Skip to main content

Fundamentals of Fluid Dynamics

  • 337 Accesses

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

The purpose of CFD is to map and quantify fluid flows in space and time. CFD simulations achieve this by solving the equations that govern flow: conservation of mass; balance of momentum; and conservation of energy. This chapter describes what these equations conceptually mean and how they are derived by applying basic physics statements such as Newton’s second law and the first law of thermodynamics to fluids. Fluid flow phenomena including boundary layers, turbulence, and unsteadiness are introduced and techniques to model them via CFD simulations are discussed. Turbulence models, which allow CFD simulations to achieve accurate results without having to calculate the smallest velocity fluctuations in a flow, thereby accelerating simulations, are also discussed and the most common models used in respiratory airflow simulations are compared.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-6716-2_7
  • Chapter length: 40 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-6716-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5
Fig. 7.6
Fig. 7.7
Fig. 7.8
Fig. 7.9
Fig. 7.10
Fig. 7.11
Fig. 7.12

Figure courtesy of Chamindu Gunatilaka, Cincinnati Children’s Hospital Medical Center

References

  1. A. Bates, R. Cetto, D. Doorly, R. Schroter, N. Tolley, A. Comerford, The effects of curvature and constriction on airflow and energy loss in pathological tracheas. Respir. Physiol. Neurobiol. 234, 69–78 (2016)

    CrossRef  Google Scholar 

  2. A. Bates, A. Comerford, R. Cetto, R. Schroter, N. Tolley, D. Doorly, Power loss mechanisms in pathological tracheas. J. Biomech. 49(11), 2187–2192 (2016)

    CrossRef  Google Scholar 

  3. A. Bates, A. Comerford, R. Cetto, D. Doorly, R. Schroter, N. Tolley, Computational fluid dynamics benchmark dataset of airflow in tracheas. Data Brief 10, 101–107 (2017)

    CrossRef  Google Scholar 

  4. A.J. Bates, D.J. Doorly, R. Cetto, H. Calmet, A. Gambaruto, N. Tolley, G. Houzeaux, R. Schroter, Dynamics of airflow in a short inhalation. J. R. Soc. Interface 12(102), 20140880 (2015)

    CrossRef  Google Scholar 

  5. A.J. Bates, A. Schuh, K. McConnell, B.M. Williams, J.M. Lanier, M.M. Willmering, J.C. Woods, R.J. Fleck, C.L. Dumoulin, R.S. Amin, A novel method to generate dynamic boundary conditions for airway CFD by mapping upper airway movement with non-rigid registration of dynamic and static MRI. Int. J. Numer. Methods Biomed. Eng. 34(12), e3144 (2018)

    MathSciNet  CrossRef  Google Scholar 

  6. A.J. Bates, A. Schuh, G. Amine-Eddine, K. McConnell, W. Loew, R.J. Fleck, J.C. Woods, C.L. Dumoulin, R.S. Amin, Assessing the relationship between movement and airflow in the upper airway using computational fluid dynamics with motion determined from magnetic resonance imaging. Clin. Biomech. 66, 88–96 (2019)

    CrossRef  Google Scholar 

  7. A.J. Bates, M.M. Willmering, R. Thomen, C. Gunatilaka, M.M. Hossain, C. Dumoulin, J. Woods, In vivo validation of upper airway respiratory computational fluid dynamics (CFD) with phase-contrast MRI of hyperpolarized 129xe, p. 4138

    Google Scholar 

  8. H. Calmet, A.M. Gambaruto, A.J. Bates, M. Vázquez, G. Houzeaux, D.J. Doorly, Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation. Comput. Biol. Med. 69, 166–180 (2016)

    CrossRef  Google Scholar 

  9. H. Calmet, G. Houzeaux, M. Vázquez, B. Eguzkitza, A. Gambaruto, A. Bates, D. Doorly, Flow features and micro-particle deposition in a human respiratory system during sniffing. J. Aerosol Sci. 123, 171–184 (2018)

    CrossRef  Google Scholar 

  10. X.B. Chen, H.P. Lee, V.F.H. Chong, D.Y. Wang, Numerical simulation of the effects of inferior turbinate surgery on nasal airway heating capacity. Am. J. Rhinol. Allergy 24(5), e118–e122 (2010)

    CrossRef  Google Scholar 

  11. G.J. Garcia, N. Bailie, D.A. Martins, J.S. Kimbell, Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity. J. Appl. Physiol. 103(3), 1082–1092 (2007)

    CrossRef  Google Scholar 

  12. K. Inthavong, Z. Tian, J. Tu, CFD simulations on the heating capability in a human nasal cavity

    Google Scholar 

  13. K. Inthavong, J. Wen, J. Tu, Z. Tian, From CT scans to CFD modelling-fluid and heat transfer in a realistic human nasal cavity. Eng. Appl. Comput. Fluid Mech. 3(3), 321–335 (2009)

    Google Scholar 

  14. D. Joseph, S. Carmi, Stability of Poiseuille flow in pipes, annuli, and channels. Q. Appl. Math. 26(4), 575–599 (1969)

    CrossRef  Google Scholar 

  15. A. Karl, F.S. Henry, A. Tsuda, Low Reynolds number viscous flow in an alveolated duct. J. Biomech. Eng. 126(4), 420–429 (2004)

    CrossRef  Google Scholar 

  16. J. Kimbell, D. Frank, P. Laud, G. Garcia, J. Rhee, Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction. J. Biomech. 46(15), 2634–2643 (2013)

    CrossRef  Google Scholar 

  17. P.K. Kundu, I.M. Cohen, Fluid Mechanics (Elsevier, Amsterdam, 2001)

    Google Scholar 

  18. C.-L. Lin, M.H. Tawhai, G. McLennan, E.A. Hoffman, Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir. Physiol. Neurobiol. 157(2–3), 295–309 (2007)

    CrossRef  Google Scholar 

  19. F. Menter, Zonal two equation kw turbulence models for aerodynamic flows, in 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference (1993), p. 2906

    Google Scholar 

  20. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    CrossRef  Google Scholar 

  21. W. Pfenniger, Transition in the inlet length of tubes at high Reynolds numbers, in Boundary Layer and Flow Control, ed. by G. Lachman (1961), pp. 970–980

    Google Scholar 

  22. D.C. Wilcox, Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 26(11), 1299–1310 (1988)

    MathSciNet  CrossRef  Google Scholar 

  23. D.C. Wilcox et al., Turbulence Modeling for CFD, vol. 2 (DCW Industries La Canada, 1998)

    Google Scholar 

  24. A. Willis, J. Peixinho, R. Kerswell, T. Mullin, Experimental and theoretical progress in pipe flow transition. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 366(1876), 2671–2684 (2008)

    MathSciNet  CrossRef  Google Scholar 

  25. Q. Xiao, R. Cetto, D.J. Doorly, A.J. Bates, J.N. Rose, C. McIntyre, A. Comerford, G. Madani, N.S. Tolley, R. Schroter, Assessing changes in airflow and energy loss in a progressive tracheal compression before and after surgical correction. Ann. Biomed. Eng. 48(2), 822–833 (2020)

    CrossRef  Google Scholar 

  26. D.A. Yablonskiy, A.L. Sukstanskii, J.C. Leawoods, D.S. Gierada, G.L. Bretthorst, S.S. Lefrak, J.D. Cooper, M.S. Conradi, Quantitative in vivo assessment of lung microstructure at the alveolar level with hyperpolarized 3He diffusion MRI. Proc. Natl. Acad. Sci. 99(5), 3111–3116 (2002)

    CrossRef  Google Scholar 

  27. D.A. Yablonskiy, A.L. Sukstanskii, J.C. Woods, D.S. Gierada, J.D. Quirk, J.C. Hogg, J.D. Cooper, M.S. Conradi, Quantification of lung microstructure with hyperpolarized 3He diffusion MRI. J. Appl. Physiol. 107(4), 1258–1265 (2009)

    CrossRef  Google Scholar 

Download references

Acknowledgements

Alister Bates would like to thank Dr Qiwei Xiao, Dr Neil Stewart, Dr Nara Higano, Deep Gandhi, and Chamindu Gunatilaka for their help in the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alister J. Bates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bates, A.J. (2021). Fundamentals of Fluid Dynamics. In: Inthavong, K., Singh, N., Wong, E., Tu, J. (eds) Clinical and Biomedical Engineering in the Human Nose. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-6716-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6716-2_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6715-5

  • Online ISBN: 978-981-15-6716-2

  • eBook Packages: EngineeringEngineering (R0)