A.J. Bates, A. Schuh, K. McConnell, B.M. Williams, J.M. Lanier, M.M. Willmering, J.C. Woods, R.J. Fleck, C.L. Dumoulin, R.S. Amin, A novel method to generate dynamic boundary conditions for airway cfd by mapping upper airway movement with non-rigid registration of dynamic and static mri. Int. J. Numer. Methods Biomed. Eng. 34(12), e3144 (2018), e3144 CNM-Mar-18-0089.R1
Google Scholar
J.P. Bonaparte, R. Campbell, Assessment of pliability and elasticity of the external nasal skin in patients with unilateral nasal valve collapse A static biomechanical evaluation. JAMA Facial Plastic Surg. 20(6), 475–479 (2018)
CrossRef
Google Scholar
K.K. Chang, K.B. Kim, M.W. McQuilling, R. Movahed, Fluid structure interaction simulations of the upper airway in obstructive sleep apnea patients before and after maxillomandibular advancement surgery. Amer. J. Orthodon. Dentofacial Orthopedics 153(6), 895–904 (2018)
CrossRef
Google Scholar
G.C. Cheng, R.P. Koomullil, Y. Ito, A.M. Shih, S. Sittitavornwong, P.D. Waite, Assessment of surgical effects on patients with obstructive sleep apnea syndrome using computational fluid dynamics simulations. Math. Comput. Simul. (2014)
Google Scholar
D.J. Doorly, D.J. Taylor, R.C. Schroter, Mechanics of airflow in the human nasal airways. Respir. Physiol. Neurobiol. 163(1–3), 100–110 (2008)
Google Scholar
Y. Feng, J. Zhao, C. Kleinstreuer, Q. Wang, J. Wang, D.H. Wu, J. Lin, An in silico inter-subject variability study of extra-thoracic morphology effects on inhaled particle transport and deposition. J. Aerosol Sci. (2018)
Google Scholar
K. Inthavong, P. Das, N. Singh, J. Sznitman, In silico approaches to respiratory nasal flows: a review. J. Biomech. (2019)
Google Scholar
Y. Iwamoto, K. Xiong, T. Kitamura, X.H. Han, N. Matsushiro, H. Nishimura, Y.W. Chen, Automatic segmentation of the paranasal sinus from computer tomography images using a probabilistic atlas and a fully convolutional network, in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (2019)
Google Scholar
S.J. Jeong, W.S. Kim, S.J. Sung, Numerical investigation on the flow characteristics and aerodynamic force of the upper airway of patient with obstructive sleep apnea using computational fluid dynamics. Med. Eng. Phys. (2007)
Google Scholar
J. Kirch, M. Guenther, U.F. Schaefer, M. Schneider, C.-M. Lehr, Computational fluid dynamics of nanoparticle disposition in the airways: mucus interactions and mucociliary clearance. Comput. Visual. Sci. 14(7), 301–308 (2011)
Google Scholar
Y. Liu, J. Mitchell, Y. Chen, W. Yim, W. Chu, R.C. Wang, Study of the upper airway of obstructive sleep apnea patient using fluid structure interaction. Respir. Physiol. Neurobiol. (2018)
Google Scholar
N. Lu Phuong, N. Dang Khoa, K. Inthavong, K. Ito, Particle and inhalation exposure in human and monkey computational airway models. Inhalation Toxicol. (2018)
Google Scholar
R. Mead-Hunter, A.J. King, A.N. Larcombe, B.J. Mullins, The influence of moving walls on respiratory aerosol deposition modelling. J. Aerosol Sci. 64, 48–59 (2013)
Google Scholar
K. Men, X. Chen, Y. Zhang, T. Zhang, J. Dai, J. Yi, Y. Li, Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images. Front. Oncol. (2017)
Google Scholar
S. Pirner, K. Tingelhoff, I. Wagner, R. Westphal, M. Rilk, F.M. Wahl, F. Bootz, K.W. Eichhorn, CT-based manual segmentation and evaluation of paranasal sinuses. Eur. Arch. Oto-Rhino-Laryngology (2009)
Google Scholar
Y. Shang, J. Dong, L. Tian, K. Inthavong, J. Tu, Detailed computational analysis of flow dynamics in an extended respiratory airway model. Clin. Biomech. 61, 105–111 (2019)
Google Scholar
Y.D. Shang, K. Inthavong, J.Y. Tu, Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone. Comput. Fluids. (2015)
Google Scholar
J. Siu, K. Shrestha, K. Inthavong, Y. Shang, R. Douglas, Particle deposition in the paranasal sinuses following endoscopic sinus surgery. Comput. Biol. Med. 116, 103573 (2020)
Google Scholar
K. Souadih, D. Ben Salem, A. Belaid, Automatic segmentation of the sphenoid sinus in CT-scans volume with DeepMedics 3D CNN architecture. Med. Technol. J. (2019)
Google Scholar
Y. Wang, J. Wang, Y. Liu, S. Yu, X. Sun, S. Li, S. Shen, W. Zhao, Fluid-structure interaction modeling of upper airways before and after nasal surgery for obstructive sleep apnea. Int. J. Numer. Methods Biomedi. Eng. (2012)
Google Scholar
M. Wittkopf, J. Wittkopf, W.R. Ries, The diagnosis and treatment of nasal valve collapse (2008)
Google Scholar
K. Xiong, T. Kitamura, Y. Iwamoto, X.H. Han, N. Matsushiro, H. Nishimura, Y.W. Chen, Semi-automatic segmentation of paranasal sinus from CT images using fully convolutional networks, in 2018 IEEE 7th Global Conference on Consumer Electronics, GCCE 2018 (2018)
Google Scholar
S.H. Yeom, J.S. Na, H.-D. Jung, H.-J. Cho, Y.J. Choi, J.S. Lee, Computational analysis of airflow dynamics for predicting collapsible sites in the upper airways: machine learning approach. J. Appl. Physiol. 127(4), 959–973 (2019). PMID: 31318618
CrossRef
Google Scholar
M. Zhao, T. Barber, P.A. Cistulli, K. Sutherland, G. Rosengarten, Simulation of upper airway occlusion without and with mandibular advancement in obstructive sleep apnea using fluid-structure interaction. J. Biomech. (2013)
Google Scholar