Skip to main content

Nutraceuticals as Cognitive Enhancers

  • Chapter
  • First Online:
Chemically Modified Minds
  • 300 Accesses

Abstract

Pharmaceutical cognitive enhancers tend to target single or classes of neurotransmitters. Given that most cognitive functions are the expression of multiple physiological processes, it is unsurprising that classic drug development has resulted in a few effective cognitive enhancers. At the same time there are well-characterised botanical extracts which appear to influence numerous neurotransmitter, neurohormonal and neurovascular processes involved in cognition. While many of these botanical extracts—e.g. cannabis, opiates and alcohol—are impairing, others can act as cognitive enhancers. This chapter will focus on acute cognitive enhancement from administration of select botanical extracts including Asian and American ginseng, sage and cocoa polyphenols. When benchmarked against pharmaceutical cognitive enhancers, these extracts enhance cognition with similar effect sizes to modafinil. The mechanisms of action appear to be different to those underlying pharmaceutical interventions, with positive effects on cerebral blood flow and central glucose utilisation complementing direct neurotransmitter effects. These mechanisms may be further elucidated through recently developed neuroimaging methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkam, T., Nitta, A., Mizoguchi, H., Itoh, A., & Nabeshima, T. (2007). A natural scavenger of peroxynitrites, rosmarinic acid, protects against impairment of memory induced by Aβ25–35. Behavioural Brain Research, 180(2), 139–145.

    Article  Google Scholar 

  • Bailey, R. L., Gahche, J. J., Miller, P. E., Thomas, P. R., & Dwyer, J. T. (2013). Why US adults use dietary supplements. JAMA Internal Medicine, 173(5), 355–361.

    Article  Google Scholar 

  • BCC Research. (2018). Nutraceuticals: Global markets to 2023.

    Google Scholar 

  • Bell, L., Lamport, D., Butler, L., & Williams, C. (2015). A review of the cognitive effects observed in humans following acute supplementation with flavonoids, and their associated mechanisms of action. Nutrients, 7(12), 10290–10306.

    Article  Google Scholar 

  • Benishin, C. G. (1992). Actions of ginsenoside Rb1 on choline uptake in central cholinergic nerve endings. Neurochemistry International, 21(1), 1–5.

    Article  Google Scholar 

  • Bowling, H., Bhattacharya, A., Klann, E., & Chao, M. V. (2016). Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology. Neural Regeneration Research, 11(3), 363.

    Article  Google Scholar 

  • Chen, L.-m., Lin, Z.-y., Zhu, Y.-g., Lin, N., Zhang, J., Pan, X.-d., et al. (2012). Ginsenoside Rg1 attenuates β-amyloid generation via suppressing PPARγ-regulated BACE1 activity in N2a-APP695 cells. European Journal of Pharmacology, 675(1–3), 15–21.

    Article  Google Scholar 

  • Chen, L.-M., Zhou, X.-M., Cao, Y.-L., & Hu, W.-X. (2008). Neuroprotection of ginsenoside Re in cerebral ischemia–reperfusion injury in rats. Journal of Asian Natural Products Research, 10(5), 439–445.

    Article  Google Scholar 

  • Chen, Z., Lu, T., Yue, X., Wei, N., Jiang, Y., Chen, M., et al. (2010). Neuroprotective effect of ginsenoside Rb1 on glutamate-induced neurotoxicity: With emphasis on autophagy. Neuroscience Letters, 482(3), 264–268.

    Article  Google Scholar 

  • Datla, K. P., Christidou, M., Widmer, W. W., Rooprai, H. K., & Dexter, D. T. (2001). Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson’s disease. Neuroreport, 12(17), 3871–3875.

    Article  Google Scholar 

  • Dickinson, A., Blatman, J., El-Dash, N., & Franco, J. C. (2014). Consumer usage and reasons for using dietary supplements: Report of a series of surveys. Journal of the American College of Nutrition, 33(2), 176–182.

    Article  Google Scholar 

  • EFSA Panel on Dietetic Products NaAN. (2012). Scientific opinion on the substantiation of a health claim related to cocoa flavanols and maintenance of normal endothelium-dependent vasodilation pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA Journal, 10, 2809.

    Google Scholar 

  • Ernst, E. (2005). Complementary/alternative medicine for hypertension: A mini-review. Wiener Medizinische Wochenschrift, 155(17–18), 386–391.

    Article  Google Scholar 

  • Field, D. T., Williams, C. M., & Butler, L. T. (2011). Consumption of cocoa flavanols results in an acute improvement in visual and cognitive functions. Physiology & Behavior, 103(3–4), 255–260.

    Article  Google Scholar 

  • Fisher, N. D., Sorond, F. A., & Hollenberg, N. K. (2006). Cocoa flavanols and brain perfusion. Journal of Cardiovascular Pharmacology, 47, S210–S214.

    Article  Google Scholar 

  • Flammer, A. J., Hermann, F., Sudano, I., Spieker, L., Hermann, M., Cooper, K. A., … Corti, R. (2007). Dark chocolate improves coronary vasomotion and reduces platelet reactivity. Circulation, 116(21), 2376–2382.

    Article  Google Scholar 

  • Fllaketov, A., Bogdanova, T., Podvigina, T., & Bodganov, A. (1988). Role of pituitary-adrenocortical system in body adaptation abilities. Experimental and Clinical Endocrinology & Diabetes, 92(5), 129–136.

    Article  Google Scholar 

  • Fonteles, A. A., de Souza, C. M., de Sousa Neves, J. C., Menezes, A. P. F., do Carmo, M. R. S., Fernandes, F. D. P., et al. (2016). Rosmarinic acid prevents against memory deficits in ischemic mice. Behavioural Brain Research SreeTestContent1, 297, 91–103.

    Article  Google Scholar 

  • Foolad, F., & Khodagholi, F. (2013). Dietary supplementation with Salvia sahendica attenuates acetylcholinesterase activity and increases mitochondrial transcription factor A and antioxidant proteins in the hippocampus of amyloid beta-injected rats. Journal of Pharmacy and Pharmacology, 65(10), 1555–1562.

    Article  Google Scholar 

  • Friedl, R., Moeslinger, T., Kopp, B., & Spieckermann, P. G. (2001). Stimulation of nitric oxide synthesis by the aqueous extract of Panax ginseng root in RAW 264.7 cells. British Journal of Pharmacology, 134(8), 1663–1670.

    Article  Google Scholar 

  • Garthwaite, J. (1993). Nitric oxide signalling in the nervous system. Seminars in Neuroscience, 5, 171–180.

    Article  Google Scholar 

  • Garthwaite, J., Charles, S. L., & Chess-Williams, R. (1988). Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature, 336(6197), 385.

    Article  Google Scholar 

  • González-Gallego, J., García-Mediavilla, M. V., Sánchez-Campos, S., & Tuñón, M. J. (2014). Anti-inflammatory and immunomodulatory properties of dietary flavonoids. Polyphenols in Human Health and Disease, 435–452.

    Google Scholar 

  • Grassi, D., Desideri, G., & Ferri, C. (2013). Protective effects of dark chocolate on endothelial function and diabetes. Current Opinion in Clinical Nutrition & Metabolic Care, 16(6), 662–668.

    Article  Google Scholar 

  • Gu, L., Kelm, M. A., Hammerstone, J. F., Beecher, G., Holden, J., Haytowitz, D., et al. (2004). Concentrations of proanthocyanidins in common foods and estimations of normal consumption. The Journal of Nutrition, 134(3), 613–617.

    Article  Google Scholar 

  • Helms, S. (2004). Cancer prevention and therapeutics: Panax ginseng. Alternative Medicine Review, 9(3).

    Google Scholar 

  • Hiai, S., Yokoyama, H., Oura, H., & Kawashima, Y. (1983). Evaluation of corticosterone secretion-inducing activities of ginsenosides and their prosapogenins and sapogenins. Chemical and Pharmaceutical Bulletin, 31(1), 168–174.

    Article  Google Scholar 

  • Hollenberg, N. K., Fisher, N. D., & McCullough, M. L. (2009). Flavanols, the Kuna, cocoa consumption, and nitric oxide. Journal of the American Society of Hypertension, 3(2), 105–112.

    Article  Google Scholar 

  • Hsieh, M. T., Peng, W. H., Wu, C. R., & Wang, W. H. (2000). The ameliorating effects of the cognitive-enhancing Chinese herbs on scopolamine-induced amnesia in rats. Phytotherapy Research, 14(5), 375–377.

    Article  Google Scholar 

  • Huang, E. J., & Reichardt, L. F. (2001). Neurotrophins: Roles in neuronal development and function. Annual Review of Neuroscience, 24(1), 677–736.

    Article  Google Scholar 

  • Hurst, W. J., Tarka, S. M., Jr., Powis, T. G., Valdez, F., Jr., & Hester, T. R. (2002). Archaeology: Cacao usage by the earliest Maya civilization. Nature, 418(6895), 289.

    Article  Google Scholar 

  • Jeong, C. S. (2002). Effect of butanol fraction of Panax ginseng head on gastric lesion and ulcer. Archives of Pharmacal Research, 25(1), 61.

    Article  Google Scholar 

  • Jiang, P., Li, C., Xiang, Z., & Jiao, B. (2014). Tanshinone IIA reduces the risk of Alzheimer’s disease by inhibiting iNOS, MMP-2 and NF-κBp65 transcription and translation in the temporal lobes of rat models of Alzheimer’s disease. Molecular Medicine Reports, 10(2), 689–694.

    Article  Google Scholar 

  • Jiang, S., Miao, B., Song, X., & Jiang, Z. (2011). Inactivation of GABAA receptor reduces ginsenoside Rb3 neuroprotection in mouse hippocampal slices after oxygen–glucose deprivation. Journal of Ethnopharmacology, 133(2), 914–916.

    Article  Google Scholar 

  • Jin, S.-H., Park, J.-K., Nam, K.-Y., Park, S.-N., & Jung, N.-P. (1999). Korean red ginseng saponins with low ratios of protopanaxadiol and protopanaxatriol saponin improve scopolamine-induced learning disability and spatial working memory in mice. Journal of Ethnopharmacology, 66(2), 123–129.

    Article  Google Scholar 

  • Jin, X., Liu, P., Yang, F., Zhang, Y.-h., & Miao, D. (2013). Rosmarinic acid ameliorates depressive-like behaviors in a rat model of CUS and Up-regulates BDNF levels in the hippocampus and hippocampal-derived astrocytes. Neurochemical Research, 38(9), 1828–1837.

    Article  Google Scholar 

  • Kennedy, D., Scholey, A., & Wesnes, K. (2001a). Dose dependent changes in cognitive performance and mood following acute administration of Ginseng to healthy young volunteers. Nutritional Neuroscience, 4(4), 295–310.

    Article  Google Scholar 

  • Kennedy, D., Scholey, A., & Wesnes, K. (2001b). Differential, dose dependent changes in cognitive performance following acute administration of a Ginkgo biloba/Panax ginseng combination to healthy young volunteers. Nutritional Neuroscience, 4(5), 399–412.

    Article  Google Scholar 

  • Kennedy, D. O., Dodd, F. L., Robertson, B. C., Okello, E. J., Reay, J. L., Scholey, A. B., et al. (2011). Monoterpenoid extract of sage (Salvia lavandulaefolia) with cholinesterase inhibiting properties improves cognitive performance and mood in healthy adults. Journal of Psychopharmacology, 25(8), 1088–1100.

    Article  Google Scholar 

  • Kennedy, D. O., Pace, S., Haskell, C., Okello, E. J., Milne, A., & Scholey, A. B. (2006). Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery. Neuropsychopharmacology, 31(4), 845.

    Article  Google Scholar 

  • Khodagholi, F., & Ashabi, G. (2013). Dietary supplementation with Salvia sahendica attenuates memory deficits, modulates CREB and its down-stream molecules and decreases apoptosis in amyloid beta-injected rats. Behavioural Brain Research, 241, 62–69.

    Article  Google Scholar 

  • Kiefer, D., & Pantuso, T. (2003). Panax ginseng. American Family Physician, 68(8), 1539–1542.

    Google Scholar 

  • Kim, D. H., Jung, J. S., Suh, H. W., Huh, S. O., Min, S.-K., Son, B. K., et al. (1998). Inhibition of stress-induced plasma corticosterone levels by ginsenosides in mice: Involvement of nitric oxide. Neuroreport, 9(10), 2261–2264.

    Article  Google Scholar 

  • Kim, H.-S., Kang, J.-G., Seong, Y.-H., Nam, K.-Y., & Oh, K.-W. (1995). Blockade by ginseng total saponin of the development of cocaine induced reverse tolerance and dopamine receptor supersensitivity in mice. Pharmacology Biochemistry and Behavior, 50(1), 23–27.

    Article  Google Scholar 

  • Kim, H.-S., Lee, J.-H., Goo, Y.-S., & Nah, S.-Y. (1998). Effects of ginsenosides on Ca2 channels and membrane capacitance in rat adrenal chromaffin cells. Brain Research Bulletin, 46(3), 245–251.

    Article  Google Scholar 

  • Kosaka, K., & Yokoi, T. (2003). Carnosic acid, a component of rosemary (Rosmarinus officinalis L.), promotes synthesis of nerve growth factor in T98G human glioblastoma cells. Biological and Pharmaceutical Bulletin, 26(11), 1620–1622.

    Article  Google Scholar 

  • Kumar, A., Singh, A., & Ekavali. (2015). A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacological Reports: PR, 67(2), 195–203.

    Article  Google Scholar 

  • Laditka, J. N., Laditka, S. B., Tait, E. M., & Tsulukidze, M. M. (2012). Use of dietary supplements for cognitive health: Results of a national survey of adults in the United States. American Journal of Alzheimer’s Disease & Other Dementias®, 27(1), 55–64.

    Article  Google Scholar 

  • Lazarus, S. A., Hammerstone, J. F., & Schmitz, H. H. (1999). Chocolate contains additional flavonoids not found in tea. The Lancet, 354(9192), 1825.

    Article  Google Scholar 

  • Lee, Y. W., Kim, D. H., Jeon, S. J., Park, S. J., Kim, J. M., Jung, J. M., et al. (2013). Neuroprotective effects of salvianolic acid B on an Aβ25–35 peptide-induced mouse model of Alzheimer’s disease. European Journal of Pharmacology, 704(1–3), 70–77.

    Article  Google Scholar 

  • Li, L., Liu, J., Yan, X., Qin, K., Shi, M., Lin, T., et al. (2011). Protective effects of ginsenoside Rd against okadaic acid-induced neurotoxicity in vivo and in vitro. Journal of Ethnopharmacology, 138(1), 135–141.

    Article  Google Scholar 

  • Liberti, L. E., & Marderosian, A. D. (1978). Evaluation of commercial ginseng products. Journal of Pharmaceutical Sciences, 67(10), 1487–1489.

    Article  Google Scholar 

  • Lopresti, A. L. (2017). Salvia (Sage): A review of its potential cognitive-enhancing and protective effects. Drugs in R&D, 17(1), 53–64.

    Article  Google Scholar 

  • Lu, T., Jiang, Y., Zhou, Z., Yue, X., Wei, N., Chen, Z., et al. (2011). Intranasal ginsenoside Rb1 targets the brain and ameliorates cerebral ischemia/reperfusion injury in rats. Biological and Pharmaceutical Bulletin, 34(8), 1319–1324.

    Article  Google Scholar 

  • Marcelo, F., Dias, C., Martins, A., Madeira, P. J., Jorge, T., Florêncio, M. H., et al. (2013). Molecular recognition of rosmarinic acid from Salvia sclareoides extracts by acetylcholinesterase: A new binding site detected by NMR spectroscopy. Chemistry–A European Journal, 19(21), 6641–6649.

    Article  Google Scholar 

  • Marinac, J. S., Buchinger, C. L., Godfrey, L. A., Wooten, J. M., Sun, C., & Willsie, S. K. (2007). Herbal products and dietary supplements: A survey of use, attitudes, and knowledge among older adults. The Journal of the American Osteopathic Association, 107(1), 13–23.

    Google Scholar 

  • Massee, L. A., Ried, K., Pase, M., Travica, N., Yoganathan, J., Scholey, A., et al. (2015). The acute and sub-chronic effects of cocoa flavanols on mood, cognitive and cardiovascular health in young healthy adults: A randomized, controlled trial. Frontiers in Pharmacology, 6, 93.

    Article  Google Scholar 

  • Merad, M., Soufi, W., Ghalem, S., Boukli, F., Baig, M., Ahmad, K., et al. (2014). Molecular interaction of acetylcholinesterase with carnosic acid derivatives: A neuroinformatics study. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 13(3), 440–446.

    Google Scholar 

  • Milbury, P. E., & Kalt, W. (2010). Xenobiotic metabolism and berry flavonoid transport across the blood−brain barrier. Journal of Agricultural and Food Chemistry, 58(7), 3950–3956.

    Article  Google Scholar 

  • Mogil, J. S., Shin, Y.-H., McCleskey, E. W., Kim, S.-C., & Nah, S.-Y. (1998). Ginsenoside Rf, a trace component of ginseng root, produces antinociception in mice. Brain Research, 792(2), 218–228.

    Article  Google Scholar 

  • More, S. V., Kumar, H., Cho, D.-Y., Yun, Y.-S., & Choi, D.-K. (2016). Toxin-induced experimental models of learning and memory impairment. International Journal of Molecular Sciences, 17(9), 1447.

    Article  Google Scholar 

  • Moss, L., Rouse, M., Wesnes, K. A., & Moss, M. (2010). Differential effects of the aromas of Salvia species on memory and mood. Human Psychopharmacology: Clinical and Experimental, 25(5), 388–396.

    Article  Google Scholar 

  • Neale, C., Camfield, D., Reay, J., Stough, C., & Scholey, A. (2013). Cognitive effects of two nutraceuticals Ginseng and Bacopa benchmarked against modafinil: A review and comparison of effect sizes. British Journal of Clinical Pharmacology, 75(3), 728–737.

    Article  Google Scholar 

  • Nehlig, A. (2013). The neuroprotective effects of cocoa flavanol and its influence on cognitive performance. British Journal of Clinical Pharmacology, 75(3), 716–727.

    Article  Google Scholar 

  • Nitta, H., Matsumoto, K., Shimizu, M., Ni, X., & Watanabe, H. (1995). Panax ginseng extract improves the scopolamine-induced disruption of 8-arm radial maze performance in rats. Biological and Pharmaceutical Bulletin, 18(10), 1439–1442.

    Article  Google Scholar 

  • Pase, M. P., Scholey, A. B., Pipingas, A., Kras, M., Nolidin, K., Gibbs, A., et al. (2013). Cocoa polyphenols enhance positive mood states but not cognitive performance: A randomized, placebo-controlled trial. Journal of Psychopharmacology, 27(5), 451–458.

    Article  Google Scholar 

  • Passamonti, S., Vrhovsek, U., Vanzo, A., & Mattivi, F. (2005). Fast access of some grape pigments to the brain. Journal of Agricultural and Food Chemistry, 53(18), 7029–7034.

    Article  Google Scholar 

  • Patil, C. S., Singh, V. P., Satyanarayan, P., Jain, N. K., Singh, A., & Kulkarni, S. K. (2003). Protective effect of flavonoids against aging-and lipopolysaccharide-induced cognitive impairment in mice. Pharmacology, 69(2), 59–67.

    Article  Google Scholar 

  • Petkov, V. (1978). Effect of ginseng on the brain biogenic monoamines and 3′, 5′-AMP system. Experiments on rats. Arzneimittel-Forschung, 28(3), 388.

    Google Scholar 

  • Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., & Ferri, C. P. (2013). The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer’s & Dementia, 9(1), 63–75. e2.

    Article  Google Scholar 

  • Rasoolijazi, H., Azad, N., Joghataei, M., Kerdari, M., Nikbakht, F., & Soleimani, M. (2013). The protective role of carnosic acid against beta-amyloid toxicity in rats. The Scientific World Journal, 2013.

    Google Scholar 

  • Repantis, D., Schlattmann, P., Laisney, O., & Heuser, I. (2010). Modafinil and methylphenidate for neuroenhancement in healthy individuals: A systematic review. Pharmacological Research, 62(3), 187–206.

    Article  Google Scholar 

  • Sala, F., Mulet, J., Choi, S., Jung, S.-Y., Nah, S.-Y., Rhim, H., et al. (2002). Effects of ginsenoside Rg2 on human neuronal nicotinic acetylcholine receptors. Journal of Pharmacology and Experimental Therapeutics, 301(3), 1052–1059.

    Article  Google Scholar 

  • Salim, K. N., McEwen, B. S., & Chao, H. M. (1997). Ginsenoside Rb1 regulates ChAT, NGF and trkA mRNA expression in the rat brain. Molecular Brain Research, 47(1–2), 177–182.

    Article  Google Scholar 

  • Sallam, A., Mira, A., Ashour, A., & Shimizu, K. (2016). Acetylcholine esterase inhibitors and melanin synthesis inhibitors from Salvia officinalis. Phytomedicine, 23(10), 1005–1011.

    Article  Google Scholar 

  • Schneider, W. J., & McGrew, K. S. (2018). The Cattell–Horn–Carroll theory of cognitive abilities. In D. P. Flanagan & E. M. McDonough (Eds.), Contemporary intellectual assessment: Theories, tests, and issues (pp. 73–163). The Guilford Press.

    Google Scholar 

  • Scholey, A. (2018). Nutrients for neurocognition in health and disease: Measures, methodologies and mechanisms. Proceedings of the Nutrition Society, 77(1), 73–83.

    Article  Google Scholar 

  • Scholey, A. B., French, S. J., Morris, P. J., Kennedy, D. O., Milne, A. L., & Haskell, C. F. (2010). Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. Journal of Psychopharmacology, 24(10), 1505–1514.

    Article  Google Scholar 

  • Scholey, A. B., & Kennedy, D. O. (2002). Acute, dose-dependent cognitive effects of Ginkgo biloba, Panax ginseng and their combination in healthy young volunteers: Differential interactions with cognitive demand. Human Psychopharmacology: Clinical and Experimental, 17(1), 35–44.

    Article  Google Scholar 

  • Scholey, A. B., Tildesley, N. T., Ballard, C. G., Wesnes, K. A., Tasker, A., Perry, E. K., et al. (2008). An extract of Salvia (sage) with anticholinesterase properties improves memory and attention in healthy older volunteers. Psychopharmacology, 198(1), 127–139.

    Article  Google Scholar 

  • Scott, G. I., Colligan, P. B., Ren, B. H., & Ren, J. (2001). Ginsenosides Rb1 and Re decrease cardiac contraction in adult rat ventricular myocytes: Role of nitric oxide. British Journal of Pharmacology, 134(6), 1159–1165.

    Article  Google Scholar 

  • Seo, Y.-J., Kwon, M.-S., Choi, H.-W., Jang, J.-E., Lee, J.-K., Sun, Y., et al. (2008). Intracerebroventricular gisenosides are antinociceptive in proinflammatory cytokine-induced pain behaviors of mice. Archives of Pharmacal Research, 31(3), 364–369.

    Article  Google Scholar 

  • Shekarchi, M., Hajimehdipoor, H., Saeidnia, S., Gohari, A. R., & Hamedani, M. P. (2012). Comparative study of rosmarinic acid content in some plants of Labiatae family. Pharmacognosy Magazine, 8(29), 37.

    Article  Google Scholar 

  • Shrime, M. G., Bauer, S. R., McDonald, A. C., Chowdhury, N. H., Coltart, C. E., & Ding, E. L. (2011). Flavonoid-rich cocoa consumption affects multiple cardiovascular risk factors in a meta-analysis of short-term studies. The Journal of Nutrition, 141(11), 1982–1988.

    Article  Google Scholar 

  • Sloley, B. D., Pang, P., Huang, B.-H., Ba, F., Li, F. L., Benishin, C. G., et al. (1999). American ginseng extract reduces scopolamine-induced amnesia in a spatial learning task. Journal of Psychiatry and Neuroscience, 24(5), 442.

    Google Scholar 

  • Smach, M., Hafsa, J., Charfeddine, B., Dridi, H., & Limem, K. (2015). Effects of sage extract on memory performance in mice and acetylcholinesterase activity. Annales Pharmaceutiques Francaises, 73(4), 281–288.

    Article  Google Scholar 

  • Spencer, J. P. (2009). Flavonoids and brain health: Multiple effects underpinned by common mechanisms. Genes & Nutrition, 4(4), 243.

    Article  Google Scholar 

  • Sünram-Lea, S., Birchall, R., Wesnes, K., & Petrini, O. (2005). The effect of acute administration of 400 mg of Panax ginseng on cognitive performance and mood in healthy young volunteers. Current Topics in Nutraceutical Research, 3(1), 65–74.

    Google Scholar 

  • Tachikawa, E., Kudo, K., Harada, K., Kashimoto, T., Miyate, Y., Kakizaki, A., et al. (1999). Effects of ginseng saponins on responses induced by various receptor stimuli. European Journal of Pharmacology, 369(1), 23–32.

    Article  Google Scholar 

  • Takeda, H., Tsuji, M., Yamada, T., Masuya, J., Matsushita, K., Tahara, M., et al. (2006). Caffeic acid attenuates the decrease in cortical BDNF mRNA expression induced by exposure to forced swimming stress in mice. European Journal of Pharmacology, 534(1–3), 115–121.

    Article  Google Scholar 

  • Teng, Y., Zhang, M.-Q., Wang, W., Liu, L.-T., Zhou, L.-M., Miao, S.-K., et al. (2014). Compound danshen tablet ameliorated aβ 25–35-induced spatial memory impairment in mice via rescuing imbalance between cytokines and neurotrophins. BMC Complementary and Alternative Medicine, 14(1), 23.

    Article  Google Scholar 

  • Tildesley, N. T., Kennedy, D. O., Perry, E. K., Ballard, C. G., Savelev, S., Wesnes, K. A., et al. (2003). Salvia lavandulaefolia (Spanish sage) enhances memory in healthy young volunteers. Pharmacology Biochemistry and Behavior, 75(3), 669–674.

    Article  Google Scholar 

  • Toda, N., Ayajiki, K., Fujioka, H., & Okamura, T. (2001). Ginsenoside potentiates NO-mediated neurogenic vasodilatation of monkey cerebral arteries. Journal of Ethnopharmacology, 76(1), 109–113.

    Article  Google Scholar 

  • Tyler, V. M., & Russo, E. B. (2015). Handbook of psychotropic herbs: A scientific analysis of herbal remedies for psychiatric conditions. Routledge.

    Google Scholar 

  • Wang, H., Abajobir, A. A., Abate, K. H., Abbafati, C., Abbas, K. M., Abd-Allah, F., et al. (2017). Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet, 390(10100), 1084–1150.

    Article  Google Scholar 

  • Wang, W., Huang, C.-Y., Tsai, F.-J., Tsai, C.-C., Yao, C.-H., & Chen, Y.-S. (2011). Growth-promoting effects of quercetin on peripheral nerves in rats. The International Journal of Artificial Organs, 34(11), 1095–1105.

    Article  Google Scholar 

  • Wilmoth, J. R. (2000). Demography of longevity: Past, present, and future trends. Experimental Gerontology, 35(9–10), 1111–1129.

    Article  Google Scholar 

  • Xu, S. L., Bi, C. W., Choi, R. C., Zhu, K. Y., Miernisha, A., Dong, T. T., et al. (2013). Flavonoids induce the synthesis and secretion of neurotrophic factors in cultured rat astrocytes: A signaling response mediated by estrogen receptor. Evidence-Based Complementary and Alternative Medicine, 2013.

    Google Scholar 

  • Ye, R., Li, N., Han, J., Kong, X., Cao, R., Rao, Z., et al. (2009). Neuroprotective effects of ginsenoside Rd against oxygen-glucose deprivation in cultured hippocampal neurons. Neuroscience Research, 64(3), 306–310.

    Article  Google Scholar 

  • Ye, R., Yang, Q., Kong, X., Han, J., Zhang, X., Zhang, Y., et al. (2011). Ginsenoside Rd attenuates early oxidative damage and sequential inflammatory response after transient focal ischemia in rats. Neurochemistry International, 58(3), 391–398.

    Article  Google Scholar 

  • Yun, T.-K. (2001). Panax ginseng—A non-organ-specific cancer preventive? The Lancet Oncology, 2(1), 49–55.

    Article  Google Scholar 

  • Zhang, C., Du, F., Shi, M., Ye, R., Cheng, H., Han, J., et al. (2012). Ginsenoside Rd protects neurons against glutamate-induced excitotoxicity by inhibiting Ca 2+ influx. Cellular and Molecular Neurobiology, 32(1), 121–128.

    Article  Google Scholar 

  • Zhang, J., Qu, Z., Liu, Y., & Deng, H. (1990). Preliminary study on antiamnestic mechanism of ginsenoside Rg1 and Rb1. Chinese Medical Journal, 103(11), 932–938.

    Google Scholar 

  • Zhao, Y., Xu, P., Hu, S., Du, L., Xu, Z., Zhang, H., et al. (2015). Tanshinone II A, a multiple target neuroprotectant, promotes caveolae-dependent neuronal differentiation. European Journal of Pharmacology, 765, 437–446.

    Article  Google Scholar 

  • Zhu, J.-r., Tao, Y.-f., Lou, S., & Wu, Z.-m. (2010). Protective effects of ginsenoside Rb 3 on oxygen and glucose deprivation-induced ischemic injury in PC12 cells. Acta Pharmacologica Sinica, 31(3), 273.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Benson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benson, S., Scholey, A. (2021). Nutraceuticals as Cognitive Enhancers. In: Hall, M., Forshaw, M., Montgomery, C. (eds) Chemically Modified Minds. Palgrave Macmillan, Singapore. https://doi.org/10.1007/978-981-15-6771-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6771-1_3

  • Published:

  • Publisher Name: Palgrave Macmillan, Singapore

  • Print ISBN: 978-981-15-6770-4

  • Online ISBN: 978-981-15-6771-1

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics