Wang SW, Luan ZL, Ding JD, Xu C, Wu D (2003) Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41:1057–1062

    CrossRef  Google Scholar 

  29. Tofighy MA, Mohammadi T (2011) Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater 185:140–147

    CrossRef  Google Scholar 

  30. Vukovic GD, Marinkovic AD, Colic M, Ristic MD, Aleksic R, Grujic AAP, Uskokovic PS (2010) Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. J Chem Eng 57:238–324

    CrossRef  Google Scholar 

  31. Atieh MA (2011) Removal of chromium (VI) from polluted water using carbon nanotubes supported with activated carbon. J Proc Env Sci 4:281–293

    CrossRef  Google Scholar 

  32. Kumar ASK, Jiang S, Tseng W (2015) Effective adsorption of chromium(vi)/Cr(iii) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. J Mater Chem A 3:7044–7057

    Google Scholar 

  33. Di, ZC, Ding J, Peng XJ, Li YH, Luan ZK, Liang, J (2006) Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles. Chemosphere 62(5):861–865

    Google Scholar 

  34. Kumar ASK, Kakan SS, Rajesh N (2013) A novel amine impregnated graphene oxide adsorbent for the removal of hexavalent chromium. J Chem Eng 230:328–337

    CrossRef  Google Scholar 

  35. Sankararamakrishnan N, Jaiswal M, Verma N (2014) Composite nanofloral clusters of carbon nanotubes and activated alumina: an efficient sorbent for heavy metal removal. J.Chem Eng 235:1–9

    CrossRef  Google Scholar 

  36. Zhan Y, Hai H, Yi H, Long Z, Wan X, Zeng G (2016) Novel amino-functionalized Fe3O4/carboxylic multi-walled carbon nanotubes: one-pot synthesis, characterization and removal for Cu(II). J Russ Appl Chem 89:1894–1902

    CrossRef  Google Scholar 

  37. Wu CH (2007) Studies of the equilibrium and thermodynamics of the adsorption of Cu2+ onto as-produced and modified carbon nanotubes. J Coll Interf Sci 311(2):338–346

    CrossRef  Google Scholar 

  38. Ge Y, Li Z, Xiao D, Xiong P, Ye N (2014) Sulfonated multi-walled carbon nanotubes for the removal of copper (II) from aqueous solutions. J Ind Eng Chem 20:1765–1771

    CrossRef  Google Scholar 

  39. Rosenzweig S, Sorial GA, Sahle-Demessie E, Mack J (2013) Effect of acid and alcohol network forces within functionalized multiwall carbon nanotubes bundles on adsorption of copper (II) species. J Chemosphere 90:395–402

    CrossRef  Google Scholar 

  40. Alomar MK, Alsaadi MA, Hayyan M, Akib S, Ibrahim M, Hashim MA (2017) Allyltriphenylphosphonium bromide based DES-functionalized carbon nanotubes for the removal of mercury from water. J Chemosphere 167:44–52

    CrossRef  Google Scholar 

  41. Chen PH, Hsu C, Tsai DD, Lu Y, Huang W (2014) Adsorption of mercury from water by modified multi-walled carbon nanotubes: adsorption behaviour and interference resistance by coexisting anions. J Environ Technol 35:1935–1944

    CrossRef  Google Scholar 

  42. Bandaru NM, Reta N, Dalal H, Ellis AV, Shapter J, Voelcker NH (2013) Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. J Hazard Mater 261:534–541

    CrossRef  Google Scholar 

  43. Gupta A, Vidyarthi SR, Sankararamakrishnan N (2014) Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. J Hazard Mater 274:132–144

    CrossRef  Google Scholar 

  44. Moghaddam HK, Pakizeh M (2015) Experimental study on mercury ions removal from aqueous solution by MnO2/CNTs nanocomposite adsorbent. J Ind Eng Chem 21:221–229

    CrossRef  Google Scholar 

  45. Shawky HA, El‐Aassar AHM, Abo‐Zeid DE (2012) Chitosan/carbon nanotube composite beads: Preparation, characterization, and cost evaluation for mercury removal from wastewater of some industrial cities in Egypt. J Appl Polym Sci 125(S1):E93–E101

