Abstract
This chapter aims to discuss the current and potential applications of microbial fuel cells (MFCs), a suitable technique for energy harvesting. In the last few years, MFC technology has been extensively investigated due to its capacity for wastewater treatment with simultaneous generation of bioelectricity, with many efforts devoted to increasing the efficiency of these devices. Although their practical implementation remains a challenge, the scope of application has been expanded to several fields in which they have achieved encouraging results. Among the drawbacks, the scaling-up of MFC systems poses issues for large installations. The strengths and limitations of these bioelectrochemical devices are analyzed for their potential application in terms of electricity generation at large scale and power supply to small electronic devices, municipal and industrial wastewater treatment, metal removal, water decolorization, added-value chemical production, and biosensing. Several strategies proposed in the literature for the scaling-up of the technology are also analyzed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abourached, C., Catal, T., & Liu, H. (2014). Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Research, 51, 228–233. https://doi.org/10.1016/j.watres.2013.10.062
Ali, J., Sohail, A., Wang, L., Haider, M. R., Mulk, S., & Pan, G. (2018). Electro-microbiology as a promising approach towards renewable energy and environmental sustainability. Energies. https://doi.org/10.3390/en11071822
Asai, Y., Miyahara, M., Kouzuma, A., & Watanabe, K. (2017). Comparative evaluation of wastewater-treatment microbial fuel cells in terms of organics removal, waste-sludge production, and electricity generation. Bioresources and Bioprocessing. https://doi.org/10.1186/s40643-017-0163-7
Bajracharya, S., Sharma, M., Mohanakrishna, G., Dominguez Benneton, X., Strik, D. P. B. T. B., Sarma, P. M., et al. (2016). An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renewable Energy, 98, 153–170. https://doi.org/10.1016/j.renene.2016.03.002
Ben Liew, K., Daud, W. R. W., Ghasemi, M., Leong, J. X., Su Lim, S., & Ismail, M. (2014). Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review. International Journal of Hydrogen Energy, 39, 4870–4883. https://doi.org/10.1016/j.ijhydene.2014.01.062
Chae, K. J., Choi, M. J., Lee, J. W., Kim, K. Y., & Kim, I. S. (2009). Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresource Technology, 100, 3518–3525. https://doi.org/10.1016/j.biortech.2009.02.065
Chandrasekhar, K., Lee, Y. J., & Lee, D. W. (2015). Biohydrogen production: Strategies to improve process efficiency through microbial routes. International Journal of Molecular Sciences, 16, 8266–8293. https://doi.org/10.3390/ijms16048266
Chen, Z., Zhang, J., Singh, S., Peltier-Pain, P., Thorson, J. S., & Hinds, B. J. (2014). Functionalized anodic aluminum oxide membrane-electrode system for enzyme immobilization. ACS Nano, 8, 8104–8112. https://doi.org/10.1021/nn502181k
Chouler, J., & Di Lorenzo, M. (2015). Water quality monitoring in developing countries; Can microbial fuel cells be the answer? Biosensors, 5, 450–470. https://doi.org/10.3390/bios5030450
Cui, D., Guo, Y. Q., Lee, H. S., Wu, W. M., Liang, B., Wang, A. J., et al. (2014). Enhanced decolorization of azo dye in a small pilot-scale anaerobic baffled reactor coupled with biocatalyzed electrolysis system (ABR-BES): A design suitable for scaling-up. Bioresource Technology, 163, 254–261. https://doi.org/10.1016/j.biortech.2014.03.165
Di Lorenzo, M., Scott, K., Curtis, T. P., Katuri, K. P., & Head, I. M. (2009). Continuous feed microbial fuel cell using an air cathode and a disc anode stack for wastewater treatment. Energy & Fuels, 23, 5707–5716. https://doi.org/10.1021/ef9005934
Di Lorenzo, M., Thomson, A. R., Schneider, K., Cameron, P. J., & Ieropoulos, I. (2014). A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosensors & Bioelectronics, 62, 182–188. https://doi.org/10.1016/j.bios.2014.06.050
Ding, H., Li, Y., Lu, A., Jin, S., Quan, C., Wang, C., et al. (2010). Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode. Bioresource Technology, 101, 3500–3505. https://doi.org/10.1016/j.biortech.2009.11.107
Ezziat, L., Elabed, A., Ibnsouda, S., & El Abed, S. (2019). Challenges of microbial fuel cell architecture on heavy metal recovery and removal from wastewater. Frontiers in Energy Research. https://doi.org/10.3389/fenrg.2019.00001
Fan, Y., Hu, H., & Liu, H. (2007). Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environmental Science & Technology, 41, 8154–8158. https://doi.org/10.1021/es071739c
Fan, Y., Sharbrough, E., & Liu, H. (2008). Quantification of the internal resistance distribution of microbial fuel cells. Environmental Science & Technology, 42, 8101–8107. https://doi.org/10.1021/es801229j
Feng, Y., He, W., Liu, J., Wang, X., Qu, Y., & Ren, N. (2014). A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Bioresource Technology, 156, 132–138. https://doi.org/10.1016/j.biortech.2013.12.104
Ge, Z., & He, Z. (2016). Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: Treatment, energy, and cost. Environmental Science: Water Research & Technology, 2, 274–281. https://doi.org/10.1039/c6ew00020g
Greenman, J., Gajda, I., & Ieropoulos, I. (2019). Microbial fuel cells (MFC) and microalgae; photo microbial fuel cell (PMFC) as complete recycling machines. Sustainable Energy & Fuels, 3, 2546–2560. https://doi.org/10.1039/C9SE00354A
Gude, V. G. (2016). Wastewater treatment in microbial fuel cells - An overview. Journal of Cleaner Production, 122, 287–307. https://doi.org/10.1016/j.jclepro.2016.02.022
Guo, X., Zhan, Y., Chen, C., Cai, B., Wang, Y., & Guo, S. (2016). Influence of packing material characteristics on the performance of microbial fuel cells using petroleum refinery wastewater as fuel. Renewable Energy, 87, 437–444. https://doi.org/10.1016/j.renene.2015.10.041
Heidrich, E. S., Curtis, T. P., & Dolfing, J. (2011). Determination of the internal chemical energy of wastewater. Environmental Science & Technology, 45, 827–832. https://doi.org/10.1021/es103058w
Hernandez-Fernandez, F. J., de Los Rios, A. P., Salar-Garcia, M. J., Ortiz-Martinez, V. M., Lozano-Blanco, L. J., Godinez, C., et al. (2015). Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Processing Technology, 138, 284–297. https://doi.org/10.1016/j.fuproc.2015.05.022
Hiegemann, H., Herzer, D., Nettmann, E., Lübken, M., Schulte, P., Schmelz, K. G., et al. (2016). An integrated 45 L pilot microbial fuel cell system at a full-scale wastewater treatment plant. Bioresource Technology, 218, 115–122. https://doi.org/10.1016/j.biortech.2016.06.052
Huang, Y., He, Z., Kan, J., Manohar, A. K., Nealson, K. H., & Mansfeld, F. (2012). Electricity generation from a floating microbial fuel cell. Bioresource Technology, 114, 308–313. https://doi.org/10.1016/j.biortech.2012.02.142
Ieropoulos, I., Greenman, J., & Melhuish, C. (2012). Urine utilisation by microbial fuel cells; Energy fuel for the future. Physical Chemistry Chemical Physics, 14, 94–98. https://doi.org/10.1039/c1cp23213d
Ieropoulos, I., Greenman, J., Melhuish, C., & Horsfield, I. (2010). EcoBot-III: A robot with guts. Paper presented at the 12th international conference on the simulation and synthesis of living systems, Odense, 19–23 August 2010.
Ieropoulos, I., Melhuish, C., Greenman, J., & Horsfield, I. (2005). EcoBot-II: An artificial agent with a natural metabolism. International Journal of Advanced Robotic Systems, 2, 4.
Ilamathi, R., & Jayapriya, J. (2018). Microbial fuel cells for dye decolorization. Environmental Chemistry Letters, 16, 239–250. https://doi.org/10.1007/s10311-017-0669-4
Ivars-Barceló, F., Zuliani, A., Fallah, M., Mashkour, M., Rahimnejad, M., & Luque, R. (2018). Novel applications of microbial fuel cells in sensors and biosensors. Applied Sciences. https://doi.org/10.3390/app8071184
Jadhav, G. S., & Ghangrekar, M. M. (2009). Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresource Technology, 100, 717–723. https://doi.org/10.1016/j.biortech.2008.07.041
Jia, Y. H., Tran, H. T., Kim, D. H., Oh, S. J., Park, D. H., Zhang, R. H., et al. (2008). Simultaneous organics removal and bio-electrochemical denitrification in microbial fuel cells. Bioprocess and Biosystems Engineering, 31, 315–321. https://doi.org/10.1007/s00449-007-0164-6
Jiang, D., Curtis, M., Toop, E., Scheible, K., McGrath, J., Hu, B., et al. (2011). A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. International Journal of Hydrogen Energy, 36, 876–884. https://doi.org/10.1016/j.ijhydene.2010.08.074
Karube, I., Matsunaga, T., Mitsuda, S., & Suzuki, S. (1977). Microbial electrode BOD sensors. Biotechnology and Bioengineering, 19, 1535–1547. https://doi.org/10.1002/bit.260191010
Katuri, K. P., Enright, A. M., O’Flaherty, V., & Leech, D. (2012). Microbial analysis of anodic biofilm in a microbial fuel cell using slaughterhouse wastewater. Bioelectrochemistry, 87, 164–171. https://doi.org/10.1016/j.bioelechem.2011.12.002
Kelly, P. T., & He, Z. (2014). Understanding the application niche of microbial fuel cells in a cheese wastewater treatment process. Bioresource Technology, 157, 154–160. https://doi.org/10.1016/j.biortech.2014.01.085
Kim, M., Sik Hyun, M., Gadd, G. M., & Joo Kim, H. (2007). A novel biomonitoring system using microbial fuel cells. Journal of Environmental Monitoring. https://doi.org/10.1039/b713114c
Lao-Atiman, W., Chiraphatphimon, S., Sinbuathong, N., Jeraputra, C., & Sakdaronnarong, C. (2017). Hydrogen and electricity production from anaerobic digestion of rice vermicelli wastewater by mixed acidophilic consortia in a microbial fuel cell. Paper presented at the 4th international conference on sustainable energy technologies, Hanoi, 14–16 November 2016. https://doi.org/10.1109/ICSET.2016.7811807
Li, J., Fu, Q., Liao, Q., Zhu, X., Ding, Y., & Tian, X. (2009). Persulfate: A self-activated cathodic electron acceptor for microbial fuel cells. Journal of Power Sources, 194, 269–274. https://doi.org/10.1016/j.jpowsour.2009.04.055
Li, S., & Chen, G. (2018). Effects of evolving quality of landfill leachate on microbial fuel cell performance. Waste Management & Research, 36, 59–67. https://doi.org/10.1177/0734242X17739969
Li, W. W., Yu, H. Q., & He, Z. (2014). Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy & Environmental Science, 7, 911–924. https://doi.org/10.1039/c3ee43106a
Liang, P., Duan, R., Jiang, Y., Zhang, X., Qiu, Y., & Huang, X. (2018). One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Research, 141, 1–8. https://doi.org/10.1016/j.watres.2018.04.066
Liu, B., Lei, Y., & Li, B. (2014). A batch-mode cube microbial fuel cell based “shock” biosensor for wastewater quality monitoring. Biosensors & Bioelectronics, 9, 1323–1328. https://doi.org/10.1016/j.bios.2014.06.051
Liu, H., Grot, S., & Logan, B. E. (2005). Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science & Technology, 39, 4317–4320. https://doi.org/10.1021/es050244p
Liu, H., Ramnarayanan, R., & Logan, B. E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology, 38, 2281–2285. https://doi.org/10.1021/es034923g
Logan, B. E. (2010). Scaling up microbial fuel cells and other bioelectrochemical systems. Applied Microbiology and Biotechnology, 85, 1665–1671. https://doi.org/10.1007/s00253-009-2378-9
Logan, B. E., Wallack, M. J., Kim, K. Y., He, W., Feng, Y., & Saikay, E. (2015). Assessment of microbial fuel cell configurations and power densities. Environmental Science & Technology Letters, 2015, 206–214. https://doi.org/10.1021/acs.estlett.5b00180
Luo, A., Zhu, J., & Ndegwa, P. M. (2002). Removal of carbon, nitrogen, and phosphorus in pig manure by continuous and intermittent aeration at low redox potentials. Biosystems Engineering, 82, 209–215. https://doi.org/10.1006/bioe.2002.0071
Mansoorian, H. J., Mahvi, A. H., Jafari, A. J., Amin, M. M., Rajabizadeh, A., & Khanjani, N. (2013). Bioelectricity generation using two chamber microbial fuel cell treating wastewater from food processing. Enzyme and Microbial Technology, 52, 352–357. https://doi.org/10.1016/j.enzmictec.2013.03.004
Mansoorian, H. J., Mahvi, A. H., Jafari, A. J., & Khanjani, N. (2016). Evaluation of dairy industry wastewater treatment and simultaneous bioelectricity generation in a catalyst-less and mediator-less membrane microbial fuel cell. Journal of Saudi Chemical Society, 20, 88–100. https://doi.org/10.1016/j.jscs.2014.08.002
Mathuriya, A. S., & Yakhmi, J. V. (2014). Microbial fuel cells to recover heavy metals. Environmental Chemistry Letters, 12, 483–494. https://doi.org/10.1007/s10311-014-0474-2
Min, B., Kim, J., Oh, S., Regan, J. M., & Logan, B. E. (2005). Electricity generation from swine wastewater using microbial fuel cells. Water Research, 39, 4961–4968. https://doi.org/10.1016/j.watres.2005.09.039
Mohamed, H. O., Obaid, M., Sayed, E. T., Liu, Y., Lee, J., Park, M., et al. (2017). Electricity generation from real industrial wastewater using a single-chamber air cathode microbial fuel cell with an activated carbon anode. Bioprocess and Biosystems Engineering, 40, 1151–1161. https://doi.org/10.1007/s00449-017-1776-0
Ogugbue, C. J., Ebode, E. E., & Leera, S. (2015). Electricity generation from swine wastewater using microbial fuel cell. Journal of Ecological Engineering, 16, 26–33. https://doi.org/10.12911/22998993/60450
Ortiz-Martínez, V. M., Salar-García, M. J., de Ríos, A. P., Hernández-Fernández, F. J., Egea, J. A., & Lozano, L. J. (2015). Developments in microbial fuel cell modeling. Chemical Engineering Journal, 271, 50–60. https://doi.org/10.1016/j.cej.2015.02.076
Pallavi, C. K., & Udayashankara, T. H. (2016). A review on microbial fuel cells employing wastewaters as substrates for sustainable energy recovery and wastewater treatment. IOSR Journal of Environmental Science, Toxicology and Food Technology, 10, 31–36. https://doi.org/10.9790/2402-1012023136
Pandey, P., Shinde, V. N., Deopurkar, R. L., Kale, S. P., Patil, S. A., & Pant, D. (2016). Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Applied Energy, 168, 706–723. https://doi.org/10.1016/j.apenergy.2016.01.056
Patil, S., Harnisch, F., & Schröder, U. (2010). Toxicity response of electroactive microbial biofilms-a decisive feature for potential biosensor and power source applications. ChemPhysChem, 10, 2834–2837. https://doi.org/10.1002/cphc.201000218
Pietrelli, A., Ferrara, V., Khaled, F., Allard, B., Buret, F., & Costantini, F. (2016). Electrical characterization of MFC for low power applications. Paper presented at the 16th international conference on environment and electrical engineering, 6–8 June, Florence, 2016. https://doi.org/10.1109/EEEIC.2016.7555624
Potter, M. C. (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society B: Biological Sciences, 84, 260–276. https://doi.org/10.1098/rspb.1911.0073
Sahinkaya, E., Yurtsever, A., & Ucar, D. (2017). A novel elemental sulfur-based mixotrophic denitrifying membrane bioreactor for simultaneous Cr(VI) and nitrate reduction. Journal of Hazardous Materials, 324, 15–21. https://doi.org/10.1016/j.jhazmat.2016.02.032
Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356, 225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109
Santoro, C., Kodali, M., Shamoon, N., Serov, A., Soavi, F., Merino-Jimenez, I., et al. (2019). Increased power generation in supercapacitive microbial fuel cell stack using Fe-N-C cathode catalyst. Journal of Power Sources, 412, 416–424. https://doi.org/10.1016/j.jpowsour.2018.11.069
Santoro, C., Soavi, F., Serov, A., Arbizzani, C., & Atanassov, P. (2016). Self-powered supercapacitive microbial fuel cell: The ultimate way of boosting and harvesting power. Biosensors & Bioelectronics, 78, 229–235. https://doi.org/10.1016/j.bios.2015.11.026
Sawasdee, V., & Pisutpaisal, N. (2014). Simultaneous electricity generation and pollutant removal in nitrogen-rich wastewater using microbial fuel cells. Energy Procedia, 61, 1224–1228. https://doi.org/10.1016/j.egypro.2014.11.1063
Schievano, A., Colombo, A., Grattieri, M., Trasatti, S. P., Liberale, A., Tremolada, P., et al. (2017). Floating microbial fuel cells as energy harvesters for signal transmission from natural water bodies. Journal of Power Sources, 340, 80–88. https://doi.org/10.1016/j.jpowsour.2016.11.037
Shantaram, A., Beyenal, H., Veluchamy, R. R. A., & Lewandowski, Z. (2005). Wireless sensors powered by microbial fuel cells. Environmental Science & Technology, 39, 5037–5042. https://doi.org/10.1021/es0480668
Shemfe, M., Siew, N. G. K., & Sadhukhan, J. (2018). Bioelectrochemical systems for biofuel (electricity, hydrogen, and methane) and valuable chemical production. In V. G. Gude (Ed.), Green chemistry for sustainable biofuel production (1st ed., pp. 435–472). New York: Apple Academic Press.
Steinbusch, K. J. J., Hamelers, H. V. M., Schaap, J. D., Kampman, C., & Buisman, C. J. N. (2010). Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environmental Science & Technology, 44, 513–517. https://doi.org/10.1021/es902371e
Sun, M., Sheng, G. P., Zhang, L., Xia, C. R., Mu, Z. X., Liu, X. W., et al. (2008). An MEC-MFC-coupled system for biohydrogen production from acetate. Environmental Science & Technology, 42, 8095–8100. https://doi.org/10.1021/es801513c
Ter Heijne, A., Liu, F., Van Der Weijden, R., Weijma, J., Buisman, C. J. N., & Hamelers, H. V. M. (2010). Copper recovery combined with electricity production in a microbial fuel cell. Environmental Science & Technology, 44, 4376–4381. https://doi.org/10.1021/es100526g
Tharali, A. D., Sain, N., & Osborne, W. J. (2016). Microbial fuel cells in bioelectricity production. Frontiers in Life Science, 10, 252–266. https://doi.org/10.1080/21553769.2016.1230787
Velasquez-Orta, S. B., Head, I. M., Curtis, T. P., & Scott, K. (2011). Factors affecting current production in microbial fuel cells using different industrial wastewaters. Bioresource Technology, 102, 5105–5112. https://doi.org/10.1016/j.biortech.2011.01.059
Velvizhi, G., & Venkata Mohan, S. (2011). Biocatalyst behavior under self-induced electrogenic microenvironment in comparison with anaerobic treatment: Evaluation with pharmaceutical wastewater for multi-pollutant removal. Bioresource Technology, 102, 10784–10793. https://doi.org/10.1016/j.biortech.2011.08.061
Venkata Mohan, S., Mohanakrishna, G., Velvizhi, G., Babu, V. L., & Sarma, P. N. (2010). Bio-catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation. Biochemical Engineering Journal, 51, 32–39. https://doi.org/10.1016/j.bej.2010.04.012
Walter, X. A., Stinchcombe, A., Greenman, J., & Ieropoulos, I. (2017). Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging. Applied Energy, 192, 575–581. https://doi.org/10.1016/j.apenergy.2016.06.006
Wang, A., Sun, D., Cao, G., Wang, H., Ren, N., Wu, W. M., et al. (2011). Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresource Technology, 102, 4137–4143. https://doi.org/10.1016/j.biortech.2010.10.137
Wang, X., Feng, Y. J., & Lee, H. (2008). Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Science and Technology, 57, 1117–1121. https://doi.org/10.2166/wst.2008.064
Wei, J., Liang, P., & Huang, X. (2011). Recent progress in electrodes for microbial fuel cells. Bioresource Technology, 102, 9335–9344. https://doi.org/10.1016/j.biortech.2011.07.019
Wen, Q., Wu, Y., Zhao, L., & Sun, Q. (2010b). Production of electricity from the treatment of continuous brewery wastewater using a microbial fuel cell. Fuel, 89, 1381–1385. https://doi.org/10.1016/j.fuel.2009.11.004
Wen, Q., Wu, Y., Zhao, L. X., Sun, Q., & Kong, F. Y. (2010a). Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell. Journal of Zhejiang University. Science. B, 11, 87–93. https://doi.org/10.1631/jzus.B0900272
Wu, M. S., Xu, X., Zhao, Q., & Wang, Z. Y. (2017). Simultaneous removal of heavy metals and biodegradation of organic matter with sediment microbial fuel cells. RSC Advances, 7, 53433–53438. https://doi.org/10.1039/c7ra11103g
Yamasaki, R., Maeda, T., & Wood, T. K. (2018). Electron carriers increase electricity production in methane microbial fuel cells that reverse methanogenesis. Biotechnology for Biofuels. https://doi.org/10.1186/s13068-018-1208-7
Yang, F., Wang, K.-C., & Huang, Y. (2014). Energy-neutral communication protocol for very low power microbial fuel cell based wireless sensor network. IEEE Sensors. https://doi.org/10.1109/JSEN.2014.2377031
You, S., Zhao, Q., Zhang, J., Jiang, J., & Zhao, S. (2006). A microbial fuel cell using permanganate as the cathodic electron acceptor. Journal of Power Sources, 162, 1409–1415. https://doi.org/10.1016/j.jpowsour.2006.07.063
Yousefi, V., Mohebbi-Kalhori, D., & Samimi, A. (2017). Ceramic-based microbial fuel cells (MFCs): A review. International Journal of Hydrogen Energy, 42, 1672–1690. https://doi.org/10.1016/j.ijhydene.2016.06.054
Zhang, F., Ge, Z., Grimaud, J., Hurst, J., & He, Z. (2013). Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility. Environmental Science & Technology, 47, 4941–4948. https://doi.org/10.1021/es400631r
Zhang, L. J., Tao, H. C., Wei, X. Y., Lei, T., Li, J. B., Wang, A. J., et al. (2012). Bioelectrochemical recovery of ammonia-copper(II) complexes from wastewater using a dual chamber microbial fuel cell. Chemosphere, 89, 1177–1182. https://doi.org/10.1016/j.chemosphere.2012.08.011
Zhang, Y., Liu, M., Zhou, M., Yang, H., Liang, L., & Gu, T. (2019). Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges. Renewable and Sustainable Energy Reviews, 103, 13–29. https://doi.org/10.1016/j.rser.2018.12.027
Zhao, H., Zhang, Y., Zhao, B., Chang, Y., & Li, Z. (2012). Electrochemical reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode. Environmental Science & Technology, 46, 5198–5204. https://doi.org/10.1021/es300186f
Zhou, M., Wang, H., Hassett, D. J., & Gu, T. (2013). Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. Journal of Chemical Technology and Biotechnology, 88, 508–518. https://doi.org/10.1002/jctb.4004
Zhuang, L., & Zhou, S. (2009). Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack. Electrochemistry Communications, 11, 937–940. https://doi.org/10.1016/j.elecom.2009.02.027
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Ortiz-Martínez, V.M., Gómez-Coma, L., Pérez, G., Ortiz, A., Ortiz, I. (2020). Current Applications and Future Perspectives of Microbial Fuel Cell Technology. In: Kumar, P., Kuppam, C. (eds) Bioelectrochemical Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-6868-8_14
Download citation
DOI: https://doi.org/10.1007/978-981-15-6868-8_14
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-6867-1
Online ISBN: 978-981-15-6868-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)