Transcranial Dynamic Fluorescence Imaging for the Study of the Epileptic Seizures

Part of the Brain Informatics and Health book series (BIH)


In last decade functional brain mapping has made significant strides through development of advanced methods, culminating into revolutionary diagnostic imaging and therapeutic applications of neurophotonics. Imaging technologies include intrinsic optical imaging, voltage-sensitive dye, photoacoustic, optical coherence tomography, multi-spectral imaging, UV, yellow light, thermal and near-infrared spectroscopy. Some of these technologies are not only used in animal studies of the model of epileptic seizures but also been in clinical trials. However, translation of such basic science application of brain mapping technologies into clinical setting remains challenging. In this paper we review current advances in the field, along with one clear focus on laser speckle contrast imaging and its application in epilepsy. Our conclusion is that functional brain optical imaging could play a key role in bridging between morphology and functional activity of the brain, and thus contribute to more accurate diagnostics and improved efficacy of the therapy. Coupling brain optical imaging with measurements of disease biomarkers and adding as well as other neuroscience techniques is making early diagnosis more effective and applicable for variable clinical tasks.


Neurophotonics Brain mapping Fluorescence-based brain imaging Laser speckle contrast imaging Neurovascular coupling Transcranial fluorescent angiography Transcranial optical vascular imaging Translational research 



The images used in the Figs. 1, 2 and 3 are obtained by Dr. Vyacheslav Kalchenko, Weizmann Institute of Science


  1. 1.
    Lenkov DN, Volnova AB, Pope ARD, Tsytsarev V (2013) Advantages and limitations of brain imaging methods in the research of absence epilepsy in humans and animal models. J Neurosci Methods 212(2)Google Scholar
  2. 2.
    Pascual-Marqui RD et al (2011) Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos Trans R Soc A Math Phys Eng Sci 369(1952):3768–3784Google Scholar
  3. 3.
    Yoshimura M et al (2018) Hyperactivation of the frontal control network revealed by symptom provocation in obsessive-compulsive disorder using EEG microstate and sLORETA analyses. Neuropsychobiology 1–10Google Scholar
  4. 4.
    Tsytsarev V, Bernardelli C, Maslov KI (2012) Living brain optical imaging: technology, methods and applications. J Neurosci Neuroengineering 1(2):13Google Scholar
  5. 5.
    Tsytsarev V, Premachandra K, Takeshita D, Bahar S (2008) Imaging cortical electrical stimulation in vivo: fast intrinsic optical signal versus voltage-sensitive dyes. Opt Lett 33(9)Google Scholar
  6. 6.
    Tsytsarev V, Rao B, Maslov KI, Li L, Wang LV (2013) Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts. J Neurosci Methods 216(2)Google Scholar
  7. 7.
    Kandratavicius L et al (2014) Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat 10:1693PubMedPubMedCentralGoogle Scholar
  8. 8.
    Patel KS, Zhao M, Ma H, Schwartz TH (2013) Imaging preictal hemodynamic changes in neocortical epilepsy. Neurosurg Focus 34(4):E10PubMedPubMedCentralGoogle Scholar
  9. 9.
    Ingram J et al (2014) Oxygen and seizure dynamics: I. experiments. J Neurophysiol 112(2):205–212PubMedPubMedCentralGoogle Scholar
  10. 10.
    Schwartz TH (2007) Neurovascular coupling and epilepsy: hemodynamic markers for localizing and predicting seizure onset. Epilepsy Curr 7(4):91–94PubMedPubMedCentralGoogle Scholar
  11. 11.
    Boas DA, Dunn AK (2010) Laser speckle contrast imaging in biomedical optics. J Biomed Opt 15(1):011109PubMedPubMedCentralGoogle Scholar
  12. 12.
    Dunn AK, Bolay H, Moskowitz MA, Boas DA (2001) Dynamic imaging of cerebral blood flow using laser speckle. J Cereb Blood Flow Metab 21(3):195–201PubMedGoogle Scholar
  13. 13.
    Yang H, Zhang T, Zhou J, Carney PR, Jiang H (2015) In vivo imaging of epileptic foci in rats using a miniature probe integrating diffuse optical tomography and electroencephalographic source localization. Epilepsia 56(1):94–100PubMedGoogle Scholar
  14. 14.
    Tsytsarev V, Maslov KI, Yao J, Parameswar AR, Demchenko AV, Wang LV (2012) In vivo imaging of epileptic activity using 2-NBDG, a fluorescent deoxyglucose analog. J Neurosci Methods 203(1)Google Scholar
  15. 15.
    Yao J et al (2013) Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. Neuroimage 64(1)Google Scholar
  16. 16.
    Ma H et al (2014) Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals. Neurophotonics 1(1):015003PubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen-Bee CH, Kwon MC, Masino SA, Frostig RD (1996) Areal extent quantification of functional representations using intrinsic signal optical imaging. J Neurosci Methods 68(1):27–37PubMedGoogle Scholar
  18. 18.
    Tsytsarev V, Pope D, Pumbo E, Yablonskii A, Hofmann M (2010) Study of the cortical representation of whisker directional deflection using voltage-sensitive dye optical imaging. Neuroimage 53(1):233–238PubMedGoogle Scholar
  19. 19.
    Song Y et al (2016) Intraoperative optical mapping of epileptogenic cortices during non-ictal periods in pediatric patients. NeuroImage Clin 11:423–434PubMedPubMedCentralGoogle Scholar
  20. 20.
    Abraham T, Feng J (2011) Evolution of brain imaging instrumentation. Semin Nucl Med 41(3):202–219PubMedGoogle Scholar
  21. 21.
    Valotassiou V, Wozniak G, Sifakis N, Demakopoulos N, Georgoulias P (2008) Radiopharmaceuticals in neurological and psychiatric disorders. Curr Clin Pharmacol 3(2):99–107PubMedGoogle Scholar
  22. 22.
    Fantini S, Sassaroli A, Tgavalekos KT, Kornbluth J (2016) Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods. Neurophotonics 3(3):031411PubMedPubMedCentralGoogle Scholar
  23. 23.
    Thanos PK, Wang G-J, Volkow ND (2008) Positron emission tomography as a tool for studying alcohol abuse. Alcohol Res Health 31(3):233–237PubMedPubMedCentralGoogle Scholar
  24. 24.
    Kim MN et al (2010) Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults. Neurocrit Care 12(2):173–180PubMedPubMedCentralGoogle Scholar
  25. 25.
    Kalchenko V, Israeli D, Kuznetsov Y, Harmelin A (2014) Transcranial optical vascular imaging (TOVI) of cortical hemodynamics in mouse brain. Sci Rep 4(1):5839PubMedPubMedCentralGoogle Scholar
  26. 26.
    Kateb B, Yamamoto V, Yu C, Grundfest W, Gruen JP (2009) Infrared thermal imaging: a review of the literature and case report. Neuroimage 47:T154–T162PubMedGoogle Scholar
  27. 27.
    Kuo J-R, Chang M-H, Wang C-C, Chio C-C, Wang J-J, Lin B-S (2013) Wireless near-infrared spectroscopy system for determining brain hemoglobin levels in laboratory animals. J Neurosci Methods 214(2):204–209PubMedGoogle Scholar
  28. 28.
    Ma H, Zhao M, Suh M, Schwartz TH (2009) Hemodynamic surrogates for excitatory membrane potential change during interictal epileptiform events in rat neocortex. J Neurophysiol 101(5):2550–2562PubMedPubMedCentralGoogle Scholar
  29. 29.
    Grandy TH, Greenfield SA, Devonshire IM (2012) An evaluation of in vivo voltage-sensitive dyes: pharmacological side effects and signal-to-noise ratios after effective removal of brain-pulsation artifacts. J Neurophysiol 108(11):2931–2945PubMedGoogle Scholar
  30. 30.
    Devonshire IM, Dommett EJ, Grandy TH, Halliday AC, Greenfield SA (2010) Environmental enrichment differentially modifies specific components of sensory-evoked activity in rat barrel cortex as revealed by simultaneous electrophysiological recordings and optical imaging in vivo. Neuroscience 170(2):662–669PubMedGoogle Scholar
  31. 31.
    Ringuette D, Nauenberg J, Monnier PP, Carlen PL, Levi O (2018) Data compression and improved registration for laser speckle contrast imaging of rodent brains. Biomed Opt Express 9(11):5615–5634PubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang L, Li Y, Li Y, Li K (2018) Improved speckle contrast optical coherence tomography angiography. Am J Transl Res 10(10):3025–3035PubMedPubMedCentralGoogle Scholar
  33. 33.
    Senarathna J, Rege A, Li N, Thakor NV (2013) Laser speckle contrast imaging: theory, instrumentation and applications. IEEE Rev Biomed Eng 6:99–110PubMedGoogle Scholar
  34. 34.
    Wang Z, Hughes S, Dayasundara S, Menon RS (2007) Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation. J Cereb Blood Flow Metab 27(2):258–269PubMedGoogle Scholar
  35. 35.
    Men J et al (2016) Optical coherence tomography for brain imaging and developmental biology. IEEE J Sel Top Quantum Electron 22(4):1–13Google Scholar
  36. 36.
    Roche-Labarbe N et al (2010) Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life. Hum Brain Mapp 31(3):341–352PubMedGoogle Scholar
  37. 37.
    Roche-Labarbe N, Wallois F, Ponchel E, Kongolo G, Grebe R (2007) Coupled oxygenation oscillation measured by NIRS and intermittent cerebral activation on EEG in premature infants. Neuroimage 36(3):718–727PubMedGoogle Scholar
  38. 38.
    Hu S, Maslov K, Tsytsarev V, Wang LV (2009) Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. J Biomed Opt 14(4)Google Scholar
  39. 39.
    Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang LV (2003) Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol 21(7):803–806PubMedGoogle Scholar
  40. 40.
    Takahashi K, Hishida R, Kubota Y, Kudoh M, Takahashi S, Shibuki K (2006) Transcranial fluorescence imaging of auditory cortical plasticity regulated by acoustic environments in mice. Eur J Neurosci 23(5):1365–1376PubMedGoogle Scholar
  41. 41.
    Tohmi M, Takahashi K, Kubota Y, Hishida R, Shibuki K (2009) Transcranial flavoprotein fluorescence imaging of mouse cortical activity and plasticity. J Neurochem 109:3–9PubMedGoogle Scholar
  42. 42.
    Oh S et al (2011) In vivo optical properties of cortical tubers in children with tuberous sclerosis complex (TSC): a preliminary investigation. Epilepsia 52(9):1699–1704PubMedGoogle Scholar
  43. 43.
    Widjaja E, Wilkinson ID, Griffiths PD (2007) Magnetic resonance perfusion imaging in malformations of cortical development. Acta Radiol 48(8):907–917PubMedGoogle Scholar
  44. 44.
    Zenaro E, Rossi B, Angiari S, Constantin G (2013) Use of imaging to study leukocyte trafficking in the central nervous system. Immunol Cell Biol 91(4):271–280PubMedGoogle Scholar
  45. 45.
    Kalchenko V, Israeli D, Kuznetsov Y, Meglinski I, Harmelin A (2015) A simple approach for non-invasive transcranial optical vascular imaging (nTOVI). J Biophotonics 8(11–12):897–901PubMedGoogle Scholar
  46. 46.
    Guevara E, Pouliot P, Nguyen DK, Lesage F (2013) Optical imaging of acute epileptic networks in mice. J Biomed Opt 18(7):076021Google Scholar
  47. 47.
    Tsytsarev V, Arakawa H, Borisov S, Pumbo E, Erzurumlu RS, Papkovsky DB (2013) In vivo imaging of brain metabolism activity using a phosphorescent oxygen-sensitive probe. J Neurosci Methods 216(2)Google Scholar
  48. 48.
    Hong G et al (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8(9):723–730PubMedPubMedCentralGoogle Scholar
  49. 49.
    Gottschalk S, Fehm TF, Deán-Ben XL, Tsytsarev V, Razansky D (2017) Correlation between volumetric oxygenation responses and electrophysiology identifies deep thalamocortical activity during epileptic seizures. Neurophotonics 4(1)Google Scholar
  50. 50.
    Hamilton NB, Attwell D, Hall CN (2010) Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenergetics 2Google Scholar
  51. 51.
    Avsenik J, Bisdas S, Popovic KS (2015) Blood-brain barrier permeability imaging using perfusion computed tomography. Radiol Oncol 49(2):107–114PubMedPubMedCentralGoogle Scholar
  52. 52.
    Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443(7112):700–704PubMedPubMedCentralGoogle Scholar
  53. 53.
    Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J (2015) Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87(1):95–110PubMedPubMedCentralGoogle Scholar
  54. 54.
    Hartmann MJZ (2009) Active touch, exploratory movements, and sensory prediction. Integr Comp Biol 49(6):681–690PubMedGoogle Scholar
  55. 55.
    Milesi S et al (2014) Redistribution of PDGFRβ cells and NG2DsRed pericytes at the cerebrovasculature after status epilepticus. Neurobiol Dis 71:151–158PubMedGoogle Scholar
  56. 56.
    Kovács R et al (2018) Bioenergetic mechanisms of seizure control. Front. Cell. Neurosci. 12:335PubMedPubMedCentralGoogle Scholar
  57. 57.
    Leal-Campanario R et al (2017) Abnormal capillary vasodynamics contribute to ictal neurodegeneration in epilepsy. Sci Rep 7(1):43276PubMedPubMedCentralGoogle Scholar
  58. 58.
    Nicastro N, Assal F, Seeck M (2016) From here to epilepsy: the risk of seizure in patients with Alzheimer’s disease. Epileptic Disord 18(1):1–12PubMedGoogle Scholar
  59. 59.
    Born HA (2015) Seizures in alzheimer’s disease. Neuroscience 286:251–263PubMedGoogle Scholar
  60. 60.
    Zhang X et al (2015) Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease. Proc Natl Acad Sci 112(31):9734–9739PubMedGoogle Scholar
  61. 61.
    Kodam A et al (2018) A role for astrocyte-derived amyloid β peptides in the degeneration of neurons in an animal model of temporal lobe epilepsy. Brain PatholGoogle Scholar
  62. 62.
    Obrig H (2014) NIRS in clinical neurology—a ‘promising’ tool? Neuroimage 85(Pt 1):535–546PubMedGoogle Scholar
  63. 63.
    Ran C et al (2009) Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-β deposits. J Am Chem Soc 131(42):15257–15261PubMedPubMedCentralGoogle Scholar
  64. 64.
    Koronyo-Hamaoui M et al (2011) Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54:S204–S217PubMedGoogle Scholar
  65. 65.
    Kantarci K et al (2012) Ante mortem amyloid imaging and β-amyloid pathology in a case with dementia with Lewy bodies. Neurobiol Aging 33(5):878–885PubMedGoogle Scholar
  66. 66.
    J. Noebels (Jan. 2011) A perfect storm: converging paths of epilepsy and Alzheimer’s dementia intersect in the hippocampal formation. Epilepsia 52 Suppl 1(suppl 1):39–46Google Scholar
  67. 67.
    Cui M, Ono M, Watanabe H, Kimura H, Liu B, Saji H (2014) Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits. J Am Chem Soc 136(9):3388–3394PubMedGoogle Scholar
  68. 68.
    Chang WM, Dakanali M, Capule CC, Sigurdson CJ, Yang J, Theodorakis EA (2011) ANCA: a family of fluorescent probes that bind and stain amyloid plaques in human tissue. ACS Chem Neurosci 2(5):249–255PubMedPubMedCentralGoogle Scholar
  69. 69.
    Watanabe H, Ono M, Matsumura K, Yoshimura M, Kimura H, Saji H (2013) Molecular imaging of β-amyloid plaques with near-infrared boron dipyrromethane (BODIPY)-based fluorescent probes. Mol Imaging 12(5):338–347Google Scholar
  70. 70.
    Hillman EMC et al (2011) In vivo optical imaging and dynamic contrast methods for biomedical research. Philos Trans A Math Phys Eng Sci 369(1955):4620–4643PubMedPubMedCentralGoogle Scholar
  71. 71.
    Hillman EMC, Boas DA, Dale AM, Dunn AK (2004) Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media. Opt Lett 29(14):1650–1652PubMedGoogle Scholar
  72. 72.
    Erickson SJ, Martinez SL, DeCerce J, Romero A, Caldera L, Godavarty A (2013) Three-dimensional fluorescence tomography of human breast tissues in vivo using a hand-held optical imager. Phys Med Biol 58(5):1563–1579PubMedPubMedCentralGoogle Scholar
  73. 73.
    Bukowska D et al (2012) Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography. J Biomed Opt 17(10):101515Google Scholar
  74. 74.
    Issa JB, Haeffele BD, Agarwal A, Bergles DE, Young ED, Yue DT (2014) Multiscale optical Ca2+imaging of tonal organization in mouse auditory cortex. Neuron 83(4):944–959PubMedPubMedCentralGoogle Scholar
  75. 75.
    Baran U, Wang RK (2016) Review of optical coherence tomography based angiography in neuroscience. Neurophotonics 3(1):010902PubMedPubMedCentralGoogle Scholar
  76. 76.
    Tang Q et al (2017) High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT). Biomed Opt Express 8(4):2124–2137PubMedPubMedCentralGoogle Scholar
  77. 77.
    Tang Q et al. (2016) In vivo mesoscopic voltage-sensitive dye imaging of brain activation. Sci Rep 6Google Scholar
  78. 78.
    Liao L-D et al (2013) Neurovascular coupling: in vivo optical techniques for functional brain imaging. Biomed Eng Online 12(1):38PubMedPubMedCentralGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Veterinary ResourcesWeizmann Institute of ScienceRehovotIsrael
  2. 2.Vice President for Administration and FinanceWeizmann Institute of ScienceRehovotIsrael
  3. 3.Psychiatric ArrayKaplan Hospital, The Hebrew University of JerusalemJerusalemIsrael
  4. 4.Founding Chairman of the Board of Directors, CEO and Scientific Director, President & Scientific Director, Society for Brain Mapping & Therapeutics (SBMT)Brain Mapping FoundationPacific PalisadesUSA
  5. 5.School of Engineering and Applied Science, Aston UniversityBirminghamUnited Kingdom
  6. 6.Stephenson School of Biomedical EngineeringUniversity of OklahomaNormanUSA
  7. 7.Department of Biomedical EngineeringJohn Hopkins UniversityBaltimoreUSA
  8. 8.Saint Petersburg State University, Translational Research InstituteSaint PetersburgRussia
  9. 9.Department of Anatomy and NeurobiologyUniversity of MarylandBaltimoreUSA
  10. 10.Society of Brain Mapping and TherapeuticsSanta MonicaUSA
  11. 11.Brain Mapping FoundationWest HollywoodUSA
  12. 12.National Center for NanoBioElectronicsLos AngelesUSA
  13. 13.Brain technology and Innovation ParkLos AngelesUSA

Personalised recommendations