    Google Scholar 

  46. Zhang C, Sui J, Li J, Tang Y, Cai W (2012) Efficient removal of heavy metal ions by thiol-functionalized superparamagnetic carbon nanotubes. J Chem Eng 210:45–52

    CrossRef  Google Scholar 

  47. Yang S, Li J, Shao D, Hu J, Wang X (2009) Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J Hazard Mater 166:109–116

    CrossRef  Google Scholar 

  48. Kandah MI, Meunier JL (2007) Removal of nickel ions from water by multi-walled carbon nanotubes. J Hazard Mater 146:283–288

    CrossRef  Google Scholar 

  49. Chen CL, Hu J, Shao DD, Li JX, Wang XK (2009a) Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J Hazard Mater 164:923–928

    Google Scholar 

  50. Wang H, Zhou A, Peng F, Yu H, Yang, J (2007) Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II). J Colloid Interface Sci 316(2):277–283

    Google Scholar 

  51. Wang HJ, Zhou AL, Peng F, Yu H, Chen LF (2007) Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb(II) in aqueous solution. J Mater Sci Eng A 466(1–2):201–206

    CrossRef  Google Scholar 

  52. Zhao X, Jia Q, Song N, Zhou W, Li, Y (2010) Adsorption of Pb(II) from an Aqueous Solution by Titanium Dioxide/Carbon Nanotube Nanocomposites: Kinetics, Thermodynamics, and Isotherms. J Chem Eng Data 55(10):4428–4433

    Google Scholar 

  53. Ji L, Zhou L, Bai X, Shao Y, Zhao G, Qu Y, Wang C, Li Y (2012) Facile synthesis of multiwall carbon nanotubes/iron oxides for removal of tetrabromobisphenol A and Pb(ii). J Mater Chem 22:15853–15862

    CrossRef  Google Scholar 

  54. Long QR, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123:2058–2059

    CrossRef  Google Scholar 

  55. Mubarak NM, Alicia RF, Abdullah EC, Sahu JN, Haslija ABA, Tan J (2013) Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar. J Environ Chem Eng 1:486–495

    CrossRef  Google Scholar 

  56. Lu C, Chiu H, Liu C (2006) Removal of Zinc(II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. J Ind Eng Chem Res 45:2850–2855

    CrossRef  Google Scholar 

  57. Zhu J, Sadu R, Wei S, Chen DH, Haldolaarachchige N, Guo Z (2012) Magnetic graphenenanoplatelet composites toward arsenic removal. J ECS Sol Sta Sci Tech 1(1):M1-M5

    Google Scholar 

  58. Porwal H, Tatarko P, Grasso S, Hu C, Boccaccini AR, Dlouhý I, Reece MJ (2013) Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets. J Sci Tech Adv Mat 14(5):055007

    Google Scholar 

  59. Chen JH, Xing HT, Guo HX (2014) Investigation on the adsorption properties of Cr(VI) ions on a novel graphene oxide (GO) based composite adsorbent. J Mater Chem A 2:12561–12570

    CrossRef  Google Scholar 

  60. Namvari M, Namazi H (2015) Preparation of efficient magnetic biosorbents by clicking carbohydrates onto graphene oxide. J Mater Sci 50:5348–5361

    Google Scholar 

  61. Hadi Najafabadi H, Irani M, Rad LR (2015) Removal of Cu2+, Pb2+ and Cr6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. J RSC Adv 5:16532–16539

    Google Scholar 

  62. Wei H, Zhu J, Wu S (2013) Electrochromicpolyaniline/graphite oxide nanocomposites with endured electro-chemical energy storage. J Polymer (Guildf) 54:1820–1831

    Google Scholar 

  63. Chen R, Zhao T, Tian T, Cao S, Coxon PR, Xi K, Cheetham AK (2014) Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries. J APL Mat 2(12):124109

    Google Scholar 

  64. Kamali AR, Fray DJ (2013) Molten salt corrosion of graphite as a possible way to make carbon nanostructures. Carbon 56:121–131

    Google Scholar 

  65. Parmar KR, Patel I, Basha S, Murthy ZVP (2014) Synthesis of acetone reduced graphene oxide/Fe3O4 composite through simple and efficient chemical reduction of exfoliated graphene oxide for removal of dye from aqueous solution. J Mater Sci 49:6772–6783

    Google Scholar 

  66. Huang LJ, Wang YX, Tang JG, Wang Y, Liu JX, Huang Z, Belfiroe LA (2015) A new graphene nanocomposite to improve the electrochemical properties of magnesium-based amorphous alloy. J Mat Lett 160:104–108

    CrossRef  Google Scholar 

  67. Sitko R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Wrzalik R (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. J Dalt Trans 42(16):5682–5689

    CrossRef  Google Scholar 

  68. Yang J, Wu J, Lu Q, Lin T (2014) Facile preparation of lignosulfonate–graphene oxide–polyaniline ternary nanocomposite as an effective adsorbent for Pb(II) ions. J ACS Sustain Chem Eng 2:1203–1211

    CrossRef  Google Scholar 

  69. Wang Y, He Q, Qu H, Zhang X, Guo J, Zhu J, Bhana S (2014) Magnetic graphene oxide nanocomposites: nanoparticles growth mechanism and property analysis. J Mater Chem C 2(44):9478–9488

    CrossRef  Google Scholar 

  70. Brodie BC, Philos BC (1859) On the atomic weight of graphite. Trans R Soc London 149(1859):249

    Google Scholar 

  71. Staudenmaier L (1898) Verfahrenzurdarstellung der graphitsäure. Berichte der deutschenchemischen Gesellschaft 31(2):1481–1487

    Google Scholar 

  72. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J ACS 80(6):1339

    Google Scholar 

  73. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. J Adv Mat 22(35):3906–3924

    CrossRef  Google Scholar 

  74. Johnson DW, Dobson, BP, Coleman, KS (2015) A manufacturing perspective on graphene dispersions. Curr Opin Colloid Interface Sci 20(5–6):367–382

    Google Scholar 

  75. Kumar S, Nair RR, Pillai PB (2014) Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. J ACS Appl Mater Interfaces 6:17426–17436

    CrossRef  Google Scholar 

  76. Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. ACS Nano 4(7):3979–3986

    Google Scholar 

  77. Wen T, Wu X, Tan X, Wang X, Xu A (2013) One-Pot Synthesis of Water-Swellable Mg–Al Layered Double Hydroxides and Graphene Oxide Nanocomposites for Efficient Removal of As(V) from Aqueous Solutions. ACS Appl Mater Interfaces 5(8):3304–3311

    Google Scholar 

  78. Chauke VP, Maity A, Chetty A (2015) High-performance towards removal of toxic hexavalent chromium from aqueous solution using graphene oxide-alpha cyclodextrin-poly-pyrrole nanocomposites. J Mol Liq 211:71–77

    CrossRef  Google Scholar 

  79. Li S, Lu X, Xue Y (2012) Fabrication of poly-pyrrole/graphene oxide composite nanosheets and their applications for Cr(VI) removal in aqueous solution. J. PLoS ONE 7:43328

    Google Scholar 

  80. Najafabadi HH, Irani M, Rad LR, Haratameh, AH, Haririan I (2015) Correction: Removal of Cu, Pb and Cr from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. RSC Adv 5(29):22390–22390

    Google Scholar 

  81. Lei Y, Chen F, Luo Y, Zhang L (2014) Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal. J Mater Sci 49:4236–4245

    Google Scholar 

  82. Kumar R, Ansari MO, Barakat MA (2013) DBSA doped polyaniline/multi-walled carbon nanotubes composite for high efficiency removal of Cr(VI) from aqueous solution. J Chem Eng 228:748–755

    CrossRef  Google Scholar 

  83. Ge H, Ma Z (2015) Microwave preparation of tri-ethylenetetramine modified graphene oxide/chitosan composite for adsorption of Cr(VI). J Carbohydr Polym 131:280–287

    Google Scholar 

  84. Li L, Luo C, Li X (2014) Preparation of magnetic ionic liquid/chitosan/graphene oxide composite and application for water treatment. J Int J Biol Macromol 66:172–178

    CrossRef  Google Scholar 

  85. Li L, Duan H, Wang X, Luo C (2014) Adsorption property of Cr(VI) on magnetic mesoporous titanium dioxide–graphene oxide core–shell microspheres. J New Chem 38:6008–6016

    CrossRef  Google Scholar 

  86. Fan L, Luo C, Sun M, Qiu H (2012) Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal. J Mater Chem 22:24577–24583

    CrossRef  Google Scholar 

  87. Guo F, Liu Y, Wang H (2015) Adsorption behavior of Cr(VI) from aqueous solution onto magnetic graphene oxide functionalized with 1,2-diaminocyclohexanetetraacetic acid. RSC Adv 5:45384–45392

    CrossRef  Google Scholar 

  88. Li L, Fan L, Sun M (2013) Adsorbent for hydroquinone removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan. J Int Biol Macromol 58:169–175

    CrossRef  Google Scholar 

  89. Tzu T, Tsuritani T, Sato K (2013) Sorption of Pb(II), Cd(II), and Ni(II) toxic metal ions by alginate-bentonite. J Environ Prot (Irvine, Calif) 4:51–55

    Google Scholar 

  90. Tan M, Liu X, Li W, Li H (2015) Enhancing sorption capacities for copper(II) and lead(II) under weakly acidic conditions by L-tryptophan-functionalized graphene oxide. J Chem Eng Data 60:1469–1475

    CrossRef  Google Scholar 

  91. Li L, Wang Z, Ma P (2015) Preparation of polyvinyl alcohol/chitosan hydrogel compounded with graphene oxide to enhance the adsorption properties for Cu(II) in aqueous solution. J Polym Res 22:150

    CrossRef  Google Scholar 

  92. Xing HT, Chen JH, Su X (2015) NH2-rich polymer/graphene oxide use as a novel adsorbent for removal of Cu(II) from aqueous solution. J Chem Eng 263:280–289

    CrossRef  Google Scholar 

  93. Cui L, Wang Y, Gao L (2015) EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: adsorption mechanism and separation property. J Chem Eng 281:1–10

    CrossRef  Google Scholar 

  94. Li X, Zhou H, Wu W et al (2015) Studies of heavy metal ion adsorption on chitosan/sulfydryl-functionalized graphene oxide composites. J Colloid Interface Sci 448:389–397

    CrossRef  Google Scholar 

  95. Sui N, Wang L, Wu X (2015) Polyethylenimine modified magnetic graphene oxide nanocomposites for Cu2+ removal. RSC Adv 5:746–752

    CrossRef  Google Scholar 

  96. Wu W, Yang Y, Zhou H (2012) Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide. J Water Air Soil Pollut 224:1372

    Google Scholar 

  97. Zhang F, Wang B, He S, Man R (2014) Preparation of graphene-oxide/polyamidoamine dendrimers and their adsorption properties toward some heavy metal ions. J Chem Eng Data 59:1719–1726

    CrossRef  Google Scholar 

  98. Hu XJ, Liu YG, Wang H (2013) Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. J Sep Purif Technol 108:189–195

    CrossRef  Google Scholar 

  99. Algothmi WM, Bandaru NM, Yu Y (2013) Alginate-graphene oxide hybrid gel beads: an efficient copper adsorbent material. J Colloid Interface Sci 397:32–38

    CrossRef  Google Scholar 

  100. Wang Y, Liu X, Wang H (2014) Microporous spongy chitosan monoliths doped with graphene oxide as highly effective adsorbent for methyl orange and copper nitrate (Cu(NO3)2) ions. J Colloid Interface Sci 416:243–251

    CrossRef  Google Scholar 

  101. Sitko R, Janik P, Zawisza B, Talik E, Margui E, Queralt I (2015) Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent. J Anal Chem 87(6):3535–3542

    CrossRef  Google Scholar 

  102. Sitko R, Zawisza B, Talik E, Janik P, Osoba G, Feist B, Malicka E (2014) Spherical silica particles decorated with graphene oxide nanosheets as a new sorbent in inorganic trace analysis. J Anal Chim Acta 834:22–29

    Google Scholar 

  103. Jiang T, Liu W, Mao Y (2015) Adsorption behavior of copper ions from aqueous solution onto graphene oxide–CdS composite. J Chem Eng 259:603–610

    CrossRef  Google Scholar 

  104. Wang Y, Liang S, Chen B et al (2013) Synergistic removal of Pb(II), Cd(II) and humic acid by Fe3O4 @ mesoporous silica–graphene oxide composites. J PLoS ONE 8:2–9

    Google Scholar 

  105. Zhao G, Ren X, Gao X (2011) Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. J Dalt Trans 40:10945–10952

    Google Scholar 

  106. Jia W, Lu S (2014) Few-layered graphene oxides as superior adsorbents for the removal of Pb(II) ions from aqueous solutions. J Korean Chem Eng 31:1265–1270

    CrossRef  Google Scholar 

  107. Yang X, Chen C, Li J et al (2012) Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Adv 2:8821

    CrossRef  Google Scholar 

  108. Madadrang CJ, Kim HY, Gao G et al (2012) Adsorption behavior of EDTA-graphene oxide for Pb(II) removal. J ACS Appl Mater Interfaces 4:1186–1193

    Google Scholar 

  109. Liu Y, Xu L, Liu J et al (2016) Graphene oxides cross-linked with hyper branched polyethylenimines: preparation, characterization and their potential as recyclable and highly efficient adsorption materials for lead(II) ions. J Chem Eng 285:698–708

    CrossRef  Google Scholar 

  110. Gari VRDK, Kim M (2015) Removal of Pb(II) using silver nanoparticles deposited graphene oxide: equilibrium and kinetic studies. J Monatshefte fur Chemie 146:1445–1453

    CrossRef  Google Scholar 

  111. Luo S, Xu X, Zhou G et al (2014) Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(II) from wastewater. J Hazard Mater 274:145–155

    CrossRef  Google Scholar 

  112. Cui L, Wang Y, Hu L et al (2015) Mechanism of Pb(II) and methylene blue adsorption onto magnetic carbonate hydroxyapatite/graphene oxide. RSC Adv 5:9759–9770

    CrossRef  Google Scholar 

  113. Zhou G, Liu C, Tang Y et al (2015) Sponge-like polysiloxane-graphene oxide gel as a highly efficient and renewable adsorbent for lead and cadmium metals removal from wastewater. J Chem Eng 280:275–282

    CrossRef  Google Scholar 

  114. Yang Y, Wu WQ, Zhou HH (2014) Adsorption behavior of cross-linked chitosan modified by graphene oxide for Cu(II) removal. J Cent South Univ 21:2826–2831

    CrossRef  Google Scholar 

  115. Shabnam S, Nematzadeh SSMA, Ashori A (2015) Preparation of graphene oxide/chitosan/FeOOH nanocomposite for the removal of Pb(II) from aqueous solution. J Int Biol Macromol 80:475–480

    CrossRef  Google Scholar 

  116. He YQ, Zhang NN, Wang XD (2011) Adsorption of graphene oxide/chitosan porous materials for metal ions. J Chin Chem Lett 22:859–862

    CrossRef  Google Scholar 

  117. Sitko R, Janik P, Feist B, Talik E, Gagor A (2014) Suspended aminosilanized graphene oxide nanosheets for selective preconcentration of lead ions and ultrasensitive determination by electrothermal atomic absorption spectrometry. J ACS Appl Mat Int 6(22):20144–20153

    Google Scholar 

  118. Wang Y, Yan T, Gao L, Cui L, Hu L, Yan L, Wei Q (2016) Magnetic hydroxypropyl chitosan functionalized graphene oxide as adsorbent for the removal of lead ions from aqueous solution. J Desal Wat Treat 57(9):3975–3984

    CrossRef  Google Scholar 

  119. Fan L, Luo C, Sun M, Li X, Qiu H (2013) Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. J Col Surf B Bio 103:523–529

    Google Scholar 

  120. Ma S, Zhan S, Jia Y, Zhou Q (2015) Highly efficient antibacterial and Pb(II) removal effects of Ag-CoFeO-GO nanocomposite. ACS Appl Mater Interfaces 7(19):10576–10586

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyajit Chaudhuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaudhuri, S., Ghosh, S. (2021). Advent of Graphene Oxide and Carbon Nanotubes in Removal of Heavy Metals from Water: A Review. In: Kumar, S., Kalamdhad, A., Ghangrekar, M. (eds) Sustainability in Environmental Engineering and Science. Lecture Notes in Civil Engineering, vol 93. Springer, Singapore. https://doi.org/10.1007/978-981-15-6887-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6887-9_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6886-2

  • Online ISBN: 978-981-15-6887-9

  • eBook Packages: EngineeringEngineering (R0)