Skip to main content

Future Topics, Challenges

  • 339 Accesses

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Rapidly developing computational techniques and technologies have led to increased research activity in computational modelling of nasal airflow. The research has reached a critical crossroad where novel techniques and ideas will be needed to develop and shape the future trends in nasal airway modelling, including advanced multiphysics approaches with real breathing conditions. This chapter also discusses some recent developments including whole respiratory airway and lung models, and how big data and artificial intelligence can be integrated into current capability to advance the field.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-6716-2_12
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-6716-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 12.1

References

  1. A.J. Bates, A. Schuh, K. McConnell, B.M. Williams, J.M. Lanier, M.M. Willmering, J.C. Woods, R.J. Fleck, C.L. Dumoulin, R.S. Amin, A novel method to generate dynamic boundary conditions for airway cfd by mapping upper airway movement with non-rigid registration of dynamic and static mri. Int. J. Numer. Methods Biomed. Eng. 34(12), e3144 (2018), e3144 CNM-Mar-18-0089.R1

    Google Scholar 

  2. J.P. Bonaparte, R. Campbell, Assessment of pliability and elasticity of the external nasal skin in patients with unilateral nasal valve collapse A static biomechanical evaluation. JAMA Facial Plastic Surg. 20(6), 475–479 (2018)

    CrossRef  Google Scholar 

  3. K.K. Chang, K.B. Kim, M.W. McQuilling, R. Movahed, Fluid structure interaction simulations of the upper airway in obstructive sleep apnea patients before and after maxillomandibular advancement surgery. Amer. J. Orthodon. Dentofacial Orthopedics 153(6), 895–904 (2018)

    CrossRef  Google Scholar 

  4. G.C. Cheng, R.P. Koomullil, Y. Ito, A.M. Shih, S. Sittitavornwong, P.D. Waite, Assessment of surgical effects on patients with obstructive sleep apnea syndrome using computational fluid dynamics simulations. Math. Comput. Simul. (2014)

    Google Scholar 

  5. D.J. Doorly, D.J. Taylor, R.C. Schroter, Mechanics of airflow in the human nasal airways. Respir. Physiol. Neurobiol. 163(1–3), 100–110 (2008)

    Google Scholar 

  6. Y. Feng, J. Zhao, C. Kleinstreuer, Q. Wang, J. Wang, D.H. Wu, J. Lin, An in silico inter-subject variability study of extra-thoracic morphology effects on inhaled particle transport and deposition. J. Aerosol Sci. (2018)

    Google Scholar 

  7. K. Inthavong, P. Das, N. Singh, J. Sznitman, In silico approaches to respiratory nasal flows: a review. J. Biomech. (2019)

    Google Scholar 

  8. Y. Iwamoto, K. Xiong, T. Kitamura, X.H. Han, N. Matsushiro, H. Nishimura, Y.W. Chen, Automatic segmentation of the paranasal sinus from computer tomography images using a probabilistic atlas and a fully convolutional network, in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (2019)

    Google Scholar 

  9. S.J. Jeong, W.S. Kim, S.J. Sung, Numerical investigation on the flow characteristics and aerodynamic force of the upper airway of patient with obstructive sleep apnea using computational fluid dynamics. Med. Eng. Phys. (2007)

    Google Scholar 

  10. J. Kirch, M. Guenther, U.F. Schaefer, M. Schneider, C.-M. Lehr, Computational fluid dynamics of nanoparticle disposition in the airways: mucus interactions and mucociliary clearance. Comput. Visual. Sci. 14(7), 301–308 (2011)

    Google Scholar 

  11. Y. Liu, J. Mitchell, Y. Chen, W. Yim, W. Chu, R.C. Wang, Study of the upper airway of obstructive sleep apnea patient using fluid structure interaction. Respir. Physiol. Neurobiol. (2018)

    Google Scholar 

  12. N. Lu Phuong, N. Dang Khoa, K. Inthavong, K. Ito, Particle and inhalation exposure in human and monkey computational airway models. Inhalation Toxicol. (2018)

    Google Scholar 

  13. R. Mead-Hunter, A.J. King, A.N. Larcombe, B.J. Mullins, The influence of moving walls on respiratory aerosol deposition modelling. J. Aerosol Sci. 64, 48–59 (2013)

    Google Scholar 

  14. K. Men, X. Chen, Y. Zhang, T. Zhang, J. Dai, J. Yi, Y. Li, Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images. Front. Oncol. (2017)

    Google Scholar 

  15. S. Pirner, K. Tingelhoff, I. Wagner, R. Westphal, M. Rilk, F.M. Wahl, F. Bootz, K.W. Eichhorn, CT-based manual segmentation and evaluation of paranasal sinuses. Eur. Arch. Oto-Rhino-Laryngology (2009)

    Google Scholar 

  16. Y. Shang, J. Dong, L. Tian, K. Inthavong, J. Tu, Detailed computational analysis of flow dynamics in an extended respiratory airway model. Clin. Biomech. 61, 105–111 (2019)

    Google Scholar 

  17. Y.D. Shang, K. Inthavong, J.Y. Tu, Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone. Comput. Fluids. (2015)

    Google Scholar 

  18. J. Siu, K. Shrestha, K. Inthavong, Y. Shang, R. Douglas, Particle deposition in the paranasal sinuses following endoscopic sinus surgery. Comput. Biol. Med. 116, 103573 (2020)

    Google Scholar 

  19. K. Souadih, D. Ben Salem, A. Belaid, Automatic segmentation of the sphenoid sinus in CT-scans volume with DeepMedics 3D CNN architecture. Med. Technol. J. (2019)

    Google Scholar 

  20. Y. Wang, J. Wang, Y. Liu, S. Yu, X. Sun, S. Li, S. Shen, W. Zhao, Fluid-structure interaction modeling of upper airways before and after nasal surgery for obstructive sleep apnea. Int. J. Numer. Methods Biomedi. Eng. (2012)

    Google Scholar 

  21. M. Wittkopf, J. Wittkopf, W.R. Ries, The diagnosis and treatment of nasal valve collapse (2008)

    Google Scholar 

  22. K. Xiong, T. Kitamura, Y. Iwamoto, X.H. Han, N. Matsushiro, H. Nishimura, Y.W. Chen, Semi-automatic segmentation of paranasal sinus from CT images using fully convolutional networks, in 2018 IEEE 7th Global Conference on Consumer Electronics, GCCE 2018 (2018)

    Google Scholar 

  23. S.H. Yeom, J.S. Na, H.-D. Jung, H.-J. Cho, Y.J. Choi, J.S. Lee, Computational analysis of airflow dynamics for predicting collapsible sites in the upper airways: machine learning approach. J. Appl. Physiol. 127(4), 959–973 (2019). PMID: 31318618

    CrossRef  Google Scholar 

  24. M. Zhao, T. Barber, P.A. Cistulli, K. Sutherland, G. Rosengarten, Simulation of upper airway occlusion without and with mandibular advancement in obstructive sleep apnea using fluid-structure interaction. J. Biomech. (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiao Inthavong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Inthavong, K. (2021). Future Topics, Challenges. In: Inthavong, K., Singh, N., Wong, E., Tu, J. (eds) Clinical and Biomedical Engineering in the Human Nose. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-6716-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6716-2_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6715-5

  • Online ISBN: 978-981-15-6716-2

  • eBook Packages: EngineeringEngineering (R0)