Skip to main content

Clinical Implications of Nasal Airflow Simulations

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

This chapter provides an up-to-date literature review on the relevance of CFD modeling results in clinical settings and the efforts made in the field to establish normative ranges for some CFD-derived variables. We discuss the significance of CFD-derived variables such as unilateral nasal airflow partitioning, nasal airway resistance, heat flux and wall shear stress on nasal function or symptomatology, and the strong associations established with these variables. Two important issues are discussed: (i) a need to establish meaningful representation involving combinations of different computed variables in order to accurately capture the full dynamical nature of patient-reported symptomatology; (ii) a need to develop a robust database of normative values for CFD-derived variables since typical healthy human sinonasal airway anatomies are characterized by substantial intersubject variability that confound concise description of normal airflow profile.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-6716-2_8
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-6716-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 8.1

Figure from Wootton and co-authors [144]

Fig. 8.2

Figure from Cherobin et al. [20]

Fig. 8.3

Figure from Garcia et al. [52]

Fig. 8.4

Figure from Garcia et al. [52]

Fig. 8.5

Figure modified from Vogt and co-authors [137]

Fig. 8.6

Figure from Bailey and co-authors [7])

Fig. 8.7

Figure modified from Inthavong and co-authors [70]

Fig. 8.8

Reproduced with permission from [120]

Fig. 8.9

Reproduced with permission from Zhao and Jiang [148] & Ramprasad and Frank-Ito [120]

Fig. 8.10

reproduced with permission from Blaney [12]

Fig. 8.11

Reproduced with permission from Na et al. [108]

Fig. 8.12

Reproduced with permission from Kim et al. [80]

Notes

  1. 1.

    This relation is obtained using the definitions of airflow partitioning, nasal resistance, and the fact that the pressure drop is the same in the left and right cavities.

References

  1. L. Akmenkalne, M. Prill, K. Vogt, Nasal valve elastography: quantitative determination of the mobility of the nasal valve. Rhinol. Online 2, 81–86 (2019)

    CrossRef  Google Scholar 

  2. J. Alberty, W. Stoll, C. Rudack, The effect of endogenous nitric oxide on mechanical ciliostimulation of human nasal mucosa. Clin. Exp. Allergy 36(10), 1254–1259 (2006)

    CrossRef  Google Scholar 

  3. R.F. Andre, H.D. Vuyk, A. Ahmed, K. Graamans, G.J. Nolst Trenite, Correlation between subjective and objective evaluation of the nasal airway. a systematic review of the highest level of evidence. Clin .Otolaryngol. 34(6), 518–25 (2009)

    Google Scholar 

  4. W.T. Anselmo-Lima, V.J. Lund, The effects of endoscopic sinus surgery on the nasal cycle as assessed by acoustic rhinometry. Am. J. Rhinol. 15(3), 165–8 (2001)

    CrossRef  Google Scholar 

  5. M. Antosova, D. Mokra, I. Tonhajzerova, P. Mikolka, P. Kosutova, M. Mestanik, L. Pepucha, J. Plevkova, T. Buday, V. Calkovsky, Nasal nitric oxide in healthy adults-reference values and affecting factors. Physiolog. Res. 66, S247 (2017)

    CrossRef  Google Scholar 

  6. F.D. Babatola, Nasal resistance values in the adult negroid nigerian. Rhinology 28(4), 269–73 (1990)

    Google Scholar 

  7. R.S. Bailey, K.P. Casey, S.S. Pawar, G.J. Garcia, Correlation of nasal mucosal temperature with subjective nasal patency in healthy individuals. JAMA Facial Plast. Surg. 19(1), 46–52 (2017)

    CrossRef  Google Scholar 

  8. E. Baraldi, M. Pasquale, A. Cangiotti, S. Zanconato, F. Zacchello, Nasal nitric oxide is low early in life: case study of two infants with primary ciliary dyskinesia. Eur. Respir. J. 24(5), 881–883 (2004)

    CrossRef  Google Scholar 

  9. G. Berger, I. Hammel, R. Berger, S. Avraham, D. Ophir, Histopathology of the inferior turbinate with compensatory hypertrophy in patients with deviated nasal septum. The laryngoscope 110(12), 2100–2105 (2000)

    CrossRef  Google Scholar 

  10. E.R. Berkinshaw, P.M. Spalding, P.S. Vig, The effect of methodology on the determination of nasal resistance (Am. J. Orthod. Dentofac, Orthop, 1987)

    CrossRef  Google Scholar 

  11. C. Bermüller, H. Kirsche, G. Rettinger, H. Riechelmann, Diagnostic accuracy of peak nasal inspiratory flow and rhinomanometry in functional rhinosurgery. The Laryngoscope 118(4), 605–610 (2008)

    CrossRef  Google Scholar 

  12. S. Blaney, Why paranasal sinuses? J. Laryngol. Otol. 104(9), 690–693 (1990)

    CrossRef  Google Scholar 

  13. P.L. Blanton, N.L. Biggs, Eighteen hundred years of controversy: the paranasal sinuses. Am. J. Anat. 124(2), 135–147 (1969)

    CrossRef  Google Scholar 

  14. A.A. Borojeni, G.J. Garcia, M.G. Moghaddam, D.O. Frank-Ito, J.S. Kimbell, P.W. Laud, L.J. Koenig, J.S. Rhee, Normative ranges of nasal airflow variables in healthy adults. International Journal of Computer Assisted Radiology and Surgery 1–12, (2019)

    Google Scholar 

  15. A. Burrow, R. Eccles, A.S. Jones, The effects of camphor, eucalyptus and menthol vapour on nasal resistance to airflow and nasal sensation. Acta Otolaryngol. 96(1–2), 157–61 (1983)

    CrossRef  Google Scholar 

  16. O. Cakmak, E. Tarhan, M. Coskun, M. Cankurtaran, H. Celik, Acoustic rhinometry: accuracy and ability to detect changes in passage area at different locations in the nasal cavity. Ann. Otol. Rhinol. Laryngol. 114(12), 949–57 (2005)

    CrossRef  Google Scholar 

  17. K.H. Calhoun, W. House, J.A. Hokanson, F.B. Quinn, Normal nasal airway-resistance in noses of different sizes and shapes. Otolaryngol. Head Neck Surg. 103(4), 605–609 (1990)

    CrossRef  Google Scholar 

  18. K.P. Casey, A.A. Borojeni, L.J. Koenig, J.S. Rhee, G.J. Garcia, Correlation between subjective nasal patency and intranasal airflow distribution. Otolaryngol. Head Neck Surg. (United States) (2017)

    Google Scholar 

  19. R.K. Chandra, M.O. Patadia, J. Raviv, Diagnosis of nasal airway obstruction. Otolaryngol. Clin. N. Am. 42(2), 207–225 (2009)

    CrossRef  Google Scholar 

  20. G.B. Cherobin, R.L. Voegels, E. Gebrim, G.J.M. Garcia, Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold. PLoS One 13(11), e0207178 (2018)

    CrossRef  Google Scholar 

  21. S. Chung, H. Dhong, D. Na, Mucus circulation between accessory ostium and natural ostium of maxillary sinus. J. Laryngol. Otol. 113(9), 865–867 (1999)

    CrossRef  Google Scholar 

  22. S.-K. Chung, D.Y. Cho, H.J. Dhong, Computed tomogram findings of mucous recirculation between the natural and accessory ostia of the maxillary sinus. Am. J. Rhinol. 16(5), 265–268 (2002)

    CrossRef  Google Scholar 

  23. S.E. Churchill, L.L. Shackelford, J.N. Georgi, M.T. Black, Morphological variation and airflow dynamics in the human nose. Am. J. Hum. Biol.: Off. J. Hum. Biol. Assoc. 16(6), 625–638 (2004)

    Google Scholar 

  24. P.A. Clement, F. Gordts, Standardisation Committee on Objective Assessment of the Nasal Airway, I. R. S., Ers. Consensus report on acoustic rhinometry and rhinomanometry. Rhinology 43(3), 169–79 (2005)

    Google Scholar 

  25. P. Clements, F. Gortds, Standardisation committee on objective assessment of the nasal airway, irs, and ers consensus report on acoustic rhinometry and rhinomanometry. Rhynology 43(3), 169–179 (2005)

    Google Scholar 

  26. P. Cole, Physiology of the nose and paranasal sinuses. Clin. Rev. Allergy Immunol. 16(1–2), 25–54 (1998)

    CrossRef  Google Scholar 

  27. R. Corbelli, J. Hammer, Measurement of nasal nitric oxide. Paediatr. Respir. Rev. 8(3), 269–272 (2007)

    CrossRef  Google Scholar 

  28. J.P. Corey, Acoustic rhinometry: should we be using it? Curr. Opin. Otolaryngol. Head Neck Surg. 14(1), 29–34 (2006)

    CrossRef  Google Scholar 

  29. B.A. Craven, T. Neuberger, E.G. Paterson, A.G. Webb, E.M. Josephson, E.E. Morrison, G.S. Settles, Reconstruction and morphometric analysis of the nasal airway of the dog (canis familiaris) and implications regarding olfactory airflow. Anat. Rec. (Hoboken) 290(11), 1325–40 (2007)

    CrossRef  Google Scholar 

  30. E. Crognier, Climate and anthropometric variations in Europe and the mediterranean area. Ann. Hum. Biol. 8(2), 99–107 (1981)

    CrossRef  Google Scholar 

  31. R.K. Daniel, Hispanic rhinoplasty in the united states, with emphasis on the Mexican American nose. Plast. Reconstr. Surg. 112(1), 244–56; discussion 257–8 (2003)

    Google Scholar 

  32. A. Davies, A re-survey of the morphology of the nose in relation to climate. J. R. Anthropol. Inst. G. B. Irel. 62, 337–359 (1932)

    Google Scholar 

  33. W.B. Davis, Lv. anatomy of the nasal accessory sinuses in infancy and childhood. Ann. Otol. Rhinol. Laryngol. 27(3), 940–967 (1918)

    Google Scholar 

  34. A. Dayal, J.S. Rhee, G.J. Garcia, Impact of middle versus inferior total turbinectomy on nasal aerodynamics. Otolaryngol. Head Neck Surg. 155(3), 518–25 (2016)

    CrossRef  Google Scholar 

  35. H.P.L. De Yun Wang, B.R. Gordon, Impacts of fluid dynamics simulation in study of nasal airflow physiology and pathophysiology in realistic human three-dimensional nose models. Clin. Exp. Otorhinolaryngol. 5(4), 181 (2012)

    Google Scholar 

  36. N.M. Doddi, R. Eccles, The relationship between nasal index and nasal airway resistance, and response to a topical decongestant. Rhinology 49(5), 583–6 (2011)

    Google Scholar 

  37. J. Dong, J. Ma, Y. Shang, K. Inthavong, D. Qiu, J. Tu, D. Frank-Ito, Detailed nanoparticle exposure analysis among human nasal cavities with distinct vestibule phenotypes. J. Aerosol Sci. 121, 54–65 (2018)

    CrossRef  Google Scholar 

  38. D.J. Doorly, D.J. Taylor, R.C. Schroter, Mechanics of airflow in the human nasal airways. Respir. Physiol. Neurobiol. 163(1–3), 100–10 (2008)

    CrossRef  Google Scholar 

  39. J. Earwaker, Anatomic variants in sinonasal ct. Radiographics 13(2), 381–415 (1993)

    CrossRef  Google Scholar 

  40. R. Eccles, A role for the nasal cycle in respiratory defence. Eur. Respir. J. 9(2), 371–376 (1996)

    CrossRef  Google Scholar 

  41. R. Eccles, Nasal airflow in health and disease. Acta Otolaryngol. 120(5), 580–595 (2000)

    CrossRef  Google Scholar 

  42. R. Eccles, D.H. Griffiths, C.G. Newton, N.S. Tolley, The effects of menthol isomers on nasal sensation of airflow. Clin. Otolaryngol. Allied Sci. 13(1), 25–9 (1988)

    CrossRef  Google Scholar 

  43. R. Eccles, A.S. Jones, The effect of menthol on nasal resistance to air flow. J. Laryngol. Otol. 97(8), 705–9 (1983)

    CrossRef  Google Scholar 

  44. T.P. Eiting, J.B. Perot, E.R. Dumont, How much does nasal cavity morphology matter? patterns and rates of olfactory airflow in phyllostomid bats. Proc. Biol. Sci. 282(1800), 20142161 (2015)

    Google Scholar 

  45. T.P. Eiting, T.D. Smith, J.B. Perot, E.R. Dumont, The role of the olfactory recess in olfactory airflow. J. Exp. Biol. 217(Pt 10), 1799–803 (2014)

    CrossRef  Google Scholar 

  46. D. Elad, R. Liebenthal, B.L. Wenig, S. Einav, Analysis of air flow patterns in the human nose. Med. Biol. Eng. Comput. 31(6), 585–92 (1993)

    CrossRef  Google Scholar 

  47. E.W. Fisher, D.P. Morris, J.M. Biemans, C.R. Palmer, V.J. Lund, Practical aspects of acoustic rhinometry: problems and solutions. Rhinology 33(4), 219–23 (1995)

    Google Scholar 

  48. P. Flanagan, R. Eccles, Spontaneous changes of unilateral nasal airflow in man. a re-examination of the ‘nasal cycle’. Acta Otolaryngol. 117(4), 590–595 (1997)

    Google Scholar 

  49. C. Gaberino, J.S. Rhee, G.J. Garcia, Estimates of nasal airflow at the nasal cycle mid-point improve the correlation between objective and subjective measures of nasal patency. Respir. Physiol. Neurobiol. 238:23–32 (2017). https://doi.org/10.1016/j.resp.2017.01.004

  50. A.M. Gambaruto, D.J. Taylor, D.J. Doorly, Decomposition and description of the nasal cavity form. Ann. Biomed. Eng. 40(5), 1142–59 (2012)

    CrossRef  Google Scholar 

  51. G.J. Garcia, E.W. Tewksbury, B.A. Wong, J.S. Kimbell, Interindividual variability in nasal filtration as a function of nasal cavity geometry. J. Aerosol. Med. Pulm. Drug Deliv. 22(2), 139–55 (2009)

    CrossRef  Google Scholar 

  52. G.J.M. Garcia, B.M. Hariri, R.G. Patel, J.S. Rhee, The relationship between nasal resistance to airflow and the airspace minimal cross-sectional area. J. Biomech. 49(9), 1670–1678 (2016)

    CrossRef  Google Scholar 

  53. G. Garcia, G. Mitchell, B. N. T. D. W. J. K. J. Visualization of nasal airflow patterns in a patient affected with atrophic rhinitis using particle image velocimetry. J. Phys.: Conf. Ser. 85 (2007)

    Google Scholar 

  54. Q.J. Ge, K. Inthavong, J.Y. Tu, Local deposition fractions of ultrafine particles in a human nasal-sinus cavity cfd model. Inhal. Toxicol. 24(8), 492–505 (2012)

    CrossRef  Google Scholar 

  55. A.N. Gilbert, Reciprocity versus rhythmicity in spontaneous alternations of nasal airflow. Chronobiol. Int. 6(3), 251–257 (1989)

    CrossRef  Google Scholar 

  56. S. Granqvist, J. Sundberg, J.O. Lundberg, E. Weitzberg, Paranasal sinus ventilation by humming. J. Acoust. Soc. Am. 119(5), 2611–2617 (2006)

    CrossRef  Google Scholar 

  57. L.F. Grymer, P. Illum, O. Hilberg, Septoplasty and compensatory inferior turbinate hypertrophy: a randomized study evaluated by acoustic rhinometry. J. Laryngol. Otol. 107(5), 413–7 (1993)

    CrossRef  Google Scholar 

  58. R.A. Guilmette, Y.S. Cheng, W.C. Griffith, Characterising the variability in adult human nasal airway dimensions. Ann. Occup. Hyg. 41(1), 491–496 (1997)

    Google Scholar 

  59. A. Gungor, R. Moinuddin, R.H. Nelson, J.P. Corey, Detection of the nasal cycle with acoustic rhinometry: techniques and applications. Otolaryngol. Head Neck Surg. 120(2), 238–47 (1999)

    CrossRef  Google Scholar 

  60. I. Hahn, P. Scherer, M. Mozell, Velocity profiles measured for air-flow through a large-scale model of the human nasal cavity. J. Appl. Physiol. 75(5), 2273–2287 (1993)

    CrossRef  Google Scholar 

  61. J.S. Haight, P. Djupesland, W. Qjan, J. Chatkin, H. Furlott, J. Irish, I. Witterick, P. McClean, R. Fenton, V. Hoffstein, Does nasal nitric oxide come from the sinuses? J. Otolaryngol. 28(4), 197–204 (1999)

    Google Scholar 

  62. M. Hasegawa, E. Kern, Variations in nasal resistance in man: a rhinomanometric study of the nasal cycle in 50 human subjects. Rhinology 16(1), 19–29 (1978)

    Google Scholar 

  63. M. Hasegawa, E.B. Kern, Variations in nasal resistance in man: a rhinomanometric study of the nasal cycle in 50 human subjects. Rhinology 16(1), 19–29 (1978)

    Google Scholar 

  64. K. Hemtiwakorn, V. Mahasitthiwat, S. Tungjitkusolmun, K. Hamamoto, C. Pintavirooj, Patient-specific aided surgery approach of deviated nasal septum using computational fluid dynamics. IEEJ Trans. Electr. Electron. Eng. 10(3), 274–286 (2015)

    CrossRef  Google Scholar 

  65. J. Hiernaux, A. Froment, Correlations between anthropo-biological and climatic variables in sub-saharan Africa - revised estimates. Hum. Biol. 48(4), 757–767 (1976)

    Google Scholar 

  66. O. Hilberg, A.C. Jackson, D.L. Swift, O.F. Pedersen, Acoustic rhinometry: evaluation of nasal cavity geometry by acoustic reflection. J. Appl. Physiol. (1985) 66(1), 295–303 (1989)

    Google Scholar 

  67. W.E. Holden, J.P. Wilkins, M. Harris, H.A. Milczuk, G.D. Giraud, Temperature conditioning of nasal air: effects of vasoactive agents and involvement of nitric oxide. J. Appl. Physiol. (1985) 87(4), 1260–5 (1999)

    Google Scholar 

  68. C. Hood, R. Schroter, D. Doorly, E. Blenke, N. Tolley, Computational modeling of flow and gas exchange in models of the human maxillary sinus. J. Appl. Physiol. 107, 1195–1203 (2009)

    CrossRef  Google Scholar 

  69. K. Inthavong, J. Ma, Y. Shang, J. Dong, A.S. Chetty, J. Tu, D. Frank-Ito, Geometry and airflow dynamics analysis in the nasal cavity during inhalation. Clinical Biomechanics (2017)

    Google Scholar 

  70. K. Inthavong, J. Wen, J.Y. Tu, Z.F. Tian, From ct scans to cfd modelling - fluid and heat transfer in a realistic human nasal cavity. Eng. Appl. Comput. Fluid Mech. 3(3), 321–335 (2009)

    Google Scholar 

  71. M. Jog, G. McGarry, How frequent are accessory sinus ostia? J. Laryngol. Otol. 117(4), 270–272 (2003)

    CrossRef  Google Scholar 

  72. T. Keck, R. Leiacker, A. Heinrich, S. Kuhnemann, G. Rettinger, Humidity and temperature profile in the nasal cavity. Rhinology 38(4), 167–71 (2000)

    Google Scholar 

  73. J.A. Keeler, A. Patki, C.R. Woodard, D.O. Frank-Ito, A computational study of nasal spray deposition pattern in four ethnic groups. J. Aerosol. Med. Pulm. Drug Deliv. 29(2), 153–66 (2016)

    CrossRef  Google Scholar 

  74. J. Keir, Why do we have paranasal sinuses? J. Laryngol. Otol. 123(1), 4–8 (2009)

    CrossRef  Google Scholar 

  75. R.M. Kellman, C. Schmidt, The paranasal sinuses as a protective crumple zone for the orbit. The Laryngoscope 119(9), 1682–1690 (2009)

    CrossRef  Google Scholar 

  76. K. Keyhani, P.W. Scherer, M.M. Mozell, Numerical simulation of airflow in the human nasal cavity. J. Biomech. Eng. 117(4), 429–41 (1995)

    CrossRef  Google Scholar 

  77. K. Keyhani, P.W. Scherer, M.M. Mozell, A numerical model of nasal odorant transport for the analysis of human olfaction. J. Theor. Biol. 186(3), 279–301 (1997)

    CrossRef  Google Scholar 

  78. D.W. Kim, S.K. Chung, Y. Na, Numerical study on the air conditioning characteristics of the human nasal cavity. Comput. Biol. Med. 86, 18–30 (2017)

    CrossRef  Google Scholar 

  79. S.K. Kim, G.E. Heo, A. Seo, Y. Na, S.K. Chung, Correlation between nasal airflow characteristics and clinical relevance of nasal septal deviation to nasal airway obstruction. Respir. Physiol. Neurobiol. 192, 95–101 (2014)

    CrossRef  Google Scholar 

  80. S.K. Kim, Y. Na, J.-I. Kim, S.-K. Chung, Patient specific cfd models of nasal airflow: overview of methods and challenges. J. Biomech. 46(2), 299–306 (2013)

    CrossRef  Google Scholar 

  81. S.W. Kim, J.H. Mo, J.W. Kim, D.Y. Kim, C.S. Rhee, C.H. Lee, Y.G. Min, Change of nasal function with aging in Korean. Acta Otolaryngol. Suppl. 558, 90–4 (2007)

    Google Scholar 

  82. J. Kimbell, D. Frank, P. Laud, G. Garcia, J. Rhee, Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction. J. Biomech. 46(15), 2634–2643 (2013)

    CrossRef  Google Scholar 

  83. J.S. Kimbell, S. Basu, G.J. Garcia, D.O. Frank-Ito, F. Lazarow, E. Su, D. Protsenko, Z. Chen, J.S. Rhee, B.J. Wong, Upper airway reconstruction using long-range optical coherence tomography: effects of airway curvature on airflow resistance (Lasers Surg, Med, 2019)

    Google Scholar 

  84. J.S. Kimbell, R.A. Segal, B. Asgharian, B.A. Wong, J.D. Schroeter, J.P. Southall, C.J. Dickens, G. Brace, F.J. Miller, Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages. J. Aerosol Med. 20(1), 59–74 (2007)

    CrossRef  Google Scholar 

  85. T. KjÆrgaard, M. Cvancarova, S.K. SteinsvÅg, Relation of nasal air flow to nasal cavity dimensions. Arch. Otolaryngol. Head Neck Surg. 135(6), 565–570 (2009)

    CrossRef  Google Scholar 

  86. H. Kumar, R. Jain, R.G. Douglas, M.H. Tawhai, Airflow in the human nasal passage and sinuses of chronic rhinosinusitis subjects. PloS one 11(6), e0156379 (2016)

    CrossRef  Google Scholar 

  87. D. Lal, M.L. Gorges, G. Ungkhara, P.M. Reidy, J.P. Corey, Physiological change in nasal patency in response to changes in posture, temperature, and humidity measured by acoustic rhinometry. Am. J. Rhinol. 20(5), 456–62 (2006)

    CrossRef  Google Scholar 

  88. C. Lang, S. Grutzenmacher, B. Mlynski, S. Plontke, G. Mlynski, Investigating the nasal cycle using endoscopy, rhinoresistometry, and acoustic rhinometry. Laryngoscope 113(2), 284–9 (2003)

    CrossRef  Google Scholar 

  89. T.B. Le, M.G. Moghaddam, B.T. Woodson, G.J.M. Garcia, Airflow limitation in a collapsible model of the human pharynx: physical mechanisms studied with fluid-structure interaction simulations and experiments. Physiol. Rep. 7(10), e14099 (2019)

    CrossRef  Google Scholar 

  90. J. Leach, Aesthetics and the hispanic rhinoplasty. Laryngoscope 112(11), 1903–16 (2002)

    CrossRef  Google Scholar 

  91. S.C. Leong, X.B. Chen, H.P. Lee, D.Y. Wang, A review of the implications of computational fluid dynamic studies on nasal airflow and physiology. Rhinology 48(2), 139–45 (2010)

    Google Scholar 

  92. S.C. Leong, R. Eccles, A systematic review of the nasal index and the significance of the shape and size of the nose in rhinology. Clin. Otolaryngol. 34(3), 191–198 (2009)

    CrossRef  Google Scholar 

  93. C. Li, J. Jiang, H. Dong, K. Zhao, Computational modeling and validation of human nasal airflow under various breathing conditions. J. Biomech. (2017)

    Google Scholar 

  94. J. Lindemann, R. Leiacker, G. Rettinger, T. Keck, Nasal mucosal temperature during respiration. Clin. Otolaryngol. Allied Sci. 27(3), 135–9 (2002)

    CrossRef  Google Scholar 

  95. J. Lu, D. Han, L. Zhang, Accuracy evaluation of a numerical simulation model of nasal airflow. Acta Otolaryngol. 134(5), 513–9 (2014)

    CrossRef  Google Scholar 

  96. J. Lundberg, G. Settergren, S. Gelinder, J. Lundberg, K. Alving, E. Weitzberg, Inhalation of nasally derived nitric oxide modulates pulmonary function in humans. Acta Physiol. Scandinavica 158(4), 343–347 (1996)

    CrossRef  Google Scholar 

  97. J. Lundberg, E. Weitzberg, S. Nordvall, R. Kuylenstierna, J. Lundberg, K. Alving, Primarily nasal origin of exhaled nitric oxide and absence in kartagener’s syndrome. Eur. Respir. J. 7(8), 1501–1504 (1994)

    CrossRef  Google Scholar 

  98. J.O. Lundberg, Nitric oxide and the paranasal sinuses. Anat. Rec.: Adv. Integr. Anat. Evol. Biol.: Adv. Integr. Anat. Evol.y Biol. 291(11), 1479–1484 (2008)

    Google Scholar 

  99. J. Ma, J. Dong, Y. Shang, K. Inthavong, J. Tu, D.O. Frank-Ito, Air conditioning analysis among human nasal passages with anterior anatomical variations. Med. Eng. Phys. 57, 19–28 (2018)

    CrossRef  Google Scholar 

  100. Maalouf, R., Bequignon, E., Devars du Mayne, M., Zerah-Lancner, F., Isabey, D., Coste, A., Louis, B., and Papon, J. F. A functional tool to differentiate nasal valve collapse from other causes of nasal obstruction: the fried test. J Appl Physiol (1985) 121, 1 (2016), 343–7

    Google Scholar 

  101. M. Maniscalco, E. Weitzberg, J. Sundberg, M. Sofia, J. Lundberg, Assessment of nasal and sinus nitric oxide output using single-breath humming exhalations. Eur. Respir. J. 22(2), 323–329 (2003)

    CrossRef  Google Scholar 

  102. W.T. Mcnicholas, M. Coffey, T. Boyle, Effects of nasal airflow on breathing during sleep in normal human. Am. Rev. Respir. Dis. 147, 620–620 (1993)

    CrossRef  Google Scholar 

  103. L. Menzel, A. Hess, W. Bloch, O. Michel, K.-D. Schuster, R. Gabler, W. Urban, Temporal nitric oxide dynamics in the paranasal sinuses during humming. J. Appl. Physiol. 98(6), 2064–2071 (2005)

    CrossRef  Google Scholar 

  104. Y.G. Min, Y.J. Jang, Measurements of cross-sectional area of the nasal cavity by acoustic rhinometry and ct scanning. Laryngoscope 105(7 Pt 1), 757–9 (1995)

    CrossRef  Google Scholar 

  105. R. Moinuddin, B. Mamikoglu, S. Barkatullah, J.P. Corey, Detection of the nasal cycle. Am. J. Rhinol. 15(1), 35–9 (2001)

    CrossRef  Google Scholar 

  106. M. Myerson, Natural orifice of the maxillary sinus: Ii. clinical studies. Arch. Otolaryngol. 15(5), 716–733 (1932)

    Google Scholar 

  107. N. Mygind, R. Dahl, Anatomy, physiology and function of the nasal cavities in health and disease. Adv. Drug Deliv. Rev. 29(1–2), 3–12 (1998)

    CrossRef  Google Scholar 

  108. Y. Na, K. Kim, S.K. Kim, S.-K. Chung, The quantitative effect of an accessory ostium on ventilation of the maxillary sinus. Respir. Physiol. Neurobiol. 181(1), 62–73 (2012)

    CrossRef  Google Scholar 

  109. M.L. Noback, K. Harvati, F. Spoor, Climate-related variation of the human nasal cavity. Am. J. Phys. Anthropol. 145(4), 599–614 (2011)

    CrossRef  Google Scholar 

  110. J. Numminen, P. Dastidar, T. Heinonen, T. Karhuketo, M. Rautiainen, Reliability of acoustic rhinometry. Respir. Med. 97(4), 421–7 (2003)

    Google Scholar 

  111. M. Ohki, K. Naito, P. Cole, Dimensions and resistances of the human nose - racial-differences. Laryngoscope 101(3), 276–278 (1991)

    CrossRef  Google Scholar 

  112. G. O’Neill, N.S. Tolley, The complexities of nasal airflow - theory and practice. J. Appl. Physiol. (1985) (2019)

    Google Scholar 

  113. J. Osman, F. Großmann, K. Brosien, U. Kertzscher, L. Goubergrits, T. Hildebrandt, Assessment of nasal resistance using computational fluid dynamics. Curr. Dir. Biomed. Eng. 2(1), 617–621 (2016)

    CrossRef  Google Scholar 

  114. H.E. Ozel, F. Ozdogan, E. Esen, M.G. Genc, S. Genc, A. Selcuk, The association between septal deviation and the presence of a maxillary accessory ostium. In: International Forum of Allergy & Rhinology, vol. 5, pp. 1177–1180. Wiley Online Library

    Google Scholar 

  115. R.G. Patel, G.J. Garcia, D.O. Frank-Ito, J.S. Kimbell, J.S. Rhee, Simulating the nasal cycle with computational fluid dynamics. Otolaryngol. Head Neck Surg. (2014)

    Google Scholar 

  116. A. Patki, D.O. Frank-Ito, Characterizing human nasal airflow physiologic variables by nasal index. Respir. Physiol. Neurobiol. 232, 66–74 (2016)

    CrossRef  Google Scholar 

  117. M. Quadrio, C. Pipolo, S. Corti, R. Lenzi, F. Messina, C. Pesci, G. Felisati, Review of computational fluid dynamics in the assessment of nasal air flow and analysis of its limitations. Eur. Arch. Oto-Rhino-Laryngol. 271(9), 2349–2354 (2014)

    CrossRef  Google Scholar 

  118. C.W. Quammen, R.M. Taylor, P. Krajcevski, S. Mitran, A. Enquobahrie, R. Superfine, B. Davis, S. Davis, C. Zdanski, The virtual pediatric airways workbench. In: Studies in Health Technology and Informatics (2016)

    Google Scholar 

  119. T. Radulesco, L. Meister, G. Bouchet, A. Varoquaux, J. Giordano, J. Mancini, P. Dessi, P. Perrier, J. Michel, Correlations between computational fluid dynamics and clinical evaluation of nasal airway obstruction due to septal deviation: An observational study. Clin. Otolaryngol. 44(4), 603–611 (2019)

    CrossRef  Google Scholar 

  120. V.H. Ramprasad, D.O. Frank-Ito, A computational analysis of nasal vestibule morphologic variabilities on nasal function. J. Biomech. 49(3), 450–7 (2016)

    CrossRef  Google Scholar 

  121. C.E. Rennie, C.M. Hood, E.J. Blenke, R.S. Schroter, D.J. Doorly, H. Jones, D. Towey, N.S. Tolley, Physical and computational modeling of ventilation of the maxillary sinus. Otolaryngol. Head Neck Surg. 145(1), 165–170 (2011)

    CrossRef  Google Scholar 

  122. J.S. Rhee, C.D. Sullivan, D.O. Frank, J.S. Kimbell, G.J. Garcia, A systematic review of patient-reported nasal obstruction scores: defining normative and symptomatic ranges in surgical patients. JAMA Facial Plast. Surg. 16(3), 219–25; quiz 232 (2014)

    Google Scholar 

  123. D.G. Roblin, R. Eccles, Normal range for nasal partitioning of airflow determined by nasal spirometry in 100 healthy subjects. Am. J. Rhinol. 17(4), 179–83 (2003)

    CrossRef  Google Scholar 

  124. E. Sanmiguel-Rojas, M.A. Burgos, F. Esteban-Ortega, Nasal surgery handled by cfd tools. Int. J. Numer. Method Biomed. Eng. 34(10), e3126 (2018)

    CrossRef  Google Scholar 

  125. M.J. Schumacher, Nasal congestion and airway obstruction: The validity of available objective and subjective measures. Curr. Allergy Asthma Rep. 2(3), 245–51 (2002)

    CrossRef  Google Scholar 

  126. M.J. Schumacher, Nasal dyspnea: the place of rhinomanometry in its objective assessment. Am. J. Rhinol. 18(1), 41–46 (2004)

    CrossRef  Google Scholar 

  127. R.A. Segal, G.M. Kepler, J.S. Kimbell, Effects of differences in nasal anatomy on airflow distribution: a comparison of four individuals at rest. Ann. Biomed. Eng. 36(11), 1870–82 (2008)

    CrossRef  Google Scholar 

  128. K.T. Shanley, P. Zamankhan, G. Ahmadi, P.K. Hopke, Y.S. Cheng, Numerical simulations investigating the regional and overall deposition efficiency of the human nasal cavity. Inhal. Toxicol. 20(12), 1093–100 (2008)

    CrossRef  Google Scholar 

  129. J. Sozansky, S.M. Houser, The physiological mechanism for sensing nasal airflow: a literature review. Int. Forum Allergy Rhinol. 4(10), 834–8 (2014)

    CrossRef  Google Scholar 

  130. F. Stehling, C. Roll, F. Ratjen, H. Grasemann, Nasal nitric oxide to diagnose primary ciliary dyskinesia in newborns. Arch. Dis. Childhood-Fetal Neonatal Ed. 91(3), F233–F233 (2006)

    CrossRef  Google Scholar 

  131. R. Subramaniam, R. Richardson, K. Morgan, R. Guilmette, J. Kimbell, Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhal. Toxicol. 10, 91–120 (1998)

    CrossRef  Google Scholar 

  132. C.D. Sullivan, G.J. Garcia, D.O. Frank-Ito, J.S. Kimbell, J.S. Rhee, Perception of better nasal patency correlates with increased mucosal cooling after surgery for nasal obstruction. Otolaryngol. Head Neck Surg. 150(1), 139–47 (2014)

    CrossRef  Google Scholar 

  133. J. Tan, D. Han, J. Wang, T. Liu, T. Wang, H. Zang, Y. Li, X. Wang, Numerical simulation of normal nasal cavity airflow in Chinese adult: a computational flow dynamics model. Eur. Arch. Otorhinolaryngol. 269(3), 881–9 (2012)

    CrossRef  Google Scholar 

  134. E. Tarhan, M. Coskun, O. Cakmak, H. Celik, M. Cankurtaran, Acoustic rhinometry in humans: accuracy of nasal passage area estimates, and ability to quantify paranasal sinus volume and ostium size. J. Appl. Physiol. (1985) 99(2), 616–23 (2005)

    Google Scholar 

  135. A. Thomson, L.H.D. Buxton, Man’s nasal index in relation to certain climatic conditions. J. R. Anthropol. Inst. G. B. Ireland 53, 92–122 (1923)

    Google Scholar 

  136. D.L. Vanhille, G.J.M. Garcia, O. Asan, A.A.T. Borojeni, D.O. Frank-Ito, J.S. Kimbell, S.S. Pawar, J.S. Rhee, Virtual surgery for the nasal airway: a preliminary report on decision support and technology acceptance. JAMA Facial Plast. Surg. 20(1), 63–69 (2018)

    CrossRef  Google Scholar 

  137. K. Vogt, A.A. Jalowayski, W. Althaus, C. Cao, D. Han, W. Hasse, H. Hoffrichter, R. Mosges, J. Pallanch, K. Shah-Hosseini, K. Peksis, K.D. Wernecke, L. Zhang, P. Zaporoshenko, 4-phase-rhinomanometry (4pr)-basics and practice 2010. Rhinol. Suppl. 21, 1–50 (2010)

    Google Scholar 

  138. D.W. Warren, A.F. Drake, J.U. Davis, Nasal airway in breathing and speech. Cleft Palate-Craniofacial J. 29(6), 511–519 (1992)

    CrossRef  Google Scholar 

  139. J.S. Weiner, Nose shape and climate. Am. J. Phys. Anthropol. New Ser. 12(4), 615–618 (1954)

    CrossRef  Google Scholar 

  140. E. Weitzberg, J.O. Lundberg, Humming greatly increases nasal nitric oxide. Am. J. Respir. Critical Care Med. 166(2), 144–145 (2002)

    CrossRef  Google Scholar 

  141. J. Wen, K. Inthavong, J. Tu, S.M. Wang, Numerical simulations for detailed airflow dynamics in a human nasal cavity. Respir. Physiol. Neurobiol. 161(2), 125–135 (2008)

    CrossRef  Google Scholar 

  142. D. Willatt, The evidence for reducing inferior turbinates. Rhinology 47(3), 227–236 (2009)

    CrossRef  Google Scholar 

  143. M.H. Wolpoff, Climatic influence on the skeletal nasal aperture. Am. J. Phys. Anthropol. 29(3), 405–23 (1968)

    CrossRef  Google Scholar 

  144. D.M. Wootton, H. Luo, S.C. Persak, S. Sin, J.M. McDonough, C.R. Isasi, R. Arens, Computational fluid dynamics endpoints to characterize obstructive sleep apnea syndrome in children. J. Appl. Physiol. (1985) 116(1), 104–12 (2014)

    Google Scholar 

  145. G.-X. Xiong, J.-M. Zhan, H.-Y. Jiang, J.-F. Li, L.-W. Rong, G. Xu, Computational fluid dynamics simulation of airflow in the normal nasal cavity and paranasal sinuses. Am. J. Rhinol. 22, 477–482 (2008)

    CrossRef  Google Scholar 

  146. T.R. Yokley, Ecogeographic variation in human nasal passages. Am. J. Phys. Anthropol. 138(1), 11–22 (2009)

    CrossRef  Google Scholar 

  147. S. Yu, Y. Liu, X. Sun, S. Li, Influence of nasal structure on the distribution of airflow in nasal cavity. Rhinology 46(2), 137–143 (2008)

    Google Scholar 

  148. K. Zhao, J. Jiang, What is normal nasal airflow? a computational study of 22 healthy adults. Int. Forum Allergy Rhinol. 4(6), 435–46 (2014)

    CrossRef  Google Scholar 

  149. K. Zhao, J. Jiang, K. Blacker, B. Lyman, P. Dalton, B.J. Cowart, E.A. Pribitkin, Regional peak mucosal cooling predicts the perception of nasal patency. Laryngoscope 124(3), 589–95 (2014)

    CrossRef  Google Scholar 

  150. J.H. Zhu, H.P. Lee, K.M. Lim, B.R. Gordon, D.Y. Wang, Effect of accessory ostia on maxillary sinus ventilation: a computational fluid dynamics (cfd) study. Respir. Physiol. Neurobiol. 183(2), 91–99 (2012)

    CrossRef  Google Scholar 

  151. J.H. Zhu, H.P. Lee, K.M. Lim, S.J. Lee, D.Y. Wang, Evaluation and comparison of nasal airway flow patterns among three subjects from caucasian, chinese and indian ethnic groups using computational fluid dynamics simulation. Respir. Physiol. Neurobiol. 175(1), 62–69 (2011)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Onyeka Frank-Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Frank-Ito, D.O., Garcia, G. (2021). Clinical Implications of Nasal Airflow Simulations. In: Inthavong, K., Singh, N., Wong, E., Tu, J. (eds) Clinical and Biomedical Engineering in the Human Nose. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-6716-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6716-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6715-5

  • Online ISBN: 978-981-15-6716-2

  • eBook Packages: EngineeringEngineering (R0)