L. Akmenkalne, M. Prill, K. Vogt, Nasal valve elastography: quantitative determination of the mobility of the nasal valve. Rhinol. Online 2, 81–86 (2019)
CrossRef
Google Scholar
J. Alberty, W. Stoll, C. Rudack, The effect of endogenous nitric oxide on mechanical ciliostimulation of human nasal mucosa. Clin. Exp. Allergy 36(10), 1254–1259 (2006)
CrossRef
Google Scholar
R.F. Andre, H.D. Vuyk, A. Ahmed, K. Graamans, G.J. Nolst Trenite, Correlation between subjective and objective evaluation of the nasal airway. a systematic review of the highest level of evidence. Clin .Otolaryngol. 34(6), 518–25 (2009)
Google Scholar
W.T. Anselmo-Lima, V.J. Lund, The effects of endoscopic sinus surgery on the nasal cycle as assessed by acoustic rhinometry. Am. J. Rhinol. 15(3), 165–8 (2001)
CrossRef
Google Scholar
M. Antosova, D. Mokra, I. Tonhajzerova, P. Mikolka, P. Kosutova, M. Mestanik, L. Pepucha, J. Plevkova, T. Buday, V. Calkovsky, Nasal nitric oxide in healthy adults-reference values and affecting factors. Physiolog. Res. 66, S247 (2017)
CrossRef
Google Scholar
F.D. Babatola, Nasal resistance values in the adult negroid nigerian. Rhinology 28(4), 269–73 (1990)
Google Scholar
R.S. Bailey, K.P. Casey, S.S. Pawar, G.J. Garcia, Correlation of nasal mucosal temperature with subjective nasal patency in healthy individuals. JAMA Facial Plast. Surg. 19(1), 46–52 (2017)
CrossRef
Google Scholar
E. Baraldi, M. Pasquale, A. Cangiotti, S. Zanconato, F. Zacchello, Nasal nitric oxide is low early in life: case study of two infants with primary ciliary dyskinesia. Eur. Respir. J. 24(5), 881–883 (2004)
CrossRef
Google Scholar
G. Berger, I. Hammel, R. Berger, S. Avraham, D. Ophir, Histopathology of the inferior turbinate with compensatory hypertrophy in patients with deviated nasal septum. The laryngoscope 110(12), 2100–2105 (2000)
CrossRef
Google Scholar
E.R. Berkinshaw, P.M. Spalding, P.S. Vig, The effect of methodology on the determination of nasal resistance (Am. J. Orthod. Dentofac, Orthop, 1987)
CrossRef
Google Scholar
C. Bermüller, H. Kirsche, G. Rettinger, H. Riechelmann, Diagnostic accuracy of peak nasal inspiratory flow and rhinomanometry in functional rhinosurgery. The Laryngoscope 118(4), 605–610 (2008)
CrossRef
Google Scholar
S. Blaney, Why paranasal sinuses? J. Laryngol. Otol. 104(9), 690–693 (1990)
CrossRef
Google Scholar
P.L. Blanton, N.L. Biggs, Eighteen hundred years of controversy: the paranasal sinuses. Am. J. Anat. 124(2), 135–147 (1969)
CrossRef
Google Scholar
A.A. Borojeni, G.J. Garcia, M.G. Moghaddam, D.O. Frank-Ito, J.S. Kimbell, P.W. Laud, L.J. Koenig, J.S. Rhee, Normative ranges of nasal airflow variables in healthy adults. International Journal of Computer Assisted Radiology and Surgery 1–12, (2019)
Google Scholar
A. Burrow, R. Eccles, A.S. Jones, The effects of camphor, eucalyptus and menthol vapour on nasal resistance to airflow and nasal sensation. Acta Otolaryngol. 96(1–2), 157–61 (1983)
CrossRef
Google Scholar
O. Cakmak, E. Tarhan, M. Coskun, M. Cankurtaran, H. Celik, Acoustic rhinometry: accuracy and ability to detect changes in passage area at different locations in the nasal cavity. Ann. Otol. Rhinol. Laryngol. 114(12), 949–57 (2005)
CrossRef
Google Scholar
K.H. Calhoun, W. House, J.A. Hokanson, F.B. Quinn, Normal nasal airway-resistance in noses of different sizes and shapes. Otolaryngol. Head Neck Surg. 103(4), 605–609 (1990)
CrossRef
Google Scholar
K.P. Casey, A.A. Borojeni, L.J. Koenig, J.S. Rhee, G.J. Garcia, Correlation between subjective nasal patency and intranasal airflow distribution. Otolaryngol. Head Neck Surg. (United States) (2017)
Google Scholar
R.K. Chandra, M.O. Patadia, J. Raviv, Diagnosis of nasal airway obstruction. Otolaryngol. Clin. N. Am. 42(2), 207–225 (2009)
CrossRef
Google Scholar
G.B. Cherobin, R.L. Voegels, E. Gebrim, G.J.M. Garcia, Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold. PLoS One 13(11), e0207178 (2018)
CrossRef
Google Scholar
S. Chung, H. Dhong, D. Na, Mucus circulation between accessory ostium and natural ostium of maxillary sinus. J. Laryngol. Otol. 113(9), 865–867 (1999)
CrossRef
Google Scholar
S.-K. Chung, D.Y. Cho, H.J. Dhong, Computed tomogram findings of mucous recirculation between the natural and accessory ostia of the maxillary sinus. Am. J. Rhinol. 16(5), 265–268 (2002)
CrossRef
Google Scholar
S.E. Churchill, L.L. Shackelford, J.N. Georgi, M.T. Black, Morphological variation and airflow dynamics in the human nose. Am. J. Hum. Biol.: Off. J. Hum. Biol. Assoc. 16(6), 625–638 (2004)
Google Scholar
P.A. Clement, F. Gordts, Standardisation Committee on Objective Assessment of the Nasal Airway, I. R. S., Ers. Consensus report on acoustic rhinometry and rhinomanometry. Rhinology 43(3), 169–79 (2005)
Google Scholar
P. Clements, F. Gortds, Standardisation committee on objective assessment of the nasal airway, irs, and ers consensus report on acoustic rhinometry and rhinomanometry. Rhynology 43(3), 169–179 (2005)
Google Scholar
P. Cole, Physiology of the nose and paranasal sinuses. Clin. Rev. Allergy Immunol. 16(1–2), 25–54 (1998)
CrossRef
Google Scholar
R. Corbelli, J. Hammer, Measurement of nasal nitric oxide. Paediatr. Respir. Rev. 8(3), 269–272 (2007)
CrossRef
Google Scholar
J.P. Corey, Acoustic rhinometry: should we be using it? Curr. Opin. Otolaryngol. Head Neck Surg. 14(1), 29–34 (2006)
CrossRef
Google Scholar
B.A. Craven, T. Neuberger, E.G. Paterson, A.G. Webb, E.M. Josephson, E.E. Morrison, G.S. Settles, Reconstruction and morphometric analysis of the nasal airway of the dog (canis familiaris) and implications regarding olfactory airflow. Anat. Rec. (Hoboken) 290(11), 1325–40 (2007)
CrossRef
Google Scholar
E. Crognier, Climate and anthropometric variations in Europe and the mediterranean area. Ann. Hum. Biol. 8(2), 99–107 (1981)
CrossRef
Google Scholar
R.K. Daniel, Hispanic rhinoplasty in the united states, with emphasis on the Mexican American nose. Plast. Reconstr. Surg. 112(1), 244–56; discussion 257–8 (2003)
Google Scholar
A. Davies, A re-survey of the morphology of the nose in relation to climate. J. R. Anthropol. Inst. G. B. Irel. 62, 337–359 (1932)
Google Scholar
W.B. Davis, Lv. anatomy of the nasal accessory sinuses in infancy and childhood. Ann. Otol. Rhinol. Laryngol. 27(3), 940–967 (1918)
Google Scholar
A. Dayal, J.S. Rhee, G.J. Garcia, Impact of middle versus inferior total turbinectomy on nasal aerodynamics. Otolaryngol. Head Neck Surg. 155(3), 518–25 (2016)
CrossRef
Google Scholar
H.P.L. De Yun Wang, B.R. Gordon, Impacts of fluid dynamics simulation in study of nasal airflow physiology and pathophysiology in realistic human three-dimensional nose models. Clin. Exp. Otorhinolaryngol. 5(4), 181 (2012)
Google Scholar
N.M. Doddi, R. Eccles, The relationship between nasal index and nasal airway resistance, and response to a topical decongestant. Rhinology 49(5), 583–6 (2011)
Google Scholar
J. Dong, J. Ma, Y. Shang, K. Inthavong, D. Qiu, J. Tu, D. Frank-Ito, Detailed nanoparticle exposure analysis among human nasal cavities with distinct vestibule phenotypes. J. Aerosol Sci. 121, 54–65 (2018)
CrossRef
Google Scholar
D.J. Doorly, D.J. Taylor, R.C. Schroter, Mechanics of airflow in the human nasal airways. Respir. Physiol. Neurobiol. 163(1–3), 100–10 (2008)
CrossRef
Google Scholar
J. Earwaker, Anatomic variants in sinonasal ct. Radiographics 13(2), 381–415 (1993)
CrossRef
Google Scholar
R. Eccles, A role for the nasal cycle in respiratory defence. Eur. Respir. J. 9(2), 371–376 (1996)
CrossRef
Google Scholar
R. Eccles, Nasal airflow in health and disease. Acta Otolaryngol. 120(5), 580–595 (2000)
CrossRef
Google Scholar
R. Eccles, D.H. Griffiths, C.G. Newton, N.S. Tolley, The effects of menthol isomers on nasal sensation of airflow. Clin. Otolaryngol. Allied Sci. 13(1), 25–9 (1988)
CrossRef
Google Scholar
R. Eccles, A.S. Jones, The effect of menthol on nasal resistance to air flow. J. Laryngol. Otol. 97(8), 705–9 (1983)
CrossRef
Google Scholar
T.P. Eiting, J.B. Perot, E.R. Dumont, How much does nasal cavity morphology matter? patterns and rates of olfactory airflow in phyllostomid bats. Proc. Biol. Sci. 282(1800), 20142161 (2015)
Google Scholar
T.P. Eiting, T.D. Smith, J.B. Perot, E.R. Dumont, The role of the olfactory recess in olfactory airflow. J. Exp. Biol. 217(Pt 10), 1799–803 (2014)
CrossRef
Google Scholar
D. Elad, R. Liebenthal, B.L. Wenig, S. Einav, Analysis of air flow patterns in the human nose. Med. Biol. Eng. Comput. 31(6), 585–92 (1993)
CrossRef
Google Scholar
E.W. Fisher, D.P. Morris, J.M. Biemans, C.R. Palmer, V.J. Lund, Practical aspects of acoustic rhinometry: problems and solutions. Rhinology 33(4), 219–23 (1995)
Google Scholar
P. Flanagan, R. Eccles, Spontaneous changes of unilateral nasal airflow in man. a re-examination of the ‘nasal cycle’. Acta Otolaryngol. 117(4), 590–595 (1997)
Google Scholar
C. Gaberino, J.S. Rhee, G.J. Garcia, Estimates of nasal airflow at the nasal cycle mid-point improve the correlation between objective and subjective measures of nasal patency. Respir. Physiol. Neurobiol. 238:23–32 (2017). https://doi.org/10.1016/j.resp.2017.01.004
A.M. Gambaruto, D.J. Taylor, D.J. Doorly, Decomposition and description of the nasal cavity form. Ann. Biomed. Eng. 40(5), 1142–59 (2012)
CrossRef
Google Scholar
G.J. Garcia, E.W. Tewksbury, B.A. Wong, J.S. Kimbell, Interindividual variability in nasal filtration as a function of nasal cavity geometry. J. Aerosol. Med. Pulm. Drug Deliv. 22(2), 139–55 (2009)
CrossRef
Google Scholar
G.J.M. Garcia, B.M. Hariri, R.G. Patel, J.S. Rhee, The relationship between nasal resistance to airflow and the airspace minimal cross-sectional area. J. Biomech. 49(9), 1670–1678 (2016)
CrossRef
Google Scholar
G. Garcia, G. Mitchell, B. N. T. D. W. J. K. J. Visualization of nasal airflow patterns in a patient affected with atrophic rhinitis using particle image velocimetry. J. Phys.: Conf. Ser. 85 (2007)
Google Scholar
Q.J. Ge, K. Inthavong, J.Y. Tu, Local deposition fractions of ultrafine particles in a human nasal-sinus cavity cfd model. Inhal. Toxicol. 24(8), 492–505 (2012)
CrossRef
Google Scholar
A.N. Gilbert, Reciprocity versus rhythmicity in spontaneous alternations of nasal airflow. Chronobiol. Int. 6(3), 251–257 (1989)
CrossRef
Google Scholar
S. Granqvist, J. Sundberg, J.O. Lundberg, E. Weitzberg, Paranasal sinus ventilation by humming. J. Acoust. Soc. Am. 119(5), 2611–2617 (2006)
CrossRef
Google Scholar
L.F. Grymer, P. Illum, O. Hilberg, Septoplasty and compensatory inferior turbinate hypertrophy: a randomized study evaluated by acoustic rhinometry. J. Laryngol. Otol. 107(5), 413–7 (1993)
CrossRef
Google Scholar
R.A. Guilmette, Y.S. Cheng, W.C. Griffith, Characterising the variability in adult human nasal airway dimensions. Ann. Occup. Hyg. 41(1), 491–496 (1997)
Google Scholar
A. Gungor, R. Moinuddin, R.H. Nelson, J.P. Corey, Detection of the nasal cycle with acoustic rhinometry: techniques and applications. Otolaryngol. Head Neck Surg. 120(2), 238–47 (1999)
CrossRef
Google Scholar
I. Hahn, P. Scherer, M. Mozell, Velocity profiles measured for air-flow through a large-scale model of the human nasal cavity. J. Appl. Physiol. 75(5), 2273–2287 (1993)
CrossRef
Google Scholar
J.S. Haight, P. Djupesland, W. Qjan, J. Chatkin, H. Furlott, J. Irish, I. Witterick, P. McClean, R. Fenton, V. Hoffstein, Does nasal nitric oxide come from the sinuses? J. Otolaryngol. 28(4), 197–204 (1999)
Google Scholar
M. Hasegawa, E. Kern, Variations in nasal resistance in man: a rhinomanometric study of the nasal cycle in 50 human subjects. Rhinology 16(1), 19–29 (1978)
Google Scholar
M. Hasegawa, E.B. Kern, Variations in nasal resistance in man: a rhinomanometric study of the nasal cycle in 50 human subjects. Rhinology 16(1), 19–29 (1978)
Google Scholar
K. Hemtiwakorn, V. Mahasitthiwat, S. Tungjitkusolmun, K. Hamamoto, C. Pintavirooj, Patient-specific aided surgery approach of deviated nasal septum using computational fluid dynamics. IEEJ Trans. Electr. Electron. Eng. 10(3), 274–286 (2015)
CrossRef
Google Scholar
J. Hiernaux, A. Froment, Correlations between anthropo-biological and climatic variables in sub-saharan Africa - revised estimates. Hum. Biol. 48(4), 757–767 (1976)
Google Scholar
O. Hilberg, A.C. Jackson, D.L. Swift, O.F. Pedersen, Acoustic rhinometry: evaluation of nasal cavity geometry by acoustic reflection. J. Appl. Physiol. (1985) 66(1), 295–303 (1989)
Google Scholar
W.E. Holden, J.P. Wilkins, M. Harris, H.A. Milczuk, G.D. Giraud, Temperature conditioning of nasal air: effects of vasoactive agents and involvement of nitric oxide. J. Appl. Physiol. (1985) 87(4), 1260–5 (1999)
Google Scholar
C. Hood, R. Schroter, D. Doorly, E. Blenke, N. Tolley, Computational modeling of flow and gas exchange in models of the human maxillary sinus. J. Appl. Physiol. 107, 1195–1203 (2009)
CrossRef
Google Scholar
K. Inthavong, J. Ma, Y. Shang, J. Dong, A.S. Chetty, J. Tu, D. Frank-Ito, Geometry and airflow dynamics analysis in the nasal cavity during inhalation. Clinical Biomechanics (2017)
Google Scholar
K. Inthavong, J. Wen, J.Y. Tu, Z.F. Tian, From ct scans to cfd modelling - fluid and heat transfer in a realistic human nasal cavity. Eng. Appl. Comput. Fluid Mech. 3(3), 321–335 (2009)
Google Scholar
M. Jog, G. McGarry, How frequent are accessory sinus ostia? J. Laryngol. Otol. 117(4), 270–272 (2003)
CrossRef
Google Scholar
T. Keck, R. Leiacker, A. Heinrich, S. Kuhnemann, G. Rettinger, Humidity and temperature profile in the nasal cavity. Rhinology 38(4), 167–71 (2000)
Google Scholar
J.A. Keeler, A. Patki, C.R. Woodard, D.O. Frank-Ito, A computational study of nasal spray deposition pattern in four ethnic groups. J. Aerosol. Med. Pulm. Drug Deliv. 29(2), 153–66 (2016)
CrossRef
Google Scholar
J. Keir, Why do we have paranasal sinuses? J. Laryngol. Otol. 123(1), 4–8 (2009)
CrossRef
Google Scholar
R.M. Kellman, C. Schmidt, The paranasal sinuses as a protective crumple zone for the orbit. The Laryngoscope 119(9), 1682–1690 (2009)
CrossRef
Google Scholar
K. Keyhani, P.W. Scherer, M.M. Mozell, Numerical simulation of airflow in the human nasal cavity. J. Biomech. Eng. 117(4), 429–41 (1995)
CrossRef
Google Scholar
K. Keyhani, P.W. Scherer, M.M. Mozell, A numerical model of nasal odorant transport for the analysis of human olfaction. J. Theor. Biol. 186(3), 279–301 (1997)
CrossRef
Google Scholar
D.W. Kim, S.K. Chung, Y. Na, Numerical study on the air conditioning characteristics of the human nasal cavity. Comput. Biol. Med. 86, 18–30 (2017)
CrossRef
Google Scholar
S.K. Kim, G.E. Heo, A. Seo, Y. Na, S.K. Chung, Correlation between nasal airflow characteristics and clinical relevance of nasal septal deviation to nasal airway obstruction. Respir. Physiol. Neurobiol. 192, 95–101 (2014)
CrossRef
Google Scholar
S.K. Kim, Y. Na, J.-I. Kim, S.-K. Chung, Patient specific cfd models of nasal airflow: overview of methods and challenges. J. Biomech. 46(2), 299–306 (2013)
CrossRef
Google Scholar
S.W. Kim, J.H. Mo, J.W. Kim, D.Y. Kim, C.S. Rhee, C.H. Lee, Y.G. Min, Change of nasal function with aging in Korean. Acta Otolaryngol. Suppl. 558, 90–4 (2007)
Google Scholar
J. Kimbell, D. Frank, P. Laud, G. Garcia, J. Rhee, Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction. J. Biomech. 46(15), 2634–2643 (2013)
CrossRef
Google Scholar
J.S. Kimbell, S. Basu, G.J. Garcia, D.O. Frank-Ito, F. Lazarow, E. Su, D. Protsenko, Z. Chen, J.S. Rhee, B.J. Wong, Upper airway reconstruction using long-range optical coherence tomography: effects of airway curvature on airflow resistance (Lasers Surg, Med, 2019)
Google Scholar
J.S. Kimbell, R.A. Segal, B. Asgharian, B.A. Wong, J.D. Schroeter, J.P. Southall, C.J. Dickens, G. Brace, F.J. Miller, Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages. J. Aerosol Med. 20(1), 59–74 (2007)
CrossRef
Google Scholar
T. KjÆrgaard, M. Cvancarova, S.K. SteinsvÅg, Relation of nasal air flow to nasal cavity dimensions. Arch. Otolaryngol. Head Neck Surg. 135(6), 565–570 (2009)
CrossRef
Google Scholar
H. Kumar, R. Jain, R.G. Douglas, M.H. Tawhai, Airflow in the human nasal passage and sinuses of chronic rhinosinusitis subjects. PloS one 11(6), e0156379 (2016)
CrossRef
Google Scholar
D. Lal, M.L. Gorges, G. Ungkhara, P.M. Reidy, J.P. Corey, Physiological change in nasal patency in response to changes in posture, temperature, and humidity measured by acoustic rhinometry. Am. J. Rhinol. 20(5), 456–62 (2006)
CrossRef
Google Scholar
C. Lang, S. Grutzenmacher, B. Mlynski, S. Plontke, G. Mlynski, Investigating the nasal cycle using endoscopy, rhinoresistometry, and acoustic rhinometry. Laryngoscope 113(2), 284–9 (2003)
CrossRef
Google Scholar
T.B. Le, M.G. Moghaddam, B.T. Woodson, G.J.M. Garcia, Airflow limitation in a collapsible model of the human pharynx: physical mechanisms studied with fluid-structure interaction simulations and experiments. Physiol. Rep. 7(10), e14099 (2019)
CrossRef
Google Scholar
J. Leach, Aesthetics and the hispanic rhinoplasty. Laryngoscope 112(11), 1903–16 (2002)
CrossRef
Google Scholar
S.C. Leong, X.B. Chen, H.P. Lee, D.Y. Wang, A review of the implications of computational fluid dynamic studies on nasal airflow and physiology. Rhinology 48(2), 139–45 (2010)
Google Scholar
S.C. Leong, R. Eccles, A systematic review of the nasal index and the significance of the shape and size of the nose in rhinology. Clin. Otolaryngol. 34(3), 191–198 (2009)
CrossRef
Google Scholar
C. Li, J. Jiang, H. Dong, K. Zhao, Computational modeling and validation of human nasal airflow under various breathing conditions. J. Biomech. (2017)
Google Scholar
J. Lindemann, R. Leiacker, G. Rettinger, T. Keck, Nasal mucosal temperature during respiration. Clin. Otolaryngol. Allied Sci. 27(3), 135–9 (2002)
CrossRef
Google Scholar
J. Lu, D. Han, L. Zhang, Accuracy evaluation of a numerical simulation model of nasal airflow. Acta Otolaryngol. 134(5), 513–9 (2014)
CrossRef
Google Scholar
J. Lundberg, G. Settergren, S. Gelinder, J. Lundberg, K. Alving, E. Weitzberg, Inhalation of nasally derived nitric oxide modulates pulmonary function in humans. Acta Physiol. Scandinavica 158(4), 343–347 (1996)
CrossRef
Google Scholar
J. Lundberg, E. Weitzberg, S. Nordvall, R. Kuylenstierna, J. Lundberg, K. Alving, Primarily nasal origin of exhaled nitric oxide and absence in kartagener’s syndrome. Eur. Respir. J. 7(8), 1501–1504 (1994)
CrossRef
Google Scholar
J.O. Lundberg, Nitric oxide and the paranasal sinuses. Anat. Rec.: Adv. Integr. Anat. Evol. Biol.: Adv. Integr. Anat. Evol.y Biol. 291(11), 1479–1484 (2008)
Google Scholar
J. Ma, J. Dong, Y. Shang, K. Inthavong, J. Tu, D.O. Frank-Ito, Air conditioning analysis among human nasal passages with anterior anatomical variations. Med. Eng. Phys. 57, 19–28 (2018)
CrossRef
Google Scholar
Maalouf, R., Bequignon, E., Devars du Mayne, M., Zerah-Lancner, F., Isabey, D., Coste, A., Louis, B., and Papon, J. F. A functional tool to differentiate nasal valve collapse from other causes of nasal obstruction: the fried test. J Appl Physiol (1985) 121, 1 (2016), 343–7
Google Scholar
M. Maniscalco, E. Weitzberg, J. Sundberg, M. Sofia, J. Lundberg, Assessment of nasal and sinus nitric oxide output using single-breath humming exhalations. Eur. Respir. J. 22(2), 323–329 (2003)
CrossRef
Google Scholar
W.T. Mcnicholas, M. Coffey, T. Boyle, Effects of nasal airflow on breathing during sleep in normal human. Am. Rev. Respir. Dis. 147, 620–620 (1993)
CrossRef
Google Scholar
L. Menzel, A. Hess, W. Bloch, O. Michel, K.-D. Schuster, R. Gabler, W. Urban, Temporal nitric oxide dynamics in the paranasal sinuses during humming. J. Appl. Physiol. 98(6), 2064–2071 (2005)
CrossRef
Google Scholar
Y.G. Min, Y.J. Jang, Measurements of cross-sectional area of the nasal cavity by acoustic rhinometry and ct scanning. Laryngoscope 105(7 Pt 1), 757–9 (1995)
CrossRef
Google Scholar
R. Moinuddin, B. Mamikoglu, S. Barkatullah, J.P. Corey, Detection of the nasal cycle. Am. J. Rhinol. 15(1), 35–9 (2001)
CrossRef
Google Scholar
M. Myerson, Natural orifice of the maxillary sinus: Ii. clinical studies. Arch. Otolaryngol. 15(5), 716–733 (1932)
Google Scholar
N. Mygind, R. Dahl, Anatomy, physiology and function of the nasal cavities in health and disease. Adv. Drug Deliv. Rev. 29(1–2), 3–12 (1998)
CrossRef
Google Scholar
Y. Na, K. Kim, S.K. Kim, S.-K. Chung, The quantitative effect of an accessory ostium on ventilation of the maxillary sinus. Respir. Physiol. Neurobiol. 181(1), 62–73 (2012)
CrossRef
Google Scholar
M.L. Noback, K. Harvati, F. Spoor, Climate-related variation of the human nasal cavity. Am. J. Phys. Anthropol. 145(4), 599–614 (2011)
CrossRef
Google Scholar
J. Numminen, P. Dastidar, T. Heinonen, T. Karhuketo, M. Rautiainen, Reliability of acoustic rhinometry. Respir. Med. 97(4), 421–7 (2003)
Google Scholar
M. Ohki, K. Naito, P. Cole, Dimensions and resistances of the human nose - racial-differences. Laryngoscope 101(3), 276–278 (1991)
CrossRef
Google Scholar
G. O’Neill, N.S. Tolley, The complexities of nasal airflow - theory and practice. J. Appl. Physiol. (1985) (2019)
Google Scholar
J. Osman, F. Großmann, K. Brosien, U. Kertzscher, L. Goubergrits, T. Hildebrandt, Assessment of nasal resistance using computational fluid dynamics. Curr. Dir. Biomed. Eng. 2(1), 617–621 (2016)
CrossRef
Google Scholar
H.E. Ozel, F. Ozdogan, E. Esen, M.G. Genc, S. Genc, A. Selcuk, The association between septal deviation and the presence of a maxillary accessory ostium. In: International Forum of Allergy & Rhinology, vol. 5, pp. 1177–1180. Wiley Online Library
Google Scholar
R.G. Patel, G.J. Garcia, D.O. Frank-Ito, J.S. Kimbell, J.S. Rhee, Simulating the nasal cycle with computational fluid dynamics. Otolaryngol. Head Neck Surg. (2014)
Google Scholar
A. Patki, D.O. Frank-Ito, Characterizing human nasal airflow physiologic variables by nasal index. Respir. Physiol. Neurobiol. 232, 66–74 (2016)
CrossRef
Google Scholar
M. Quadrio, C. Pipolo, S. Corti, R. Lenzi, F. Messina, C. Pesci, G. Felisati, Review of computational fluid dynamics in the assessment of nasal air flow and analysis of its limitations. Eur. Arch. Oto-Rhino-Laryngol. 271(9), 2349–2354 (2014)
CrossRef
Google Scholar
C.W. Quammen, R.M. Taylor, P. Krajcevski, S. Mitran, A. Enquobahrie, R. Superfine, B. Davis, S. Davis, C. Zdanski, The virtual pediatric airways workbench. In: Studies in Health Technology and Informatics (2016)
Google Scholar
T. Radulesco, L. Meister, G. Bouchet, A. Varoquaux, J. Giordano, J. Mancini, P. Dessi, P. Perrier, J. Michel, Correlations between computational fluid dynamics and clinical evaluation of nasal airway obstruction due to septal deviation: An observational study. Clin. Otolaryngol. 44(4), 603–611 (2019)
CrossRef
Google Scholar
V.H. Ramprasad, D.O. Frank-Ito, A computational analysis of nasal vestibule morphologic variabilities on nasal function. J. Biomech. 49(3), 450–7 (2016)
CrossRef
Google Scholar
C.E. Rennie, C.M. Hood, E.J. Blenke, R.S. Schroter, D.J. Doorly, H. Jones, D. Towey, N.S. Tolley, Physical and computational modeling of ventilation of the maxillary sinus. Otolaryngol. Head Neck Surg. 145(1), 165–170 (2011)
CrossRef
Google Scholar
J.S. Rhee, C.D. Sullivan, D.O. Frank, J.S. Kimbell, G.J. Garcia, A systematic review of patient-reported nasal obstruction scores: defining normative and symptomatic ranges in surgical patients. JAMA Facial Plast. Surg. 16(3), 219–25; quiz 232 (2014)
Google Scholar
D.G. Roblin, R. Eccles, Normal range for nasal partitioning of airflow determined by nasal spirometry in 100 healthy subjects. Am. J. Rhinol. 17(4), 179–83 (2003)
CrossRef
Google Scholar
E. Sanmiguel-Rojas, M.A. Burgos, F. Esteban-Ortega, Nasal surgery handled by cfd tools. Int. J. Numer. Method Biomed. Eng. 34(10), e3126 (2018)
CrossRef
Google Scholar
M.J. Schumacher, Nasal congestion and airway obstruction: The validity of available objective and subjective measures. Curr. Allergy Asthma Rep. 2(3), 245–51 (2002)
CrossRef
Google Scholar
M.J. Schumacher, Nasal dyspnea: the place of rhinomanometry in its objective assessment. Am. J. Rhinol. 18(1), 41–46 (2004)
CrossRef
Google Scholar
R.A. Segal, G.M. Kepler, J.S. Kimbell, Effects of differences in nasal anatomy on airflow distribution: a comparison of four individuals at rest. Ann. Biomed. Eng. 36(11), 1870–82 (2008)
CrossRef
Google Scholar
K.T. Shanley, P. Zamankhan, G. Ahmadi, P.K. Hopke, Y.S. Cheng, Numerical simulations investigating the regional and overall deposition efficiency of the human nasal cavity. Inhal. Toxicol. 20(12), 1093–100 (2008)
CrossRef
Google Scholar
J. Sozansky, S.M. Houser, The physiological mechanism for sensing nasal airflow: a literature review. Int. Forum Allergy Rhinol. 4(10), 834–8 (2014)
CrossRef
Google Scholar
F. Stehling, C. Roll, F. Ratjen, H. Grasemann, Nasal nitric oxide to diagnose primary ciliary dyskinesia in newborns. Arch. Dis. Childhood-Fetal Neonatal Ed. 91(3), F233–F233 (2006)
CrossRef
Google Scholar
R. Subramaniam, R. Richardson, K. Morgan, R. Guilmette, J. Kimbell, Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhal. Toxicol. 10, 91–120 (1998)
CrossRef
Google Scholar
C.D. Sullivan, G.J. Garcia, D.O. Frank-Ito, J.S. Kimbell, J.S. Rhee, Perception of better nasal patency correlates with increased mucosal cooling after surgery for nasal obstruction. Otolaryngol. Head Neck Surg. 150(1), 139–47 (2014)
CrossRef
Google Scholar
J. Tan, D. Han, J. Wang, T. Liu, T. Wang, H. Zang, Y. Li, X. Wang, Numerical simulation of normal nasal cavity airflow in Chinese adult: a computational flow dynamics model. Eur. Arch. Otorhinolaryngol. 269(3), 881–9 (2012)
CrossRef
Google Scholar
E. Tarhan, M. Coskun, O. Cakmak, H. Celik, M. Cankurtaran, Acoustic rhinometry in humans: accuracy of nasal passage area estimates, and ability to quantify paranasal sinus volume and ostium size. J. Appl. Physiol. (1985) 99(2), 616–23 (2005)
Google Scholar
A. Thomson, L.H.D. Buxton, Man’s nasal index in relation to certain climatic conditions. J. R. Anthropol. Inst. G. B. Ireland 53, 92–122 (1923)
Google Scholar
D.L. Vanhille, G.J.M. Garcia, O. Asan, A.A.T. Borojeni, D.O. Frank-Ito, J.S. Kimbell, S.S. Pawar, J.S. Rhee, Virtual surgery for the nasal airway: a preliminary report on decision support and technology acceptance. JAMA Facial Plast. Surg. 20(1), 63–69 (2018)
CrossRef
Google Scholar
K. Vogt, A.A. Jalowayski, W. Althaus, C. Cao, D. Han, W. Hasse, H. Hoffrichter, R. Mosges, J. Pallanch, K. Shah-Hosseini, K. Peksis, K.D. Wernecke, L. Zhang, P. Zaporoshenko, 4-phase-rhinomanometry (4pr)-basics and practice 2010. Rhinol. Suppl. 21, 1–50 (2010)
Google Scholar
D.W. Warren, A.F. Drake, J.U. Davis, Nasal airway in breathing and speech. Cleft Palate-Craniofacial J. 29(6), 511–519 (1992)
CrossRef
Google Scholar
J.S. Weiner, Nose shape and climate. Am. J. Phys. Anthropol. New Ser. 12(4), 615–618 (1954)
CrossRef
Google Scholar
E. Weitzberg, J.O. Lundberg, Humming greatly increases nasal nitric oxide. Am. J. Respir. Critical Care Med. 166(2), 144–145 (2002)
CrossRef
Google Scholar
J. Wen, K. Inthavong, J. Tu, S.M. Wang, Numerical simulations for detailed airflow dynamics in a human nasal cavity. Respir. Physiol. Neurobiol. 161(2), 125–135 (2008)
CrossRef
Google Scholar
D. Willatt, The evidence for reducing inferior turbinates. Rhinology 47(3), 227–236 (2009)
CrossRef
Google Scholar
M.H. Wolpoff, Climatic influence on the skeletal nasal aperture. Am. J. Phys. Anthropol. 29(3), 405–23 (1968)
CrossRef
Google Scholar
D.M. Wootton, H. Luo, S.C. Persak, S. Sin, J.M. McDonough, C.R. Isasi, R. Arens, Computational fluid dynamics endpoints to characterize obstructive sleep apnea syndrome in children. J. Appl. Physiol. (1985) 116(1), 104–12 (2014)
Google Scholar
G.-X. Xiong, J.-M. Zhan, H.-Y. Jiang, J.-F. Li, L.-W. Rong, G. Xu, Computational fluid dynamics simulation of airflow in the normal nasal cavity and paranasal sinuses. Am. J. Rhinol. 22, 477–482 (2008)
CrossRef
Google Scholar
T.R. Yokley, Ecogeographic variation in human nasal passages. Am. J. Phys. Anthropol. 138(1), 11–22 (2009)
CrossRef
Google Scholar
S. Yu, Y. Liu, X. Sun, S. Li, Influence of nasal structure on the distribution of airflow in nasal cavity. Rhinology 46(2), 137–143 (2008)
Google Scholar
K. Zhao, J. Jiang, What is normal nasal airflow? a computational study of 22 healthy adults. Int. Forum Allergy Rhinol. 4(6), 435–46 (2014)
CrossRef
Google Scholar
K. Zhao, J. Jiang, K. Blacker, B. Lyman, P. Dalton, B.J. Cowart, E.A. Pribitkin, Regional peak mucosal cooling predicts the perception of nasal patency. Laryngoscope 124(3), 589–95 (2014)
CrossRef
Google Scholar
J.H. Zhu, H.P. Lee, K.M. Lim, B.R. Gordon, D.Y. Wang, Effect of accessory ostia on maxillary sinus ventilation: a computational fluid dynamics (cfd) study. Respir. Physiol. Neurobiol. 183(2), 91–99 (2012)
CrossRef
Google Scholar
J.H. Zhu, H.P. Lee, K.M. Lim, S.J. Lee, D.Y. Wang, Evaluation and comparison of nasal airway flow patterns among three subjects from caucasian, chinese and indian ethnic groups using computational fluid dynamics simulation. Respir. Physiol. Neurobiol. 175(1), 62–69 (2011)
CrossRef
Google Scholar