Skip to main content

The Role of Glycaemic Control in Cognitive Functioning

  • Chapter
  • First Online:
Chemically Modified Minds
  • 271 Accesses

Abstract

Effective glycaemic control is vitally important to protecting brain function, as the brain relies primarily on circulatory blood glucose crossing the blood-brain barrier for continuous energy provision.

The link between poor glucoregulation and cognitive deficits is well established, specifically for declarative memory and executive functioning (Messier, European Journal of Pharmacology, 490(1–3), 33–57, 2004; Smith, Riby, Eekelen, & Foster, Neuroscience and Biobehavioral Reviews, 35(3), 770–783, 2011a). Perhaps more alarmingly, cognitive deficits can also be detected in subclinical populations (Lamport, Lawton, Mansfield, & Dye, Neuroscience and Biobehavioral Reviews, 33(3), 394–413, 2009). The prevalence of glucoregulatory disorders (e.g. diabetes and metabolic syndrome) is increasing at a phenomenal rate, as are the associated health burdens and diminished neurocognitive functioning.

This chapter considers the role of glycaemic control (glucoregulation) and circulatory glucose levels on cognitive functioning. Through first considering the mechanisms of action, this chapter discusses the specific elements of cognition that appear to be susceptible to fluctuating glucose levels and decrements in glycaemic control. This chapter briefly explores clinical populations exhibiting cognitive decrements for which declining glucoregulation is a key feature of the pathology (e.g. Alzheimer’s disease). Considerations of how we might exploit glycaemic control through acute ingestion, to elicit performance enhancements and the implications/ramifications thereof are discussed. The chapter concludes by cautioning the responsible use of acute ingestion as a short-term cognitive enhancer in select populations, with strategies for stabilising and optimising glycaemic control being more effective long term to minimise glucoregulatory disorders and associated cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggleton, J. P., & Brown, M. W. (2006). Interleaving brain systems for episodic and recognition memory. Trends in Cognitive Sciences, 10(10), 455–463.

    Article  Google Scholar 

  • Awad, N., Gagnon, M., Desrochers, A., Tsiakas, M., & Messier, C. (2002). Impact of peripheral glucoregulation on memory. Behavioral Neuroscience, 116(4), 691–702.

    Article  Google Scholar 

  • Awad, N., Gagnon, M., & Messier, C. (2004). The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. Journal of Clinical and Experimental Neuropsychology, 26, 1044–1080.

    Article  Google Scholar 

  • Balota, D. A., Dolan, P. O., & Duchek, J. M. (2000). Memory changes in healthy older adults. In The Oxford handbook of memory (pp. 395–409). Oxford University Press.

    Google Scholar 

  • Bélanger, M., Allaman, I., & Magistretti, P. J. (2011). Brain energy metabolism: Focus on Astrocyte-neuron metabolic cooperation. Cell Metabolism, 14(6), 724–738.

    Article  Google Scholar 

  • Benton, D. (1990). The impact of increasing blood glucose on psychological functioning. Biological Psychology, 30(1), 13–19.

    Article  Google Scholar 

  • Benton, D. (2001). The impact of the supply of glucose to the brain on mood and memory. Nutrition Reviews, 59, S20.

    Article  Google Scholar 

  • Benton, D., Owens, D. S., & Parker, P. Y. (1994). Blood glucose influences memory and attention in young adults. Neuropsychologia, 32(5), 595–607.

    Article  Google Scholar 

  • Biessels, G. J., Staekenborg, S., Brunner, E., Brayne, C., & Scheltens, P. (2006). Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurology, 5(1), 64–74.

    Article  Google Scholar 

  • Brands, A. M. A., Biessels, G. J., de Haan, E. H. F., Kappelle, L. J., & Kessels, R. P. C. (2005). The effects of type 1 diabetes on cognitive performance: A meta-analysis. Diabetes Care, 28(3), 726–735.

    Article  Google Scholar 

  • Brandt, K. R. (2015). Effects of glucose administration on category exclusion recognition. Journal of Psychopharmacology, 29(7), 777–782.

    Article  Google Scholar 

  • Brandt, K. R., Gibson, E. L., & Rackie, J. M. (2013). Differential facilitative effects of glucose administration on stroop task conditions. Behavioral Neuroscience, 127(6), 932–935.

    Article  Google Scholar 

  • Canal, C. E. (2005). Glucose injections into the dorsal hippocampus or dorsolateral striatum of rats prior to T-maze training: Modulation of learning rates and strategy selection. Learning & Memory, 12(4), 367–374.

    Article  Google Scholar 

  • Chugani, H. T. (1998). A critical period of brain development: Studies of cerebral glucose utilization with PET. Preventive Medicine, 27(2), 184–188.

    Article  Google Scholar 

  • Craft, S., Dagogo-jack, S. E., Wiethop, B. V., Murphy, C., Nevins, R. T., Fleischman, S., … Cryer, P. E. (1993). Effects of hyperglycemia on memory and hormone levels in dementia of the Alzheimer type: A longitudinal study potentially interfering with these processes and making older. Behavioral Neuroscience, 107(6), 926–940.

    Article  Google Scholar 

  • Craft, S., Newcomer, J., Kanne, S., Dagogo-Jack, S., Cryer, P., Sheline, Y., … Alderson, A. (1996). Memory improvement following induced hyperinsulinemia in Alzheimer’s disease. Neurobiology of Aging, 17(1), 123–130.

    Article  Google Scholar 

  • Craft, S., & Watson, G. S. (2004). Insulin and neurodegenerative disease: Shared and specific mechanisms. Lancet Neurology, 3(3), 169–178.

    Article  Google Scholar 

  • Craft, S., Zallen, G., & Baker, L. D. (1992). Glucose and memory in mild senile dementia of the Alzheimer type. Journal of Clinical and Experimental Neuropsychology, 14(2), 253–267.

    Article  Google Scholar 

  • Denson, T. F., von Hippel, W., Kemp, R. I., & Teo, L. S. (2010). Glucose consumption decreases impulsive aggression in response to provocation in aggressive individuals. Journal of Experimental Social Psychology, 46(6), 1023–1028.

    Article  Google Scholar 

  • Donohoe, R. T., & Benton, D. (1999). Cognitive functioning is susceptible to the level of blood glucose. Psychopharmacology, 145(4), 378–385.

    Article  Google Scholar 

  • Donohoe, R. T., & Benton, D. (2000). Glucose tolerance predicts performance on tests of memory and cognition. Physiology and Behavior, 71(3–4), 395–401.

    Article  Google Scholar 

  • Dumas, J. A., & Newhouse, P. A. (2011). The cholinergic hypothesis of cognitive aging revisited again: Cholinergic functional compensation. Pharmacology, Biochemistry, and Behavior, 99, 254–261.

    Article  Google Scholar 

  • Durkin, T. P., Messier, C., de Boer, P., & Westerink, B. H. C. (1992). Raised glucose levels enhance scopolamine-induced acetylcholine overflow from the hippocampus: An in vivo microdialysis study in the rat. Behavioural Brain Research, 49(2), 181–188.

    Article  Google Scholar 

  • Elias, P. K., Elias, M. F., D’Agostino, R. B., Cupples, L. A., Wilson, P. W., Silbershatz, H., & Wolf, P. A. (1997). NIDDM and blood pressure as risk factors for poor cognitive performance. The Framingham study. Diabetes Care, 20(9), 1388–1395.

    Article  Google Scholar 

  • Fairclough, S. H., & Houston, K. (2004). A metabolic measure of mental effort. Biological Psychology, 66(2), 177–190.

    Article  Google Scholar 

  • Farrell, C. L., & Pardridge, W. M. (1991). Blood-brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: An electron microscopic immunogold study. Proceedings of the National Academy of Sciences of the United States of America, 88(13), 5779–5783.

    Article  Google Scholar 

  • Feinkohl, I., Aung, P. P., Keller, M., Robertson, C. M., Morling, J. R., McLachlan, S., … Price, J. F. (2014). Severe hypoglycemia and cognitive decline in older people with type 2 diabetes: The edinburgh type 2 diabetes study. Diabetes Care, 37(2), 507–515.

    Article  Google Scholar 

  • Fontbonne, A., Berr, C., Ducimetiere, P., & Alperovitch, A. (2001). Changes in cognitive abilities over a 4-year period are unfavorably affected in elderly diabetic subjects: Results of the epidemiology of vascular aging study. Diabetes Care, 24(2), 366–370.

    Article  Google Scholar 

  • Foster, J. K., Lidder, P. G., & Sünram, S. I. (1998). Glucose and memory: Fractionation of enhancement effects? Psychopharmacology, 137(3), 259–270.

    Article  Google Scholar 

  • Fucetola, R., Newcomer, J. W., Craft, S., & Melson, A. K. (1999). Age- and dose-dependent glucose-induced increases in memory and attention in schizophrenia. Psychiatry Research, 88(1), 1–13.

    Article  Google Scholar 

  • Gagnon, C., Greenwood, C. E., & Bherer, L. (2010). The acute effects of glucose ingestion on attentional control in fasting healthy older adults. Psychopharmacology, 211(3), 337–346.

    Article  Google Scholar 

  • Gailliot, M. T., Baumeister, R. F., Dewall, C. N., Maner, J. K., Plant, E. A., Tice, D. M., … Schmeichel, B. J. (2007). Self-control relies on glucose as a limited energy source: Willpower is more than a metaphor. Journal of Personality and Social Psychology, 92(2), 325–336.

    Article  Google Scholar 

  • Gaudieri, P. A., Chen, R., Greer, T. F., & Holmes, C. S. (2008). Cognitive function in children with type 1 diabetes. Diabetes Care, 31(9), 1892–1897.

    Article  Google Scholar 

  • Goldberg, T. E., Weinberger, D. R., Berman, K. F., Pliskin, N. H. & Podd, M. H. (1987). Further Evidence for Dementia of the Prefrontal Type in Schizophrenia–a Controlled-Study of Teaching the Wisconsin Card Sorting Test. Archives of General Psychiatry, 44, 1008–1014.

    Google Scholar 

  • Gold, P. E. (2014). Regulation of memory—From the adrenal medulla to liver to astrocytes to neurons. Brain Research Bulletin, 105, 25–35.

    Article  Google Scholar 

  • Greenwood, C. E., Kaplan, R. J., Hebblethwaite, S., & Jenkins, D. J. (2003). Carbohydrate-induced memory impairment in adults with type 2 diabetes. Diabetes Care, 26(7), 1961–1966.

    Article  Google Scholar 

  • Gruzelier, J., Seymour., K., Wilson, L., Jolley, A. & Hirsch, S. (1988). Impairments on Neuropsychologic Tests of Temporohippocampal and Frontohippocampal Functions and Word Fluency in Remitting Schizophrenia and Affective-Disorders. Archives of General Psychiatry, 45, 623–629.

    Google Scholar 

  • Hall, J. L., Gonder-Frederick, L. A., Chewning, W. W., Silveira, J., & Gold, P. E. (1989). Glucose enhancement of performance of memory tests in young and aged humans. Neuropsychologia, 27(9), 1129–1138.

    Article  Google Scholar 

  • Hope, C., Seiss, E., Dean, P. J. A., Williams, K. E. M., & Sterr, A. (2013). Consumption of glucose drinks slows sensorimotor processing: Double-blind placebo-controlled studies with the Eriksen flanker task. Frontiers in Human Neuroscience, 7(October), 1–10.

    Google Scholar 

  • Hoyer, S. (2003). Memory function and brain glucose metabolism. Pharmacopsychiatry, 36(Suppl 1), S62–S67.

    Google Scholar 

  • Hoyland, A., Lawton, C. L., & Dye, L. (2008). Acute effects of macronutrient manipulations on cognitive test performance in healthy young adults: A systematic research review. Neuroscience and Biobehavioral Reviews, 32(1), 72–85.

    Article  Google Scholar 

  • Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from intentional uses of memory. Journal of Memory and Language, 30(5), 513–541.

    Article  Google Scholar 

  • Kaufman, F. R., Epport, K., Engilman, R., & Halvorson, M. (1999). Neurocognitive functioning in children diagnosed with diabetes before age 10 years. Journal of Diabetes and its Complications, 13(1), 31–38.

    Article  Google Scholar 

  • Kennedy, C., & Sokokloff, L. (1957). An adaptation of the nitrous oxide method to the study of the cerebral circulation in children; Normal values for cerebral blood flow nd cerebral metabolic rate in childhood. The Journal of Clinical Investigation, 36, 1130–1137.

    Article  Google Scholar 

  • Kennedy, D. O., & Scholey, A. B. (2000). Glucose administration, heart rate and cognitive performance: Effects of increasing mental effort. Psychopharmacology, 149(1), 63–71.

    Article  Google Scholar 

  • Korol, D. L., & Gold, P. E. (1998). Glucose, memory, and aging. American Journal of Clinical Nutrition, 67, 764–771.

    Article  Google Scholar 

  • Krebs-Kraft, D. L., & Parent, M. B. (2008). Hippocampal infusions of glucose reverse memory deficits produced by co-infusions of a GABA receptor agonist. Neurobiology of Learning and Memory, 89(2), 142–152.

    Article  Google Scholar 

  • Lamport, D. J., Lawton, C. L., Mansfield, M. W., & Dye, L. (2009). Impairments in glucose tolerance can have a negative impact on cognitive function: A systematic research review. Neuroscience and Biobehavioral Reviews, 33(3), 394–413.

    Article  Google Scholar 

  • Languren, G., Montiel, T., Julio-Amilpas, A., & Massieu, L. (2013). Neuronal damage and cognitive impairment associated with hypoglycemia: An integrated view. Neurochemistry International, 63(4), 331–343.

    Article  Google Scholar 

  • Lieberman, H. R. (2003). Nutrition, brain function and cognitive performance. Appetite, 40(3), 245–254.

    Article  Google Scholar 

  • Luengo-Fernandez, R., Leal, J., & Gray, A. (2010). Dementia 2010—The economic burden of dementia and associated research finding in the United Kingdom. Alzheimer’s Research Trust.

    Google Scholar 

  • Macpherson, H., Roberstson, B., Sünram-Lea, S., Stough, C., Kennedy, D., & Scholey, A. (2015). Glucose administration and cognitive function: Differential effects of age and effort during a dual task paradigm in younger and older adults. Psychopharmacology, 232(6), 1135–1142.

    Article  Google Scholar 

  • Magistretti, P. J. (2008). Brain energy metabolism. In L. R. Squire, F. E. Bloom, N. C. Spitzer, S. du Lac, A. Ghosh, & D. Berg (Eds.), Fundamental neuroscience (pp. 271–293). Academic Press.

    Google Scholar 

  • Manning, C. A., Ragozzino, M. E., & Gold, P. E. (1993). Glucose enhancement of memory in patients with probable senile dementia of the Alzheimer’s type. Neurobiology of Aging, 14(6), 523–528.

    Article  Google Scholar 

  • Manning, C. A., Stone, W. S., Korol, D. L., & Gold, P. E. (1998). Glucose enhancement of 24-h memory retrieval in healthy elderly humans. Behavioural Brain Research, 93(1–2), 71–76.

    Article  Google Scholar 

  • Maric, N., Doknic, M., Damjanovic, A., Pekic, S., Jasovic-Gasic, M., & Popovic, V. (2008). Glucoregulation in normal weight schizophrenia patients treated by first generation antipsychotics. Srpski Arhiv za Celokupno Lekarstvo, 136(3–4), 110–115.

    Article  Google Scholar 

  • Martins, I. J., Hone, E., Foster, J. K., Sünram-Lea, S. I., Gnjec, A., Fuller, S. J., … Martins, R. N. (2006). Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer’s disease and cardiovascular disease. Molecular Psychiatry, 11(8), 721–736.

    Article  Google Scholar 

  • McCarthy, A. M., & Elmendorf, J. S. (2007). GLUT4’s itinerary in health & disease. Indian Journal of Medical Research, 125(3), 373–388.

    Google Scholar 

  • McNay, E. C. (2005). The impact of recurrent hypoglycemia on cognitive function in aging. Neurobiology of Aging, 26, 76–79.

    Article  Google Scholar 

  • McNay, E. C., & Gold, P. E. (2001). Age-related differences in hippocampal extracellular fluid glucose concentration during behavioral testing and following systemic glucose administration. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 56(2), B66–B71.

    Article  Google Scholar 

  • McNay, E. C., McCarty, R. C., & Gold, P. E. (2001). Fluctuations in brain glucose concentration during behavioral testing: Dissociations between brain areas and between brain and blood. Neurobiology of Learning and Memory, 75(3), 325–337.

    Article  Google Scholar 

  • Meikle, A., Riby, L. M., & Stollery, B. (2004). The impact of glucose ingestion and gluco-regulatory control on cognitive performance: A comparison of younger and middle aged adults. Human Psychopharmacology, 19(8), 523–535.

    Article  Google Scholar 

  • Meikle, A., Riby, L. M., & Stollery, B. (2005). Memory processing and the glucose facilitation effect: The effects of stimulus difficulty and memory load. Nutritional Neuroscience, 8(4), 227–232.

    Article  Google Scholar 

  • Messier, C. (1998). The absence of effect of glucose on memory is associated with low susceptibility to the amnestic effects of scopolamine in a strain of mice. Behavioural Brain Research, 96(1–2), 47–57.

    Article  Google Scholar 

  • Messier, C. (2003). Diabetes, Alzheimer’s disease and apolipoprotein genotype. Experimental Gerontology, 38, 941–946.

    Google Scholar 

  • Messier, C. (2004). Glucose improvement of memory: A review. European Journal of Pharmacology, 490(1–3), 33–57.

    Article  Google Scholar 

  • Messier, C., Awad-Shimoon, N., Gagnon, M., Desrochers, A., & Tsiakas, M. (2011). Glucose regulation is associated with cognitive performance in young nondiabetic adults. Behavioural Brain Research, 222(1), 81–88.

    Article  Google Scholar 

  • Messier, C., Desrochers, A., & Gagnon, M. (1999). Effect of glucose, glucose regulation, and word imagery value on human memory. Behavioral Neuroscience, 113(3), 431–438.

    Article  Google Scholar 

  • Messier, C., Gagnon, M., & Knott, V. (1997). Effect of glucose and peripheral glucose regulation on memory in the elderly. Neurobiology of Aging, 18(3), 297–304.

    Article  Google Scholar 

  • Messier, C., Pierre, J., Desrochers, A., & Gravel, M. (1998). Dose-dependent action of glucose on memory processes in women: Effect on serial position and recall priority. Cognitive Brain Research, 7(2), 221–233.

    Article  Google Scholar 

  • Messier, C., Tsiakas, M., Gagnon, M., & Desrochers, A. (2010). Effect of age and glucoregulation on cognitive performance. Journal of Clinical and Experimental Neuropsychology, 32(8), 809–821.

    Article  Google Scholar 

  • Metzger, M. M. (2000). Glucose enhancement of a facial recognition task in young adults. Physiology and Behavior, 68(4), 549–553.

    Article  Google Scholar 

  • Metzger, M. M., & Flint, R. W. (2003). Glucose enhancement of face recognition is unaffected by alterations of face features. Neurobiology of Learning and Memory, 80(2), 172–175.

    Article  Google Scholar 

  • Muraven, M., Tice, D. M., & Baumeister, R. F. (1998). Self-control as a limited resource: Regulatory depletion patterns. Journal of Personality and Social Psychology, 74(3), 774–789.

    Article  Google Scholar 

  • Naguib, J. M., Kulinskaya, E., Lomax, C. L., & Garralda, M. (2009). Neuro-cognitive performance in children with type 1 diabetes—A meta-analysis. Journal of Pediatric Psychology, 34(3), 271–282.

    Article  Google Scholar 

  • Newcomer, J. W., Selke, G., Melson, A. K., Hershey, T., Craft, S., Richards, K., & Alderson, A. L. (1999). Decreased memory performance in healthy humans induced by stress- level cortisol treatment. Archives of General Psychiatry, 56(6), 527–533.

    Article  Google Scholar 

  • Northam, E. A., & Lin, A. (2010). Hypoglycaemia in childhood onset type 1 diabetes-part villain, but not the only one. Pediatric Diabetes, 11(2), 134–141.

    Article  Google Scholar 

  • Owen, L., Finnegan, Y., Hu, H., Scholey, A. B., & Sünram-Lea, S. I. (2010). Glucose effects on long-term memory performance: Duration and domain specificity. Psychopharmacology, 211(2), 131–140.

    Article  Google Scholar 

  • Owen, L., Scholey, A., Finnegan, Y., & Sünram-Lea, S. I. (2013). Response variability to glucose facilitation of cognitive enhancement. The British Journal of Nutrition, 110(10), 1873–1884.

    Article  Google Scholar 

  • Owen, L., Scholey, A. B., Finnegan, Y., Hu, H., & Sünram-Lea, S. I. (2012). The effect of glucose dose and fasting interval on cognitive function: A double-blind, placebo-controlled, six-way crossover study. Psychophar-macology, 220(3), 577–589.

    Google Scholar 

  • Owens, D. S., Parker, P. Y., & Benton, D. (1997). Blood glucose and subjective energy following cognitive demand. Physiology and Behavior, 62(3), 471–478.

    Article  Google Scholar 

  • Parent, M. B., Krebs-Kraft, D. L., Ryan, J. P., Wilson, J. S., Harenski, C., & Hamann, S. (2011). Glucose administration enhances fMRI brain activation and connectivity related to episodic memory encoding for neutral and emotional stimuli. Neuropsychologia, 49(5), 1052–1066.

    Article  Google Scholar 

  • Parsons, M. W., & Gold, P. E. (1992). Glucose enhancement of memory in elderly humans: An inverted-U dose-response curve. Neurobiology of Aging, 13(3), 401–404.

    Article  Google Scholar 

  • Ragozzino, M. E., & Gold, P. E. (1995). Glucose injections into the medial septum reverse the effects of intraseptal morphine infusions on hippocampal acetylcholine output and memory. Neuroscience, 68(4), 981–988.

    Article  Google Scholar 

  • Ragozzino, M. E., Pal, S. N., Unick, K., Stefani, M. R., & Gold, P. E. (1998). Modulation of hippocampal acetylcholine release and spontaneous alternation scores by intrahippocampal glucose injections. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18(4), 1595–1601.

    Article  Google Scholar 

  • Reger, M. A., Watson, G. S., Frey, W. H., Baker, L. D., Cholerton, B., Keeling, M. L., … Craft, S. (2006). Effects of intranasal insulin on cognition in memory-impaired older adults: Modulation by APOE genotype. Neurobiology of Aging, 27(3), 451–458.

    Article  Google Scholar 

  • Reger, M. A., Watson, G. S., Green, P. S., Baker, L. D., Cholerton, B., Fishel, M. A., … Craft, S. (2008). Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. Journal of Alzheimer’s Disease: JAD, 13(3), 323–331.

    Article  Google Scholar 

  • Riby, L. M. (2004). The impact of age and task domain on cognitive performance: A meta-analytic review of the glucose facilitation effect. Brain Impairment, 5(2), 145–165.

    Article  Google Scholar 

  • Riby, L. M., Lai Teik Ong, D., Azmie, N. B. M., Ooi, E. L., Regina, C., Yeo, E. K. W., … Aquili, L. (2017). Impulsiveness, postprandial blood glucose, and glucoregulation affect measures of behavioral flexibility. Nutrition Research, 48, 65–75.

    Article  Google Scholar 

  • Riby, L. M., Marriott, A., Bullock, R., Hancock, J., Smallwood, J., & McLaughlin, J. (2009). The effects of glucose ingestion and glucose regulation on memory performance in older adults with mild cognitive impairment. European Journal of Clinical Nutrition, 63(4), 566–571.

    Article  Google Scholar 

  • Riby, L. M., McMurtrie, H., Smallwood, J., Ballantyne, C., Meikle, A., & Smith, E. (2006). The facilitative effects of glucose ingestion on memory retrieval in younger and older adults: Is task difficulty or task domain critical? British Journal of Nutrition, 95(2), 414.

    Article  Google Scholar 

  • Riby, L. M., Meikle, A., & Glover, C. (2004). The effects of age, glucose ingestion and gluco-regulatory control on episodic memory. Age and Ageing, 33(5), 483–487.

    Article  Google Scholar 

  • Riby, L. M., Sünram-Lea, S. I., Graham, C., Foster, J. K., Cooper, T., Moodie, C., & Gunn, V. P. (2008). P3b versus P3a: An event-related potential investigation of the glucose facilitation effect. Journal of Psychopharmacology, 22(5), 486–492.

    Article  Google Scholar 

  • Ruis, C., van den Donk, M., Biessels, G. J., Kapelle, L. J., Gorter, K., & Rutten, G. E. H. (2009). Cognition in the early stage of type 2. Diabetes Care, 32(7), 3–7.

    Article  Google Scholar 

  • Ryan, C. M. (2006). Diabetes and brain damage: More (or less) than meets the eye? Diabetologia, 49(10), 2229–2233.

    Article  Google Scholar 

  • Ryan, C. M., & Geckle, M. (2000). Why is learning and memory dysfunction in Type 2 diabetes limited to older adults? Diabetes/Metabolism Research and Reviews, 16(June), 308–315.

    Article  Google Scholar 

  • Scholey, A., MacPherson, H., Sünram-Lea, S., Elliott, J., Stough, C., & Kennedy, D. (2013). Glucose enhancement of recognition memory: Differential effects on effortful processing but not aspects of “remember-know” responses. Neuropharmacology, 64(July), 544–549.

    Article  Google Scholar 

  • Scholey, A. B., Harper, S., & Kennedy, D. O. (2001). Cognitive demand and blood glucose. Physiology and Behavior, 73(4), 585–592.

    Article  Google Scholar 

  • Scholey, A. B., Laing, S., & Kennedy, D. O. (2006). Blood glucose changes and memory: Effects of manipulating emotionality and mental effort. Biological Psychology, 71(1), 12–19.

    Article  Google Scholar 

  • Scholey, A. B., Sünram-Lea, S. I., Greer, J., Elliott, J., & Kennedy, D. O. (2009a). Glucose administration prior to a divided attention task improves tracking performance but not word recognition: Evidence against differential memory enhancement? Psychopharmacology, 202(1–3), 549–558.

    Article  Google Scholar 

  • Scholey, A. B., Sünram-Lea, S. I., Greer, J., Elliott, J., & Kennedy, D. O. (2009b). Glucose enhancement of memory depends on initial thirst. Appetite, 53(3), 426–429.

    Article  Google Scholar 

  • Schultz, S. K., Arndt, S., Ho, B. C., Oliver, S. E., & Andreasen, N. C. (1999). Impaired glucose tolerance and abnormal movements in patients with schizophrenia. The American Journal of Psychiatry, 156(4), 640–642.

    Article  Google Scholar 

  • Seidman, L. J., Talbot, N. L., Kalinowski, A. G., Mccarley, R. W., Faraone, S. V., Kremen, W. S., Pepple, J. R. & Tsuang, M. T. (1991). Neuropsychological Probes of Fronto-Limbic System Dysfunction in Schizophrenia—Olfactory Identification and Wisconsin Card Sorting Performance. Schizophrenia Research, 6, 55–65.

    Google Scholar 

  • Smith, M. A., & Foster, J. K. (2008). Glucoregulatory and order effects on verbal episodic memory in healthy adolescents after oral glucose administration. Biological Psychology, 79(2), 209–215.

    Article  Google Scholar 

  • Smith, M. A., Riby, L. M., Sünram-Lea, S. I., van Eekelen, J. A. M., & Foster, J. K. (2009). Glucose modulates event-related potential components of recollection and familiarity in healthy adolescents. Psychopharmacology, 205(1), 11–20.

    Article  Google Scholar 

  • Smith, M. A., Riby, L. M., van Eekelen, J. A. M., & Foster, J. K. (2011a). Glucose enhancement of human memory: A comprehensive research review of the glucose memory facilitation effect. Neuroscience and Biobehavioral Reviews, 35(3), 770–783.

    Article  Google Scholar 

  • Smith, M. A., Hii, H. L., Foster, J. K., & Van Eekelen, J. A. M. (2011b). Glucose enhancement of memory is modulated by trait anxiety in healthy adolescent males. Journal of Psychopharmacology, 25(1), 60–70.

    Article  Google Scholar 

  • Stefani, M. R., Nicholson, G. M., & Gold, P. E. (1999). ATP-sensitive potassium channel blockade enhances spontaneous alternation performance in the rat: A potential mechanism for glucose-mediated memory enhancement. Neuroscience, 93(2), 557–563.

    Article  Google Scholar 

  • Stone, W. S., & Hsi, X. (2011). Declarative memory deficits and schizophrenia: Problems and prospects. Neurobiology of Learning and Memory, 96(4), 544–552.

    Article  Google Scholar 

  • Stone, W. S., Seidman, L. J., Wojcik, J. D., & Green, A. I. (2003). Glucose effects on cognition in schizophrenia. Schizophrenia Research, 62(1–2), 93–103.

    Article  Google Scholar 

  • Stone, W. S., Thermenos, H. W., Tarbox, S. I., Poldrack, R. A., & Seidman, L. J. (2005). Medial temporal and prefrontal lobe activation during verbal encoding following glucose ingestion in schizophrenia: A pilot fMRI study. Neurobiology of Learning and Memory, 83(1), 54–64.

    Article  Google Scholar 

  • Strachan, M. W., Deary, I. J., Ewing, F. M., & Frier, B. M. (1997). Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care, 20(3), 438–445.

    Article  Google Scholar 

  • Sünram-Lea, S. I., Dewhurst, S. A., & Foster, J. K. (2008). The effect of glucose administration on the recollection and familiarity components of recognition memory. Biological Psychology, 77(1), 69–75.

    Article  Google Scholar 

  • Sünram-Lea, S. I., Foster, J. K., Durlach, P., & Perez, C. (2001). Glucose facilitation of cognitive performance in healthy young adults: Examination of the influence of fast-duration, time of day and pre-consumption plasma glucose levels. Psychopharmacology, 157(1), 46–54.

    Article  Google Scholar 

  • Sünram-Lea, S. I., Foster, J. K., Durlach, P., & Perez, C. (2002a). Investigation into the significance of task difficulty and divided allocation of resources on the glucose memory facilitation effect. Psychopharmacology, 160(4), 387–397.

    Article  Google Scholar 

  • Sünram-Lea, S. I., Foster, J. K., Durlach, P., & Perez, C. (2002b). The effect of retrograde and anterograde glucose administration on memory performance in healthy young adults. Behavioural Brain Research, 134(1–2), 505–516.

    Article  Google Scholar 

  • Swanson, R. (1992). Physiologic coupling of glial glycogen metabolism to neuronal activity in brain. Canadian Journal of Physiology and Pharmacology, 70, S138–S144.

    Article  Google Scholar 

  • Watson, G. S., & Craft, S. (2004). Modulation of memory by insulin and glucose: Neuropsychological observations in Alzheimer’s disease. European Journal of Pharmacology, 490(1–3), 97–113.

    Article  Google Scholar 

  • White, N. N. (1991). Peripheral and central memory—Enhancing actions of glucose. Peripheral Signalling of the Brain, 6, 421–441.

    Google Scholar 

  • Wright, R. S., Levy, S. A. T., Katzel, L. I., Rosenberger, W. F., Manukyan, Z., Whitfield, K. E., & Waldstein, S. R. (2015). Fasting glucose and glucose tolerance as potential predictors of neurocognitive function among nondiabetic older adults. Journal of Clinical and Experimental Neuropsychology, 37(1), 49–60.

    Article  Google Scholar 

  • Zacks, R. T., Hasher, L., & Li, K. Z. H. (2000). Human memory. In The Handbook of Aging and Cognition (pp. 293–357). Lawrence Erlbaum Associates.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jade M. Elliott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elliott, J.M. (2021). The Role of Glycaemic Control in Cognitive Functioning. In: Hall, M., Forshaw, M., Montgomery, C. (eds) Chemically Modified Minds. Palgrave Macmillan, Singapore. https://doi.org/10.1007/978-981-15-6771-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6771-1_6

  • Published:

  • Publisher Name: Palgrave Macmillan, Singapore

  • Print ISBN: 978-981-15-6770-4

  • Online ISBN: 978-981-15-6771-1

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics