Skip to main content

Transcranial Dynamic Fluorescence Imaging for the Study of the Epileptic Seizures

  • Chapter
  • First Online:
Functional Brain Mapping: Methods and Aims

Abstract

In last decade functional brain mapping has made significant strides through development of advanced methods, culminating into revolutionary diagnostic imaging and therapeutic applications of neurophotonics. Imaging technologies include intrinsic optical imaging, voltage-sensitive dye, photoacoustic, optical coherence tomography, multi-spectral imaging, UV, yellow light, thermal and near-infrared spectroscopy. Some of these technologies are not only used in animal studies of the model of epileptic seizures but also been in clinical trials. However, translation of such basic science application of brain mapping technologies into clinical setting remains challenging. In this paper we review current advances in the field, along with one clear focus on laser speckle contrast imaging and its application in epilepsy. Our conclusion is that functional brain optical imaging could play a key role in bridging between morphology and functional activity of the brain, and thus contribute to more accurate diagnostics and improved efficacy of the therapy. Coupling brain optical imaging with measurements of disease biomarkers and adding as well as other neuroscience techniques is making early diagnosis more effective and applicable for variable clinical tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lenkov DN, Volnova AB, Pope ARD, Tsytsarev V (2013) Advantages and limitations of brain imaging methods in the research of absence epilepsy in humans and animal models. J Neurosci Methods 212(2)

    Google Scholar 

  2. Pascual-Marqui RD et al (2011) Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos Trans R Soc A Math Phys Eng Sci 369(1952):3768–3784

    Google Scholar 

  3. Yoshimura M et al (2018) Hyperactivation of the frontal control network revealed by symptom provocation in obsessive-compulsive disorder using EEG microstate and sLORETA analyses. Neuropsychobiology 1–10

    Google Scholar 

  4. Tsytsarev V, Bernardelli C, Maslov KI (2012) Living brain optical imaging: technology, methods and applications. J Neurosci Neuroengineering 1(2):13

    Google Scholar 

  5. Tsytsarev V, Premachandra K, Takeshita D, Bahar S (2008) Imaging cortical electrical stimulation in vivo: fast intrinsic optical signal versus voltage-sensitive dyes. Opt Lett 33(9)

    Google Scholar 

  6. Tsytsarev V, Rao B, Maslov KI, Li L, Wang LV (2013) Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts. J Neurosci Methods 216(2)

    Google Scholar 

  7. Kandratavicius L et al (2014) Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat 10:1693

    PubMed  PubMed Central  Google Scholar 

  8. Patel KS, Zhao M, Ma H, Schwartz TH (2013) Imaging preictal hemodynamic changes in neocortical epilepsy. Neurosurg Focus 34(4):E10

    PubMed  PubMed Central  Google Scholar 

  9. Ingram J et al (2014) Oxygen and seizure dynamics: I. experiments. J Neurophysiol 112(2):205–212

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwartz TH (2007) Neurovascular coupling and epilepsy: hemodynamic markers for localizing and predicting seizure onset. Epilepsy Curr 7(4):91–94

    PubMed  PubMed Central  Google Scholar 

  11. Boas DA, Dunn AK (2010) Laser speckle contrast imaging in biomedical optics. J Biomed Opt 15(1):011109

    PubMed  PubMed Central  Google Scholar 

  12. Dunn AK, Bolay H, Moskowitz MA, Boas DA (2001) Dynamic imaging of cerebral blood flow using laser speckle. J Cereb Blood Flow Metab 21(3):195–201

    CAS  PubMed  Google Scholar 

  13. Yang H, Zhang T, Zhou J, Carney PR, Jiang H (2015) In vivo imaging of epileptic foci in rats using a miniature probe integrating diffuse optical tomography and electroencephalographic source localization. Epilepsia 56(1):94–100

    PubMed  Google Scholar 

  14. Tsytsarev V, Maslov KI, Yao J, Parameswar AR, Demchenko AV, Wang LV (2012) In vivo imaging of epileptic activity using 2-NBDG, a fluorescent deoxyglucose analog. J Neurosci Methods 203(1)

    Google Scholar 

  15. Yao J et al (2013) Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. Neuroimage 64(1)

    Google Scholar 

  16. Ma H et al (2014) Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals. Neurophotonics 1(1):015003

    PubMed  PubMed Central  Google Scholar 

  17. Chen-Bee CH, Kwon MC, Masino SA, Frostig RD (1996) Areal extent quantification of functional representations using intrinsic signal optical imaging. J Neurosci Methods 68(1):27–37

    CAS  PubMed  Google Scholar 

  18. Tsytsarev V, Pope D, Pumbo E, Yablonskii A, Hofmann M (2010) Study of the cortical representation of whisker directional deflection using voltage-sensitive dye optical imaging. Neuroimage 53(1):233–238

    PubMed  Google Scholar 

  19. Song Y et al (2016) Intraoperative optical mapping of epileptogenic cortices during non-ictal periods in pediatric patients. NeuroImage Clin 11:423–434

    PubMed  PubMed Central  Google Scholar 

  20. Abraham T, Feng J (2011) Evolution of brain imaging instrumentation. Semin Nucl Med 41(3):202–219

    PubMed  Google Scholar 

  21. Valotassiou V, Wozniak G, Sifakis N, Demakopoulos N, Georgoulias P (2008) Radiopharmaceuticals in neurological and psychiatric disorders. Curr Clin Pharmacol 3(2):99–107

    CAS  PubMed  Google Scholar 

  22. Fantini S, Sassaroli A, Tgavalekos KT, Kornbluth J (2016) Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods. Neurophotonics 3(3):031411

    PubMed  PubMed Central  Google Scholar 

  23. Thanos PK, Wang G-J, Volkow ND (2008) Positron emission tomography as a tool for studying alcohol abuse. Alcohol Res Health 31(3):233–237

    PubMed  PubMed Central  Google Scholar 

  24. Kim MN et al (2010) Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults. Neurocrit Care 12(2):173–180

    PubMed  PubMed Central  Google Scholar 

  25. Kalchenko V, Israeli D, Kuznetsov Y, Harmelin A (2014) Transcranial optical vascular imaging (TOVI) of cortical hemodynamics in mouse brain. Sci Rep 4(1):5839

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kateb B, Yamamoto V, Yu C, Grundfest W, Gruen JP (2009) Infrared thermal imaging: a review of the literature and case report. Neuroimage 47:T154–T162

    PubMed  Google Scholar 

  27. Kuo J-R, Chang M-H, Wang C-C, Chio C-C, Wang J-J, Lin B-S (2013) Wireless near-infrared spectroscopy system for determining brain hemoglobin levels in laboratory animals. J Neurosci Methods 214(2):204–209

    CAS  PubMed  Google Scholar 

  28. Ma H, Zhao M, Suh M, Schwartz TH (2009) Hemodynamic surrogates for excitatory membrane potential change during interictal epileptiform events in rat neocortex. J Neurophysiol 101(5):2550–2562

    PubMed  PubMed Central  Google Scholar 

  29. Grandy TH, Greenfield SA, Devonshire IM (2012) An evaluation of in vivo voltage-sensitive dyes: pharmacological side effects and signal-to-noise ratios after effective removal of brain-pulsation artifacts. J Neurophysiol 108(11):2931–2945

    CAS  PubMed  Google Scholar 

  30. Devonshire IM, Dommett EJ, Grandy TH, Halliday AC, Greenfield SA (2010) Environmental enrichment differentially modifies specific components of sensory-evoked activity in rat barrel cortex as revealed by simultaneous electrophysiological recordings and optical imaging in vivo. Neuroscience 170(2):662–669

    CAS  PubMed  Google Scholar 

  31. Ringuette D, Nauenberg J, Monnier PP, Carlen PL, Levi O (2018) Data compression and improved registration for laser speckle contrast imaging of rodent brains. Biomed Opt Express 9(11):5615–5634

    PubMed  PubMed Central  Google Scholar 

  32. Wang L, Li Y, Li Y, Li K (2018) Improved speckle contrast optical coherence tomography angiography. Am J Transl Res 10(10):3025–3035

    PubMed  PubMed Central  Google Scholar 

  33. Senarathna J, Rege A, Li N, Thakor NV (2013) Laser speckle contrast imaging: theory, instrumentation and applications. IEEE Rev Biomed Eng 6:99–110

    PubMed  Google Scholar 

  34. Wang Z, Hughes S, Dayasundara S, Menon RS (2007) Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation. J Cereb Blood Flow Metab 27(2):258–269

    PubMed  Google Scholar 

  35. Men J et al (2016) Optical coherence tomography for brain imaging and developmental biology. IEEE J Sel Top Quantum Electron 22(4):1–13

    Google Scholar 

  36. Roche-Labarbe N et al (2010) Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life. Hum Brain Mapp 31(3):341–352

    PubMed  Google Scholar 

  37. Roche-Labarbe N, Wallois F, Ponchel E, Kongolo G, Grebe R (2007) Coupled oxygenation oscillation measured by NIRS and intermittent cerebral activation on EEG in premature infants. Neuroimage 36(3):718–727

    CAS  PubMed  Google Scholar 

  38. Hu S, Maslov K, Tsytsarev V, Wang LV (2009) Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. J Biomed Opt 14(4)

    Google Scholar 

  39. Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang LV (2003) Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol 21(7):803–806

    CAS  PubMed  Google Scholar 

  40. Takahashi K, Hishida R, Kubota Y, Kudoh M, Takahashi S, Shibuki K (2006) Transcranial fluorescence imaging of auditory cortical plasticity regulated by acoustic environments in mice. Eur J Neurosci 23(5):1365–1376

    PubMed  Google Scholar 

  41. Tohmi M, Takahashi K, Kubota Y, Hishida R, Shibuki K (2009) Transcranial flavoprotein fluorescence imaging of mouse cortical activity and plasticity. J Neurochem 109:3–9

    CAS  PubMed  Google Scholar 

  42. Oh S et al (2011) In vivo optical properties of cortical tubers in children with tuberous sclerosis complex (TSC): a preliminary investigation. Epilepsia 52(9):1699–1704

    PubMed  Google Scholar 

  43. Widjaja E, Wilkinson ID, Griffiths PD (2007) Magnetic resonance perfusion imaging in malformations of cortical development. Acta Radiol 48(8):907–917

    CAS  PubMed  Google Scholar 

  44. Zenaro E, Rossi B, Angiari S, Constantin G (2013) Use of imaging to study leukocyte trafficking in the central nervous system. Immunol Cell Biol 91(4):271–280

    CAS  PubMed  Google Scholar 

  45. Kalchenko V, Israeli D, Kuznetsov Y, Meglinski I, Harmelin A (2015) A simple approach for non-invasive transcranial optical vascular imaging (nTOVI). J Biophotonics 8(11–12):897–901

    PubMed  Google Scholar 

  46. Guevara E, Pouliot P, Nguyen DK, Lesage F (2013) Optical imaging of acute epileptic networks in mice. J Biomed Opt 18(7):076021

    Google Scholar 

  47. Tsytsarev V, Arakawa H, Borisov S, Pumbo E, Erzurumlu RS, Papkovsky DB (2013) In vivo imaging of brain metabolism activity using a phosphorescent oxygen-sensitive probe. J Neurosci Methods 216(2)

    Google Scholar 

  48. Hong G et al (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8(9):723–730

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gottschalk S, Fehm TF, Deán-Ben XL, Tsytsarev V, Razansky D (2017) Correlation between volumetric oxygenation responses and electrophysiology identifies deep thalamocortical activity during epileptic seizures. Neurophotonics 4(1)

    Google Scholar 

  50. Hamilton NB, Attwell D, Hall CN (2010) Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenergetics 2

    Google Scholar 

  51. Avsenik J, Bisdas S, Popovic KS (2015) Blood-brain barrier permeability imaging using perfusion computed tomography. Radiol Oncol 49(2):107–114

    PubMed  PubMed Central  Google Scholar 

  52. Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443(7112):700–704

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J (2015) Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87(1):95–110

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hartmann MJZ (2009) Active touch, exploratory movements, and sensory prediction. Integr Comp Biol 49(6):681–690

    PubMed  Google Scholar 

  55. Milesi S et al (2014) Redistribution of PDGFRβ cells and NG2DsRed pericytes at the cerebrovasculature after status epilepticus. Neurobiol Dis 71:151–158

    CAS  PubMed  Google Scholar 

  56. Kovács R et al (2018) Bioenergetic mechanisms of seizure control. Front. Cell. Neurosci. 12:335

    PubMed  PubMed Central  Google Scholar 

  57. Leal-Campanario R et al (2017) Abnormal capillary vasodynamics contribute to ictal neurodegeneration in epilepsy. Sci Rep 7(1):43276

    PubMed  PubMed Central  Google Scholar 

  58. Nicastro N, Assal F, Seeck M (2016) From here to epilepsy: the risk of seizure in patients with Alzheimer’s disease. Epileptic Disord 18(1):1–12

    PubMed  Google Scholar 

  59. Born HA (2015) Seizures in alzheimer’s disease. Neuroscience 286:251–263

    CAS  PubMed  Google Scholar 

  60. Zhang X et al (2015) Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease. Proc Natl Acad Sci 112(31):9734–9739

    CAS  PubMed  Google Scholar 

  61. Kodam A et al (2018) A role for astrocyte-derived amyloid β peptides in the degeneration of neurons in an animal model of temporal lobe epilepsy. Brain Pathol

    Google Scholar 

  62. Obrig H (2014) NIRS in clinical neurology—a ‘promising’ tool? Neuroimage 85(Pt 1):535–546

    PubMed  Google Scholar 

  63. Ran C et al (2009) Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-β deposits. J Am Chem Soc 131(42):15257–15261

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Koronyo-Hamaoui M et al (2011) Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54:S204–S217

    CAS  PubMed  Google Scholar 

  65. Kantarci K et al (2012) Ante mortem amyloid imaging and β-amyloid pathology in a case with dementia with Lewy bodies. Neurobiol Aging 33(5):878–885

    CAS  PubMed  Google Scholar 

  66. J. Noebels (Jan. 2011) A perfect storm: converging paths of epilepsy and Alzheimer’s dementia intersect in the hippocampal formation. Epilepsia 52 Suppl 1(suppl 1):39–46

    Google Scholar 

  67. Cui M, Ono M, Watanabe H, Kimura H, Liu B, Saji H (2014) Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits. J Am Chem Soc 136(9):3388–3394

    CAS  PubMed  Google Scholar 

  68. Chang WM, Dakanali M, Capule CC, Sigurdson CJ, Yang J, Theodorakis EA (2011) ANCA: a family of fluorescent probes that bind and stain amyloid plaques in human tissue. ACS Chem Neurosci 2(5):249–255

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Watanabe H, Ono M, Matsumura K, Yoshimura M, Kimura H, Saji H (2013) Molecular imaging of β-amyloid plaques with near-infrared boron dipyrromethane (BODIPY)-based fluorescent probes. Mol Imaging 12(5):338–347

    Google Scholar 

  70. Hillman EMC et al (2011) In vivo optical imaging and dynamic contrast methods for biomedical research. Philos Trans A Math Phys Eng Sci 369(1955):4620–4643

    PubMed  PubMed Central  Google Scholar 

  71. Hillman EMC, Boas DA, Dale AM, Dunn AK (2004) Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media. Opt Lett 29(14):1650–1652

    PubMed  Google Scholar 

  72. Erickson SJ, Martinez SL, DeCerce J, Romero A, Caldera L, Godavarty A (2013) Three-dimensional fluorescence tomography of human breast tissues in vivo using a hand-held optical imager. Phys Med Biol 58(5):1563–1579

    PubMed  PubMed Central  Google Scholar 

  73. Bukowska D et al (2012) Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography. J Biomed Opt 17(10):101515

    Google Scholar 

  74. Issa JB, Haeffele BD, Agarwal A, Bergles DE, Young ED, Yue DT (2014) Multiscale optical Ca2+imaging of tonal organization in mouse auditory cortex. Neuron 83(4):944–959

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Baran U, Wang RK (2016) Review of optical coherence tomography based angiography in neuroscience. Neurophotonics 3(1):010902

    PubMed  PubMed Central  Google Scholar 

  76. Tang Q et al (2017) High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT). Biomed Opt Express 8(4):2124–2137

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Tang Q et al. (2016) In vivo mesoscopic voltage-sensitive dye imaging of brain activation. Sci Rep 6

    Google Scholar 

  78. Liao L-D et al (2013) Neurovascular coupling: in vivo optical techniques for functional brain imaging. Biomed Eng Online 12(1):38

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The images used in the Figs. 1, 2 and 3 are obtained by Dr. Vyacheslav Kalchenko, Weizmann Institute of Science

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav Kalchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalchenko, V. et al. (2020). Transcranial Dynamic Fluorescence Imaging for the Study of the Epileptic Seizures. In: Tsytsarev, V., Yamamoto, V., Zhong, N. (eds) Functional Brain Mapping: Methods and Aims. Brain Informatics and Health. Springer, Singapore. https://doi.org/10.1007/978-981-15-6883-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6883-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6882-4

  • Online ISBN: 978-981-15-6883-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics