Skip to main content

Clinical CFD Applications 1

  • Chapter
  • First Online:
Clinical and Biomedical Engineering in the Human Nose

Abstract

This chapter is the first of two chapters demonstrating the wide variety of CFD studies in clinical applications presented from leading researchers in their respective fields. This chapter covers the latest research techniques and outcomes in airflow and conditioning in the nasal cavity; fluid and particle dynamics from sniffing; nasal obstruction and empty nose syndrome; nasal nitric oxide (nNO) dynamics and the ostiomeatal complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.F. Arnal, P. Flores, J. Rami, M. Murris-Espin, F. Bremont, I.A.M. Pasto, E. Serrano, A. Didier, Nasal nitric oxide concentration in paranasal sinus inflammatory diseases. Eur. Respir. J. 13(2), 307–312 (1999)

    Article  Google Scholar 

  2. T. Asano, M. Takemura, Y. Kanemitsu, M. Yokota, K. Fukumitsu, N. Takeda, H. Ichikawa, H. Hijikata, T. Uemura, O. Takakuwa, H. Ohkubo, K. Maeno, Y. Ito, T. Oguri, A. Nakamura, Y. Maki, Y. Nakamura, M. Suzuki, A. Niimi, Combined measurements of fractional exhaled nitric oxide and nasal nitric oxide levels for assessing upper airway diseases in asthmatic patients. J. Asthma 55(3), 300–309 (2018)

    Article  Google Scholar 

  3. ASTM, Standard Practice for Determination of Odor and Taste Thresholds By a Forced-Choice Ascending Concentration Series Method of Limits (American Society for Testing and Materials, Philadelphia, 2011)

    Google Scholar 

  4. American Thoracic Society, ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care Med. 171(8), 912–930 (2005)

    Article  Google Scholar 

  5. E. Baraldi, N.M. Azzolin, S. Carra, C. Dario, L. Marchesini, F. Zacchello, Effect of topical steroids on nasal nitric oxide production in children with perennial allergic rhinitis: a pilot study. Respir. Med. 92(3), 558–561 (1998)

    Article  Google Scholar 

  6. D.M. Bautista, J. Siemens, J.M. Glazer, P.R. Tsuruda, A.I. Basbaum, C.L. Stucky, S.-E. Jordt, D. Julius, The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448(7150), 204 (2007)

    Article  Google Scholar 

  7. R. Benoliel, A. Biron, S.Y. Quek, O. Nahlieli, E. Eliav, Trigeminal neurosensory changes following acute and chronic paranasal sinusitis. Quintessence Int. 37, 6 (2006)

    Google Scholar 

  8. L. Bommarito, G. Guida, E. Heffler, I. Badiu, F. Nebiolo, A. Usai, A. De Stefani, G. Rolla, Nasal nitric oxide concentration in suspected chronic rhinosinusitis. Ann. Allergy Asthma Immunol. 101(4), 358–362 (2008)

    Article  Google Scholar 

  9. M.A. Burgos, E. Sanmiguel-Rojas, C. Del Pino, M.A. Sevilla-Garcia, F. Esteban-Ortega, New CFD tools to evaluate nasal airflow. Eur. Arch. Oto-Rhino-Laryngol. 274(8), 3121–3128 (2017)

    Article  Google Scholar 

  10. A. Burrow, R. Eccles, A.S. Jones, The effects of camphor, eucalyptus and menthol vapour on nasal resistance to airflow and nasal sensation. Acta Oto-Laryngol. 96(1–2), 157–161 (1983)

    Article  Google Scholar 

  11. X.B. Chen, H.P. Lee, V.F. Chong, D.Y. Wang, Aerodynamic characteristics inside the rhino-sinonasal cavity after functional endoscopic sinus surgery. Am. J. Rhinol. Allergy 25(6), 388–392 (2011)

    Article  Google Scholar 

  12. N. Chhabra, S.M. Houser, Empty nose syndrome. Recent. Adv. Otolaryngol. Head Neck Surg. 5, 75 (2016)

    Article  Google Scholar 

  13. S.K. Chung, G. Jo, S.K. Kim, Y. Na, The effect of a middle meatal antrostomy on nitric oxide ventilation in the maxillary sinus. Respir. Physiol. Neurobiol. 192, 7–16 (2014)

    Article  Google Scholar 

  14. R. Clarke, A. Jones, The distribution of nasal airflow sensitivity in normal subjects. J. Laryngol. Otol. 108(12), 1045–1047 (1994)

    Article  Google Scholar 

  15. R.W. Clarke, A.S. Jones, P. Charters, I. Sherman, The role of mucosal receptors in the nasal sensation of airflow. Clin. Otolaryngol. Allied Sci. 17(5), 383–387 (1992)

    Article  Google Scholar 

  16. D. Colantonio, L. Brouillette, A. Parikh, G.K. Scadding, Paradoxical low nasal nitric oxide in nasal polyposis. Clin. Exp. Allergy 32(5), 698–701 (2002)

    Article  Google Scholar 

  17. P. Cole, Nose and sinus airflow. Curr. Opin. Otolaryngol. Head Neck Surg. 2, 16–21 (1994)

    Article  Google Scholar 

  18. C. Croce, R. Fodil, M. Durand, G. Sbirlea-Apiou, G. Caillibotte, J.-F. Papon, J.-R. Blondeau, A. Coste, D. Isabey, B. Louis, In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry. Ann. Biomed. Eng. 34(6), 997–1007 (2006)

    Article  Google Scholar 

  19. K.D. Croen, Evidence for an antiviral effect of nitric oxide. J. Clin. Investig. 91, 2446–52a (1993)

    Article  Google Scholar 

  20. Y.G. Dabholkar, A.A. Saberwal, H.K. Velankar, A.K. Shetty, N.P. Chordia, S.R. Budhwani, Correlation of nasal nitric oxide measurement with computed tomography findings in chronic rhinosinusitis. Indian J. Otolaryngol. Head Neck Surg. 66(1), 92–96 (2014)

    Article  Google Scholar 

  21. P. Dalton, D. Dilks, T. Hummel, Effects of long-term exposure to volatile irritants on sensory thresholds, negative mucosal potentials, and event-related potentials. Behav. Neurosci. 120(1), 180 (2006)

    Article  Google Scholar 

  22. M. D’Amato, A. Molino, G. Calabrese, L. Cecchi, I. Annesi-Maesano, G. D’Amato, The impact of cold on the respiratory tract and its consequences to respiratory health. Clin. Transl. Allergy 8(1), 20 (2018)

    Article  Google Scholar 

  23. A. Dayal, J.S. Rhee, G.J. Garcia, Impact of middle versus inferior total turbinectomy on nasal aerodynamics. Otolaryngol.–Head Neck Surg. 155(3), 518–525 (2016)

    Google Scholar 

  24. C. Delclaux, D. Malinvaud, B. Chevalier-Bidaud, E. Callens, B. Mahut, P. Bonfils, Nitric oxide evaluation in upper and lower respiratory tracts in nasal polyposis. Clin. Exp. Allergy 38(7), 1140–1147 (2008)

    Article  Google Scholar 

  25. A.F. Deroee, M. Naraghi, A.F. Sontou, M.R. Ebrahimkhani, A.R. Dehpour, Nitric oxide metabolites as biomarkers for follow-up after chronic rhinosinusitis surgery. Am. J. Rhinol. Allergy 23(2), 159–161 (2009)

    Article  Google Scholar 

  26. P.G. Djupesland, J.M. Chatkin, W. Qian, P. Cole, N. Zamel, P. McClean, H. Furlott, J.S. Haight, Aerodynamic influences on nasal nitric oxide output measurements. Acta Oto-Laryngol. 119(4), 479–485 (1999)

    Article  Google Scholar 

  27. D. Doorly, D. Taylor, R. Schroter, Mechanics of airflow in the human nasal airways. Respir. Physiol. Neurobiol. 163(1), 100–110 (2008)

    Article  Google Scholar 

  28. P.M. Dupuy, S.A. Shore, J.M. Drazen, C. Frostell, W.A. Hill, W.M. Zapol, Bronchodilator action of inhaled nitric oxide in guinea pigs. J. Clin. Invest. 90(2), 421–428 (1992). https://doi.org/10.1172/JCI115877

  29. R. Eccles, Nasal airflow in health and disease. Acta Oto-Laryngol. 120(5), 580–595 (2000)

    Article  Google Scholar 

  30. R. Eccles, S. Morris, N.S. Tolley, The effects of nasal anaesthesia upon nasal sensation of airflow. Acta Oto-Laryngol. 106(1–2), 152–155 (1988)

    Article  Google Scholar 

  31. D.O. Frank, A.M. Zanation, V.H. Dhandha, K.A. McKinney, G.M. Fleischman, C.S.J. Ebert et al., Quantification of airflow into the maxillary sinuses before and after functional endoscopic sinus surgery. Int. Forum Allergy Rhinol. 3(10), 834–840 (2013)

    Article  Google Scholar 

  32. D.O. Frank-Ito, J.S. Kimbell, A.A.T. Borojeni, G.J.M. Garcia, J.S. Rhee, A hierarchical stepwise approach to evaluate nasal patency after virtual surgery for nasal airway obstruction. Clin. Biomech. (Bristol, Avon) 61, 172–180 (2019)

    Google Scholar 

  33. M. Frendo, K. Hakansson, S. Schwer, A.T. Ravn, H. Meteran, C. Porsbjerg, V. Backer, C. von Buchwald, Exhaled and nasal nitric oxide in chronic rhinosinusitis patients with nasal polyps in primary care. Rhinology 56(1), 59–64 (2018)

    Article  Google Scholar 

  34. C.G. Frostell, Differential ventilation. Acta Anaesthesiol. Scand. 35, 119–124 (1991). https://doi.org/10.1111/j.1399-6576.1991.tb03408.x

  35. M. Gamerra, R.D. Luca, Airflow in paranasal sinuses. Biomed. Sci. Res. 1(5), 197–201 (2019)

    Article  Google Scholar 

  36. G.J.M. Garcia, J.S. Rhee, B.A. Senior, J.S. Kimbell, Septal deviation and nasal resistance: an investigation using virtual surgery and computational fluid dynamics. Am. J. Rhinol. Allergy 24(1), 46–53 (2010)

    Article  Google Scholar 

  37. P. Germann, A. Braschi, G. Della Rocca, A.T. Dinh-Xuan, K. Falke, C. Frostell, L.E. Gustafsson, P. Herve, P. Jolliet, U. Kaisers, H. Litvan, D.J. Macrae, M. Maggiorini, N. Marczin, B. Mueller, D. Payen, M. Ranucci, D. Schranz, R. Zimmermann, R. Ullrich, Inhaled nitric oxide therapy in adults: European expert recommendations. Intensiv. Care Med. 31(8), 1029–1041 (2005)

    Google Scholar 

  38. A.A. Gungor, B.J. Martino, S.C. Dupont, L. Kuo, A human study model for nitric oxide research in sinonasal disease. Am. J. Otolaryngol. 34(4), 337–344 (2013)

    Article  Google Scholar 

  39. A.H. Henriksen, M. Sue-Chu, T.L. Holmen, A. Langhammer, L. Bjermer, Exhaled and nasal no levels in allergic rhinitis: relation to sensitization, pollen season and bronchial hyperresponsiveness. Eur. Respir. J. 13(2), 301–306 (1999)

    Article  Google Scholar 

  40. H.R. Hong, Y.J. Jang, Correlation between remnant inferior turbinate volume and symptom severity of empty nose syndrome. The Laryngoscope 126(6), 1290–1295 (2016)

    Article  Google Scholar 

  41. C.M. Hood, R.C. Schroter, D.J. Doorly, E.J. Blenke, N.S. Tolley, Computational modeling of flow and gas exchange in models of the human maxillary sinus. J. Appl. Physiol. 107, 1195–1203 (2009)

    Article  Google Scholar 

  42. S.M. Houser, Surgical treatment for empty nose syndrome. Arch. Otolaryngol.–Head Neck Surg. 133(9), 858–863 (2007)

    Google Scholar 

  43. E.H. Huizing, J.A.M. de Groot, Functional Reconstructive Nasal Surgery (Thieme, Stuttgart, 2003)

    Google Scholar 

  44. I. Hörschler, W. Schröder, M. Meinke, On the assumption of steadiness of nasal cavity flow. J. Biomech. 43, 1081–1085 (2010)

    Article  Google Scholar 

  45. K. Inthavong, Z.F. Tian, J.Y. Tu, W. Yang, C. Xue, Optimising nasal spray parameters for efficient drug delivery using computational fluid dynamics. Comput. Biol. Med. 38(6), 713–726 (2008)

    Article  Google Scholar 

  46. J.H. Jeong, H.S. Yoo, S.H. Lee, K.R. Kim, H.J. Yoon, S.H. Kim, Nasal and exhaled nitric oxide in chronic rhinosinusitis with polyps. Am. J. Rhinol. Allergy 28(1), e11–6 (2014)

    Article  Google Scholar 

  47. I. Kang, P. Park, Numerical study on nitric oxide transport inhuman nasal airways. J. Mech. Sci. Technol. 32(3), 1423–1430 (2018)

    Article  Google Scholar 

  48. T. Keck, R. Leiacker, A. Heinrich, S. Khnemann, G. Rettinger, Humidity and temperature profile in the nasal cavity. Rhinology 38, 167–171 (2001)

    Google Scholar 

  49. T. Keck, J. Lindemann, Numerical simulation and nasal air-conditioning. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 9, Doc08–Doc08 (2010)

    Google Scholar 

  50. K. Keyhani, P. Scherer, M. Mozell, Numerical simulation of airflow in the human nasal cavity. J. Biomech. Eng. 117, 429–441 (1995)

    Article  Google Scholar 

  51. S.A. Kharitonov, K. Rajakulasingam, B. O’Connor, S.R. Durham, P.J. Barnes, Nasal nitric oxide is increased in patients with asthma and allergic rhinitis and may be modulated by nasal glucocorticoids. J. Allergy Clin. Immunol. 99(1 Pt 1), 58–64 (1997)

    Google Scholar 

  52. R.G. Knowles, S. Moncada, Nitric oxide synthases in mammals. Biochem. J. 298(Pt 2), 249–258 (1994)

    Article  Google Scholar 

  53. H. Kumar, R. Jain, R.G. Douglas, M.H. Tawhai, Airflow in the human nasal passage and sinuses of chronic rhinosinusitis subjects. PLOS ONE 11(6), e0156379 (2016)

    Article  Google Scholar 

  54. D. Laing, Natural sniffing gives optimum odour perception for humans. Perception 12, 99–117 (1983)

    Article  Google Scholar 

  55. J.M. Lee, C.L. McKnight, T. Aves, J. Yip, A.S. Grewal, S. Gupta, Nasal nitric oxide as a marker of sinus mucosal health in patients with nasal polyposis. Int. Forum Allergy Rhinol. 5(10), 894–899 (2015)

    Article  Google Scholar 

  56. K.J. Lee, S.H. Cho, S.H. Lee, K. Tae, H.J. Yoon, S.H. Kim, J.H. Jeong, Nasal and exhaled nitric oxide in allergic rhinitis. Clin. Exp. Otorhinolaryngol. 5(4), 228–233 (2012)

    Article  Google Scholar 

  57. T. Lee, C. Fu, C. Wu, Y. Tam, C. Huang, P. Chang, Y. Chen, M. Wu, Evaluation of depression and anxiety in empty nose syndrome after surgical treatment. The Laryngoscope 126(6), 1284–1289 (2016)

    Article  Google Scholar 

  58. T.S. Lee, P. Goyal, C. Li, K. Zhao, Computational fluid dynamics to evaluate the effectiveness of inferior turbinate reduction techniques to improve nasal airflow. JAMA Facial Plast. Surg. 20(4), 263–270 (2018)

    Article  Google Scholar 

  59. C. Li, A. Farag, G. Maza, S. McGhee, M. Ciccone, B. Deshpande, E. Pribikin, B. Otto, K. Zhao, Investigation of the abnormal nasal aerodynamics and trigeminal functions among empty nose syndrome patients. Int. Forum Allergy Rhinol. 8(3), 444–452 (2018)

    Article  Google Scholar 

  60. C. Li, A.A. Farag, J. Leach, B. Deshpande, A. Jacobowitz, K. Kim, B.A. Otto, K. Zhao, Computational fluid dynamics and trigeminal sensory examinations of empty nose syndrome patients. The Laryngoscope 127(6), E176–E184 (2017)

    Article  Google Scholar 

  61. C. Li, A.A. Farag, G. Maza, S. McGhee, M.A. Ciccone, B. Deshpande, E.A. Pribitkin, B.A. Otto, K. Zhao, Investigation of the abnormal nasal aerodynamics and trigeminal functions among empty nose syndrome patients. Int. Forum Allergy Rhinol. 8(3), 444–452 (2018)

    Article  Google Scholar 

  62. C. Li, J. Jiang, H. Dong, K. Zhao, Computational modeling and validation of human nasal airflow under various breathing conditions. J. Biomech. 64(7), 59–68 (2017)

    Article  Google Scholar 

  63. K.G. Lim, C. Mottram, The use of fraction of exhaled nitric oxide in pulmonary practice. Chest 133(5), 1232–1242 (2008)

    Article  Google Scholar 

  64. C. Liu, M. Zheng, F. He, X. Wang, L. Zhang, Role of exhaled nasal nitric oxide in distinguishing between chronic rhinosinusitis with and without nasal polyps. Am. J. Rhinol. Allergy 31(6), 389–394 (2017)

    Article  Google Scholar 

  65. M. Lu, Y. Liu, J. Ye, H. Luo, Large eddy simulation of flow in realistic human upper airways with obstructive sleep. Procedia Comput. Sci. 29, 557–564 (2014)

    Article  Google Scholar 

  66. J.O. Lundberg, Airborne nitric oxide: inflammatory marker and aerocrine messenger in man. Acta Physiol. Scand. Suppl. 633, 1–27 (1996)

    Google Scholar 

  67. J.O. Lundberg, Nitric oxide and the paranasal sinuses. Anat. Rec. (Hoboken) 291(11), 1479–1484 (2008)

    Article  Google Scholar 

  68. J.O. Lundberg, T. Farkas-Szallasi, E. Weitzberg, J. Rinder, J. Lidholm, A. Anggaard, T. Hokfelt, J.M. Lundberg, K. Alving, High nitric oxide production in human paranasal sinuses. Nat. Med. 1(4), 370–373 (1995)

    Article  Google Scholar 

  69. J.O. Lundberg, M. Maniscalco, M. Sofia, L. Lundblad, E. Weitzberg, Humming, nitric oxide, and paranasal sinus obstruction. JAMA 289(3), 302–303 (2003)

    Article  Google Scholar 

  70. J.O. Lundberg, J. Rinder, E. Weitzberg, J.M. Lundberg, K. Alving, Nasally exhaled nitric oxide in humans originates mainly in the paranasal sinuses. Acta Physiol. Scand. 152(4), 431–432 (1994)

    Article  Google Scholar 

  71. J.O. Lundberg, E. Weitzberg, Nasal nitric oxide in man. Thorax 54(10), 947–952 (1999)

    Article  Google Scholar 

  72. J.O. Lundberg, E. Weitzberg, J. Rinder, A. Rudehill, O. Jansson, N.P. Wiklund, J.M. Lundberg, K. Alving, Calcium-independent and steroid-resistant nitric oxide synthase activity in human paranasal sinus mucosa. Eur. Respir. J. 9(7), 1344–1347 (1996)

    Article  Google Scholar 

  73. J. Malik, C. Li, G. Maza, A.A. Farag, J.P. Krebs, S. McGhee, G. Zappitelli, B. Deshpande, B.A. Otto, K. Zhao, Computational fluid dynamic analysis of aggressive turbinate reductions: is it a culprit of empty nose syndrome? Int. Forum Allergy Rhinol. 9, 891–899 (2019)

    Article  Google Scholar 

  74. J. Malik, A. Thamboo, S. Dholakia, N. Borchard, S. McGhee, C. Li, K. Zhao, J. Nayak, The cotton test redistributes nasal airflow in patients with empty nose syndrome. Int. Forum Allergy Rhinol. in press (2020)

    Google Scholar 

  75. R.L. Mancinell, C.P. McKay, Effects of nitric oxide and nitric dioxide on bacterial growth. Appl. Environ. Microbiol. 46, 198–202 (1983)

    Article  Google Scholar 

  76. M. Maniscalco, M. Sofia, E. Weitzberg, L. Carratu, J.O. Lundberg, Nasal nitric oxide measurements before and after repeated humming maneuvers. Eur. J. Clin. Investig. 33(12), 1090–1094 (2003)

    Article  Google Scholar 

  77. M. Maniscalco, M. Sofia, E. Weitzberg, G. De Laurentiis, A. Stanziola, V. Rossillo, J.O. Lundberg, Humming-induced release of nasal nitric oxide for assessment of sinus obstruction in allergic rhinitis: pilot study. Eur. J. Clin. Investig. 34(8), 555–560 (2004)

    Article  Google Scholar 

  78. M. Maniscalco, E. Weitzberg, J. Sundberg, M. Sofia, J.O. Lundberg, Assessment of nasal and sinus nitric oxide output using single-breath humming exhalations. Eur. Respir. J. 22(2), 323–329 (2003)

    Article  Google Scholar 

  79. G. Maza, C. Li, J.P. Krebs, B.A. Otto, A.A. Farag, R.L. Carrau, K. Zhao, Computational fluid dynamics after endoscopic endonasal skull base surgery possible empty nose syndrome in the context of middle turbinate resection. Int. Forum Allergy Rhinol. 9(2), 204–211 (2019)

    Article  Google Scholar 

  80. L. McKinlay, S. Vaidyanathan, P.A. Williamson, B.J. Lipworth, Nasal nitric oxide as a measure of osteomeatal complex patency in nasal polyps. Ann. Allergy Asthma Immunol. 107(2), 179–180 (2011)

    Article  Google Scholar 

  81. U. Mercke, C.H. Hakansson, N.G. Toremalm, The influence of temperature on mucociliary activity. temperature range 20 degrees c-40 degrees c. Acta Oto-Laryngol. 78(5–6), 444–450 (1974)

    Google Scholar 

  82. T. Meusel, S. Negoias, M. Scheibe, T. Hummel, Topographical differences in distribution and responsiveness of trigeminal sensitivity within the human nasal mucosa. Pain 151(2), 516–521 (2010)

    Article  Google Scholar 

  83. G. Mylavarapu, S. Murugappan, M. Mihaescu, M. Kalra, S. Khosla, E. Gutmark, Validation of computational fluid dynamics methodology used for human upper airway flow simulations. J. Biomech. 42(10), 1553–1559 (2009)

    Article  Google Scholar 

  84. S. Naftali, M. Rosenfeld, M. Wolf, D. Elad, The air-conditioning capacity of the human nose. Ann. Biomed. Eng. 33, 545–553 (2005)

    Article  Google Scholar 

  85. M. Naraghi, A.F. Deroee, M. Ebrahimkhani, S. Kiani, A. Dehpour, Nitric oxide: a new concept in chronic sinusitis pathogenesis. Am. J. Otolaryngol. 28(5), 334–337 (2007)

    Article  Google Scholar 

  86. V.S. Nesic, V.Z. Djordjevic, V. Tomic-Spiric, Z.R. Dudvarski, I.A. Soldatovic, N.A. Arsovic, Measuring nasal nitric oxide in allergic rhinitis patients. J. Laryngol. Otol. 130(11), 1064–1071 (2016)

    Article  Google Scholar 

  87. J.D. Oliver, K.G. Lim, E.K. O’Brien, Correlation of exhaled nasal nitric oxide with sinus computed tomography and sinonasal outcome test scores: A cross-sectional pilot study. Am. J. Rhinol. Allergy 32(6), 533–538 (2018)

    Article  Google Scholar 

  88. J.P. Palm, K. Alving, J.O. Lundberg, Characterization of airway nitric oxide in allergic rhinitis: the effect of intranasal administration of l-name. Allergy 58(9), 885–892 (2003)

    Article  Google Scholar 

  89. S.M. Ragab, V.J. Lund, H.A. Saleh, G. Scadding, Nasal nitric oxide in objective evaluation of chronic rhinosinusitis therapy. Allergy 61(6), 717–724 (2006)

    Article  Google Scholar 

  90. C. Rennie, K. Gouder, D. Taylor, N. Tolley, R. Schroter, D. Doorly, Nasal inspiratory flow: at rest and sniffing. Int. Forum Allergy Rhinol. 1, 128–135 (2011)

    Article  Google Scholar 

  91. C.E. Rennie, C.M. Hood, E.J. Blenke, R.S. Schroter, D.J. Doorly, H. Jones, D. Towey, N.S. Tolley, Physical and computational modeling of ventilation of the maxillary sinus. Otolaryngol. Head Neck Surg. 145(1), 165–170 (2011)

    Article  Google Scholar 

  92. F.L. Ricciardolo, P.J. Sterk, B. Gaston, G. Folkerts, Nitric oxide in health and disease of the respiratory system. Physiol. Rev. 84(3), 731–765 (2004)

    Article  Google Scholar 

  93. T. Runer, A. Cervin, S. Lindberg, R. Uddman, Nitric oxide is a regulator of mucociliary activity in the upper respiratory tract. Otolaryngol. Head Neck Surg. 119, 278–287 (1998)

    Article  Google Scholar 

  94. T. Runer, S. Lindberg, Ciliostimulatory effects mediated by nitric oxide. Acta Oto-Laryngol. 119(7), 821–825 (1999)

    Article  Google Scholar 

  95. M.O. Scheithauer, Surgery of the turbinates and “empty nose” syndrome. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 9 (2010)

    Google Scholar 

  96. D. Shusterman, The nasal nitric oxide response to external acoustic energy: a pilot study of sampling dynamics. Sinusitis 1, 1 (2016)

    Google Scholar 

  97. D. Shusterman, M. Murphy, Nasal hyperreactivity in allergic and non-allergic rhinitis: a potential risk factor for non-specific building-related illness. Indoor Air 17(4), 328–333 (2007)

    Article  Google Scholar 

  98. D.J. Shusterman, K. Jansen, E.M. Weaver, J.Q. Koenig, Documentation of the nasal nitric oxide response to humming: Methods evaluation (Eur. J. Clin, Investig, 2007)

    Google Scholar 

  99. D.J. Shusterman, E.M. Weaver, A.N. Goldberg, S.F. Schick, H.H. Wong, J.R. Balmes, Pilot evaluation of the nasal nitric oxide response to humming as an index of osteomeatal patency. Am. J. Rhinol. Allergy 26(2), 123–126 (2012)

    Article  Google Scholar 

  100. J. Siu, J. Dong, K. Inthavong, Y. Shang, R.G. Douglas, Quantification of airflow in the sinuses following functional endoscopic sinus surgery. Rhinology Accepted for publication Jan 10 2020 (2020)

    Google Scholar 

  101. J. Siu, K. Shrestha, K. Inthavong, Y. Shang, R. Douglas, Particle deposition in the paranasal sinuses following endoscopic sinus surgery. Comput. Biol. Med. 116, 103573 (2020)

    Article  Google Scholar 

  102. W.M. Smith, T.M. Davidson, C. Murphy, Toxin-induced chemosensory dysfunction: a case series and review. Am. J. Rhinol. Allergy 23(6), 578–581 (2009)

    Article  Google Scholar 

  103. G.M. Sokol, G.G. Konduri, K.P. Van Meurs, Inhaled nitric oxide therapy for pulmonary disorders of the term and preterm infant. Semin. Perinatol. 40(6), 356–369 (2016)

    Article  Google Scholar 

  104. J. Sozansky, S.M. Houser, The physiological mechanism for sensing nasal airflow: a literature review. Int. Forum Allergy Rhinol. 4(10), 834–838 (2014)

    Article  Google Scholar 

  105. C.D. Sullivan, G.J.M. Garcia, D.O. Frank-Ito, J.S. Kimbell, J.S. Rhee, Perception of better nasal patency correlates with increased mucosal cooling after surgery for nasal obstruction. Otolaryngol.–Head Neck Surg. 150(1), 139–147 (2013)

    Google Scholar 

  106. H. Suojalehto, T. Vehmas, I. Lindstrom, D.W. Kennedy, M. Kilpelainen, T. Plosila, S. Savukoski, J. Sipila, M. Varpula, H. Wolff, H. Alenius, E. Toskala, Nasal nitric oxide is dependent on sinus obstruction in allergic rhinitis. Laryngoscope 124(6), E213–8 (2014)

    Article  Google Scholar 

  107. D. Takahara, T. Kono, S. Takeno, T. Ishino, T. Hamamoto, K. Kubota, T. Ueda, Nasal nitric oxide in the inferior turbinate surface decreases with intranasal steroids in allergic rhinitis: A prospective study. Auris Nasus Larynx 46(4), 507–512 (2019)

    Article  Google Scholar 

  108. S. Takeno, H. Yoshimura, K. Kubota, T. Taruya, T. Ishino, K. Hirakawa, Comparison of nasal nitric oxide levels between the inferior turbinate surface and the middle meatus in patients with symptomatic allergic rhinitis. Allergol. Int. 63(3), 475–483 (2014)

    Article  Google Scholar 

  109. J. Tan, D. Han, J. Wang, T. Liu, T. Wang, H. Zang, Y. Li, X. Wang, Numerical simulation of normal nasal cavity airflow in chinese adult: a computational flow dynamics model. Eur. Arch. Oto-Rhino-Laryngol. 269(3), 881–889 (2012)

    Article  Google Scholar 

  110. A. Thamboo, N. Velasquez, A.R. Habib, D. Zarabanda, H. Paknezhad, J.V. Nayak, Defining surgical criteria for empty nose syndrome: validation of the office-based cotton test and clinical interpretability of the validated empty nose syndrome 6-item questionnaire. The Laryngoscope 127, 1746–1752 (2017)

    Article  Google Scholar 

  111. S. Vaidyanathan, P. Williamson, K. Anderson, B. Lipworth, Effect of systemic steroids on humming nasal nitric oxide in chronic rhinosinusitis with nasal polyposis. Ann. Allergy Asthma Immunol. 105(6), 412–417 (2010)

    Article  Google Scholar 

  112. N. Velasquez, A. Thamboo, A.R. Habib, Z. Huang, J.V. Nayak, The empty nose syndrome 6-item questionnaire (ens6q): a validated 6-item questionnaire as a diagnostic aid for empty nose syndrome patients. Int. Forum Allergy Rhinol. 7(1), 64–71 (2017)

    Article  Google Scholar 

  113. T. Wang, D. Chen, P. Wang, J. Chen, J. Deng, Investigation on the nasal airflow characteristics of anterior nasal cavity stenosis. Braz. J. Med. Biol. Res. 49, 9 (2016)

    Article  Google Scholar 

  114. Y. Wang, S. Elghobashi, On locating the obstruction in the upper airway via numerical simulation. Respir. Physiol. Neurobiol. 193, 1–10 (2014)

    Article  Google Scholar 

  115. P. Webb, Air temperatures in respiratory tracts of resting subjects in cold. J. Appl. Physiol. 4(5), 378–382 (1951)

    Article  Google Scholar 

  116. E. Weitzberg, J.O. Lundberg, Humming greatly increases nasal nitric oxide. Am. J. Respir. Crit. Care Med. 166(2), 144–145 (2002)

    Article  Google Scholar 

  117. J. Wen, K. Inthavong, J. Tu, S. Wang, Numerical simulations for detailed airflow dynamics in a human nasal cavity. Respir. Physiol. Neurobiol. 161(2), 125–135 (2008)

    Article  Google Scholar 

  118. P.A. Williamson, S. Vaidyanathan, K. Clearie, M. Stewart, B.J. Lipworth, Relationship between fractional exhaled nitric oxide and nasal nitric oxide in airways disease. Ann. Allergy Asthma Immunol. 105(2), 162–167 (2010)

    Article  Google Scholar 

  119. M.R. Wofford, J.S. Kimbell, D.O. Frank-Ito, V. Dhandha, K.A. McKinney, G.M. Fleischman et al., A computational study of functional endoscopic sinus surgery and maxillary sinus drug delivery. Rhinology 53(1), 41–48 (2015)

    Article  Google Scholar 

  120. B.B. Wrobel, A.G. Bien, E.H. Holbrook, G.E. Meyer, N.A. Bratney, J. Meza, D.A. Leopold, Decreased nasal mucosal sensitivity in older subjects. Am. J. Rhinol. 20(3), 364–368 (2006)

    Article  Google Scholar 

  121. J. Xi, J. Kim, X.A. Si, Effects of nostril orientation on airflow dynamics, heat exchange, and particle depositions in human noses. Eur. J. Mech.-B/Fluids 55, 215–228 (2016)

    Google Scholar 

  122. G. Xiong, J. Zhan, K. Zuo, J. Li, L. Rong, G. Xu, Numerical flow simulation in the post-endoscopic sinus surgery nasal cavity. Med. Biol. Eng. Comput. 46(11), 1161–1167 (2008)

    Article  Google Scholar 

  123. Z. Zhang, C. Kleinstreuer, Laminar-to-turbulent fluid-nanoparticle dynamics simulations: model comparisons and nanoparticle-deposition applications. Int. J. Numer. Methods Biomed. Eng. 27(12), 1930–1950 (2011)

    Article  MATH  Google Scholar 

  124. K. Zhao, K. Blacker, Y. Luo, B. Bryant, J. Jiang, Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance. PLoS One 6(10), e24618 (2011)

    Article  Google Scholar 

  125. K. Zhao, P. Dalton, G.C. Yang, P.W. Scherer, Numerical modeling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose. Chem. Senses 31(2), 107–118 (2006)

    Article  Google Scholar 

  126. K. Zhao, J. Jiang, What is normal nasal airflow? a computational study of 22 healthy adults. Int. Forum Allergy Rhinol. 4(6), 435–446 (2014)

    Article  Google Scholar 

  127. K. Zhao, E.A. Pribitkin, B.J. Cowart, D. Rosen, P.W. Scherer, P. Dalton, Numerical modeling of nasal obstruction and endoscopic surgical intervention: outcome to airflow and olfaction. Am. J. Rhinol. 20(3), 308–316 (2006)

    Article  Google Scholar 

  128. K. Zhao, P.W. Scherer, S.A. Hajiloo, P. Dalton, Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction. Chem. Senses 29(5), 365–379 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, C. et al. (2021). Clinical CFD Applications 1. In: Inthavong, K., Singh, N., Wong, E., Tu, J. (eds) Clinical and Biomedical Engineering in the Human Nose. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-6716-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6716-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6715-5

  • Online ISBN: 978-981-15-6716-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics