Skip to main content

Clinical CFD Applications 2

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

This chapter is the second of the two chapters demonstrating the wide variety of CFD studies in clinical applications presented from leading researchers in their respective fields. This chapter covers the latest research techniques and outcomes in whole lung modelling; Modeling the Effect of Airway Motion Using Dynamic Imaging; and Automatic reconstruction of the nasal geometry from CT scans.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-6716-2_10
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-6716-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 10.1

(Reprinted from [13, 37], with permission from Taylor and Francis as well as Elsevier)

Fig. 10.2

(Reprinted from [75], with permission from Wiley)

Fig. 10.3
Fig. 10.4
Fig. 10.5
Fig. 10.6
Fig. 10.7
Fig. 10.8
Fig. 10.9
Fig. 10.10
Fig. 10.11
Fig. 10.12
Fig. 10.13
Fig. 10.14
Fig. 10.15

References

  1. B. Asgharian, W. Hofmann, R. Bergmann, Particle deposition in a multiple-path model of the human lung. Aerosol Sci. Technol. 34(4), 332–339 (2001)

    CrossRef  Google Scholar 

  2. S. Ashaat, A.M. Al-Jumaily, Reducing upper airway collapse at lower continuous positive airway titration pressure. J. Biomech. 49(16), 3915–3922 (2016)

    CrossRef  Google Scholar 

  3. A. Bates, R. Cetto, D. Doorly, R. Schroter, N. Tolley, A. Comerford, The effects of curvature and constriction on airflow and energy loss in pathological tracheas. Respir. Physiol. Neurobiol. 234, 69–78 (2016)

    CrossRef  Google Scholar 

  4. A. Bates, A. Comerford, R. Cetto, D. Doorly, R. Schroter, N. Tolley, Computational fluid dynamics benchmark dataset of airflow in tracheas. Data Brief 10, 101–107 (2017)

    CrossRef  Google Scholar 

  5. A. Bates, A. Comerford, R. Cetto, R. Schroter, N. Tolley, D. Doorly, Power loss mechanisms in pathological tracheas. J. Biomech. 49(11), 2187–2192 (2016)

    CrossRef  Google Scholar 

  6. A.J. Bates, D.J. Doorly, R. Cetto, H. Calmet, A. Gambaruto, N. Tolley, G. Houzeaux, R. Schroter, Dynamics of airflow in a short inhalation. J. R. Soc. Interface 12(102), 20140880 (2015)

    Google Scholar 

  7. A.J. Bates, N.S. Higano, E.B. Hysinger, R.J. Fleck, A.D. Hahn, S.B. Fain, P.S. Kingma, J.C. Woods, Quantitative assessment of regional dynamic airway collapse in neonates via retrospectively respiratory-gated 1h ultrashort echo time mri. J. Magn. Reson. Imaging 49(3), 659–667 (2019)

    CrossRef  Google Scholar 

  8. A.J. Bates, A. Schuh, G. Amine-Eddine, K. McConnell, W. Loew, R.J. Fleck, J.C. Woods, C.L. Dumoulin, R.S. Amin, Assessing the relationship between movement and airflow in the upper airway using computational fluid dynamics with motion determined from magnetic resonance imaging. Clin. Biomech. 66, 88–96 (2017)

    Google Scholar 

  9. A.J. Bates, A. Schuh, K. McConnell, B.M. Williams, J.M. Lanier, M.M. Willmering, J.C. Woods, R.J. Fleck, C.L. Dumoulin, R.S. Amin, A novel method to generate dynamic boundary conditions for airway cfd by mapping upper airway movement with non-rigid registration of dynamic and static mri. Int. J. Numer. Methods Biomed. Eng. 34(12), e3144 (2018)

    Google Scholar 

  10. G.E. Batista, R.C. Prati, M.C. Monard, A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 6(1), 20–29 (2004)

    CrossRef  Google Scholar 

  11. K.H. Cha, L.M. Hadjiiski, R.K. Samala, H.-P. Chan, R.H. Cohan, E.M. Caoili, C. Paramagul, A. Alva, A.Z. Weizer, Bladder cancer segmentation in ct for treatment response assessment: application of deep-learning convolution neural networkâĂǎa pilot study. Tomography 2(4), 421 (2016)

    Google Scholar 

  12. S. Cheng, S. Gandevia, M. Green, R. Sinkus, L. Bilston, Viscoelastic properties of the tongue and soft palate using mr elastography. J. Biomechan. 44(3), 450–454 (2011)

    CrossRef  Google Scholar 

  13. J.I. Choi, C.S. Kim, Mathematical analysis of particle deposition in human lungs: An improved single path transport model. Inhal. Toxicol. 19, 925–939 (2007)

    CrossRef  Google Scholar 

  14. P.F. Christ, M.E.A. Elshaer, F. Ettlinger, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, M. Armbruster, F. Hofmann, M. DÂĂŹAnastasi et al., Automatic liver and lesion segmentation in ct using cascaded fully convolutional neural networks and 3d conditional random fields, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, Berlin, 2016), pp. 415–423

    Google Scholar 

  15. A. Comerford, C. Forster, W.A. Wall, Structured tree impedence outflow boundary conditions for 3d lung simulations. J. Biomechan. Eng. 132, 10 (2010)

    Google Scholar 

  16. J. Dong, Y. Shang, K. Inthavong, H.-K. Chan, J. Tu, Numerical comparison of nasal aerosol administration systems for efficient nose-to-brain drug delivery. Pharm. Res. 35(1), 5 (2018)

    Google Scholar 

  17. G. Dournes, D. Grodzki, J. Macey, P.-O Girodet, M. Fayon, J.-F. Chateil, M. Montaudon, P. Berger, F. Laurent (2015) Quiet submillimeter mr imaging of the lung is feasible with a petra sequence at 1.5 t. Radiology 276(1), 258–265

    Google Scholar 

  18. V. Dumoulin, F. Visin, A guide to convolution arithmetic for deep learning. arXiv:1603.07285 (2016)

  19. Y. Feng, C. Kleinstreuer, Analysis of non-spherical particle transport in complex internal shear flows. Phys. Fluids 25(9), 091904 (2013)

    Google Scholar 

  20. Y. Feng, Z. Xu, A. Haghnegahdar, Computational fluid-particle dynamics modeling for unconventional inhaled aerosols in human respiratory systems. Aerosols-Science and Case Studies (2016)

    Google Scholar 

  21. Y. Feng, J. Zhao, C. Kleinstreuer, Q. Wang, J. Wang, D.H. Wu, J. Lin, An in silico inter-subject variability study of extra-thoracic morphology effects on inhaled particle transport and deposition. J. Aerosol Sci. 123, 185–207 (2018)

    CrossRef  Google Scholar 

  22. A. Haghnegahdar, Y. Feng, X. Chen, J. Lin, Computational analysis of deposition and translocation of inhaled nicotine and acrolein in the human body with e-cigarette puffing topographies. Aerosol Sci. Technol. 52(5), 483–493 (2018)

    CrossRef  Google Scholar 

  23. N. Higano, A. Bates, E. Hysinger, I. St. Onge, R. Fleck, P. Kingma, J. Woods, Dynamic tracheal collapse and correlation to later tracheostomy in neonates with bronchopulmonary dysplasia via quantitative ultrashort echo-time mri, in C16. Clinical Studies in Bronchopulmonary Dysplasia (American Thoracic Society, New York, 2019), pp. A4264–A4264

    Google Scholar 

  24. N.S. Higano, A.J. Bates, J.A. Tkach, R.J. Fleck, F.Y. Lim, J.C. Woods, P.S. Kingma, Pre-and post-operative visualization of neonatal esophageal atresia/tracheoesophageal fistula via magnetic resonance imaging. J. Pediatr. Surg. Case Rep. 29, 5–8 (2018)

    CrossRef  Google Scholar 

  25. N.S. Higano, A.D. Hahn, J.A. Tkach, X. Cao, L.L. Walkup, R.P. Thomen, S.L. Merhar, P.S. Kingma, S.B. Fain, J.C. Woods, Retrospective respiratory self-gating and removal of bulk motion in pulmonary ute mri of neonates and adults. Magn. Reson. Med. 77(3), 1284–1295 (2017)

    CrossRef  Google Scholar 

  26. D.H. Hubel, T.N. Wiesel, Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968)

    CrossRef  Google Scholar 

  27. K. Inthavong, Z. Tian, J. Tu, W. Yang, C. Xue, Optimising nasal spray parameters for efficient drug delivery using computational fluid dynamics. Comput. Biol. Med. 38(6), 713–726 (2008)

    CrossRef  Google Scholar 

  28. T. Janke, P. Koullapis, S. Kassinos, K. Bauer, Piv measurements of the siminhale benchmark case. Eur. J. Pharm. Sci. 133, 183–189 (2019)

    CrossRef  Google Scholar 

  29. K.M. Johnson, S.B. Fain, M.L. Schiebler, S. Nagle, Optimized 3d ultrashort echo time pulmonary mri. Magn. Reson. Med. 70(5), 1241–1250 (2013)

    CrossRef  Google Scholar 

  30. K. Kamnitsas, E. Ferrante, S. Parisot, C. Ledig, A.V. Nori, A. Criminisi, D. Rueckert, B. Glocker, Deepmedic for brain tumor segmentation, in International workshop on Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries (Springer, Berlin, 2016), pp. 138–149

    Google Scholar 

  31. K. Kamnitsas, C. Ledig, V.F. Newcombe, J.P. Simpson, A.D. Kane, D.K. Menon, D. Rueckert, B. Glocker, Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    CrossRef  Google Scholar 

  32. D.P. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv:1412.6980 (2014)

  33. L. Koblinger, W. Hofmann, Analysis of human lung morphometric data for stochastic aerosol deposition calculations. Phys. Med. Biol. 30(6), 541–556 (1985)

    CrossRef  Google Scholar 

  34. L. Koblinger, W. Hofmann, Monte carlo modeling of aerosol deposition in human lungd. part i: Simulation of particle transport in a stochastic lung structure. J. Aerosol Sci. 21(5), 661–674 (1990)

    Google Scholar 

  35. A.V. Kolanjiyil, C. Kleinstreuer, Nanoparticle mass transfer from lung airways to systemic regions—part i: Whole-lung aerosol dynamics. J. Biomechan. Eng. 135(12), 11 (2013)

    Google Scholar 

  36. A.V. Kolanjiyil, C. Kleinstreuer, Nanoparticle mass transfer from lung airways to systemic regions—part ii: Multi-compartmental modeling. J. Biomech. Eng. 135, 12 (2013)

    Google Scholar 

  37. A.V. Kolanjiyil, C. Kleinstreuer, Computationally effecient analysis of particle transport and deposition in a human whole-airway model. part i: theory and model validation. Comput. Biol. Med. 76, 193–204 (2016)

    Google Scholar 

  38. A.V. Kolanjiyil, C. Kleinstreuer, Computational analysis of aerosol-dynamics in a human whole-lung airway model. J. Aerosol Sci. 114, 301–316 (2017)

    CrossRef  Google Scholar 

  39. A.V. Kolanjiyil, C. Kleinstreuer, R.T. Sadikot, Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. part ii: Dry powder inhaler application. Comput. Biol. Med. 2017, 247–253 (2017)

    Google Scholar 

  40. P. Koullapis, P. Hofemeier, J. Sznitman, S. Kassinosa, An efficient computational fluid-particle dynamics method to predict deposition in a simplified approximation of the deep lung. Eur. J. Pharm. Sci. 113, 132–144 (2018)

    CrossRef  Google Scholar 

  41. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)

    Google Scholar 

  42. Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    CrossRef  Google Scholar 

  43. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    CrossRef  Google Scholar 

  44. T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection, in Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  45. A. Lintermann, J. Göbbert, K. Vogt, W. Koch, A. Hetzel, Rhinodiagnost-morphological and functional precision diagnostics of nasal cavities. InSiDE, Innov. Supercomput. Dtsch. 15(2), 106–109 (2017)

    Google Scholar 

  46. G. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, J.A. Van Der Laak, B. Van Ginneken, C.I. Sánchez, A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    CrossRef  Google Scholar 

  47. P.W. Longest, G. Tian, R. Delvadia, M. Hindle, Development of a stochastic individual path (sip) model for predicting the deposition of pharmaceutical aerosols: Effects of turbulence, polydisperse aerosol size, and evaluation of multiple lung lobes. Aerosol Sci. Technol. 46(12), 1271–1285 (2012)

    CrossRef  Google Scholar 

  48. P.W. Longest, G. Tian, N. Khajeh-Hosseini-Dalasm, M. Hindle, Validating whole-airway cfd predictions of dpi aerosol deposition at multiple flow rates. J. Aerosol Med. Pulm. Drug Deliv. 29(6), 461–481 (2016)

    CrossRef  Google Scholar 

  49. W.E. Lorensen, H.E. Cline, Marching cubes: A high resolution 3d surface construction algorithm, in ACM siggraph computer graphics, vol. 21 (ACM, New York, 1987), pp. 163–169

    Google Scholar 

  50. F. Lu, F. Wu, P. Hu, Z. Peng, D. Kong, Automatic 3d liver location and segmentation via convolutional neural network and graph cut. Int. J. Comput. Assist. Radiol. Surg. 12(2), 171–182 (2017)

    CrossRef  Google Scholar 

  51. B. Ma, K.R. Lutchen, An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics. Ann. Biomed. Eng. 34(11), 1691–1704 (2006)

    CrossRef  Google Scholar 

  52. M. Malvè, A. Pérez del Palomar, S. Chandra, J. López-Villalobos, A. Mena, E. Finol, A. Ginel, M. Doblaré, Fsi analysis of a healthy and a stenotic human trachea under impedance-based boundary conditions. J. Biomech. Eng. 133, 2 (2011)

    Google Scholar 

  53. K.-K. Maninis, J. Pont-Tuset, P. Arbeláez, L. Van Gool, Deep retinal image understanding, in International conference on medical image computing and computer-assisted intervention (Springer, Berlin, 2016), pp. 140–148

    Google Scholar 

  54. T.B. Martonen, Analytical model of hygroscopic particle behavior in human airways. Bull. Math. Biol. 44(3), 425–442 (1982)

    MATH  CrossRef  Google Scholar 

  55. M. Mihaescu, E. Gutmark, R. Elluru, J.P. Willging, Large eddy simulation of the flow in a pediatric airway with subglottic stenosis, in 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, p. 775 (2009)

    Google Scholar 

  56. F. Milletari, N. Navab, S.-A. Ahmadi, V-net: Fully convolutional neural networks for volumetric medical image segmentation. 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016)

    Google Scholar 

  57. M. Monjezi, R. Dastanpour, M.S. Saidi, A.R. SPishevari, Prediction of particle deposition in the respiratory track using 3dÂĂŞ1d modeling. Sci. Iran. 19(6), 1479–1486 (2012)

    Google Scholar 

  58. A.I. Pack, Dynamic upper airway imaging during awake respiration in normal subjects and patients with sleep disordered breathing. Am. Rev. Respir. Dis. 148, 1385–1400

    Google Scholar 

  59. A. Pandal-Blanco, R. Barrio-Perotti, R. Agujetas-Ortiz, A. Fernandez-Tena, Implementation of a specific boundary condition for a simplified symmetric single path cfd lung model with openfoam. Biomech. Model. Mechanobiol. 18, 1759–1771 (2019)

    Google Scholar 

  60. C. Payer, D. Štern, H. Bischof, M. Urschler, Multi-label whole heart segmentation using cnns and anatomical label configurations, in International Workshop on Statistical Atlases and Computational Models of the Heart (Springer, Berlin, 2017), pp. 190–198

    Google Scholar 

  61. M.S. Pearce, J.A. Salotti, M.P. Little, K. McHugh, C. Lee, K.P. Kim, N.L. Howe, C.M. Ronckers, P. Rajaraman, A.W. Craft et al., Radiation exposure from ct scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840), 499–505 (2012)

    CrossRef  Google Scholar 

  62. J. Pirnar, L. Dolenc-Grošelj, I. Fajdiga, I. Žun, Computational fluid-structure interaction simulation of airflow in the human upper airway. J. Biomech. 48(13), 3685–3691 (2015)

    CrossRef  Google Scholar 

  63. F. Provost, Machine learning from imbalanced data sets 101, in Proceedings of the AAAI 2000 workshop on imbalanced data sets, vol. 68 (AAAI Press, Palo Alto, CA, 2000), pp. 1–3

    Google Scholar 

  64. H.R. Roth, L. Lu, N. Lay, A.P. Harrison, A. Farag, A. Sohn, R.M. Summers, Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. Med. Image Anal. 45, 94–107 (2018)

    CrossRef  Google Scholar 

  65. S. Ruder, An overview of gradient descent optimization algorithms. arXiv:1609.04747 (2016)

  66. D. Rueckert, L.I. Sonoda, C. Hayes, D.L. Hill, M.O. Leach, D.J. Hawkes, Nonrigid registration using free-form deformations: Application to breast mr images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    CrossRef  Google Scholar 

  67. T. Schlegl, S.M. Waldstein, W.-D. Vogl, U. Schmidt-Erfurth, G. Langs, Predicting semantic descriptions from medical images with convolutional neural networks, in International Conference on Information Processing in Medical Imaging (Springer, Berlin, 2015), pp. 437–448

    Google Scholar 

  68. R.J. Schwab, W.B. Gefter, A.I. Pack, E.A. Hoffman, Dynamic imaging of the upper airway during respiration in normal subjects. J. Appl. Physiol. 74(4), 1504–1514 (1993)

    CrossRef  Google Scholar 

  69. M. Shakeri, S. Tsogkas, E. Ferrante, S. Lippe, S. Kadoury, N. Paragios, I. Kokkinos, Sub-cortical brain structure segmentation using f-cnn’s, in 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) (IEEE, Prague, 2016), pp. 269–272

    Google Scholar 

  70. W.-C. Su, Y.S. Cheng, Estimation of carbon nanotubes deposition in a human respiratory tract replica. J. Aerosol Sci. 79, 72–85 (2015)

    CrossRef  Google Scholar 

  71. W.-C. Su, B.K. Ku, P. Kulkarni, Y.S. Cheng, Deposition of graphene nanomaterial aerosols in human upper airways. J. Occup. Environ. Hyg. 13(1), 48–59 (2016)

    CrossRef  Google Scholar 

  72. B. Suki, R.H. Habib, A.C. Jackson, Wave propagation, input impedance, and wall mechanics of the calf trachea from 16 to 1,600 hz. Am. Physiol. Soc. 75(6), 2755–2766 (1993)

    Google Scholar 

  73. D.B. Taulbee, C.P. Yu, A theory of aerosol deposition in the humen respirtory tract. J. Appl. Physiol. 38(1), 77–85 (1975)

    Google Scholar 

  74. M.H. Tawhai, A.J. Pullan, P.J. Hunter, Generation of an anatomically based three-dimensional model of the conducting airways. Ann. Biomed. Eng. 28, 793–802 (2000)

    CrossRef  Google Scholar 

  75. A. Tena, J. Fernandez, E. Alvarez, P. Casan, D.K. Walters, Design of a numerical model of lung by means of a special boundary condition in the truncated branches. Int. J. Numer. Meth. Biomed. Eng. 33(6), 1–9 (2016)

    MathSciNet  Google Scholar 

  76. I.E. Vignon-Clementel, C.A. Figueroa, K.E. Jansen, C.A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195, 3776–3796 (2006)

    MathSciNet  MATH  CrossRef  Google Scholar 

  77. A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis, Deep learning for computer vision: A brief review. Comput. Intell. Neurosci. 2018, 7068349 (2018)

    Google Scholar 

  78. D.K. Walters, W.H. Luke, Computational fluid dynamics simulations of particle deposition in large-scale, multigenerational lung models. J. Biomech. Eng. 133(1), 011003 (2011)

    Google Scholar 

  79. Y. Wang, J. Wang, Y. Liu, S. Yu, X. Sun, S. Li, S. Shen, W. Zhao, Fluid-structure interaction modeling of upper airways before and after nasal surgery for obstructive sleep apnea. Int. J. Numer. Methods Biomed. Eng. 28(5), 528–546 (2012)

    MathSciNet  MATH  CrossRef  Google Scholar 

  80. E. Weibel, Morhometry of the human lung (Academic Press, New York, 1963)

    Google Scholar 

  81. Z. Zhang, C. Kleinstreuer, C.S. Kim, Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model. Ann. Biomed. Eng. 36(19), 2095–2110 (2008)

    CrossRef  Google Scholar 

  82. M. Zhao, T. Barber, P. Cistulli, K. Sutherland, G. Rosengarten, Predicting the treatment response of oral appliances for obstructive sleep apnea using computational fluid dynamics and fluid-structure interaction simulations, in ASME 2013 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers Digital Collection, New York (2013)

    Google Scholar 

  83. M. Zhao, T. Barber, P.A. Cistulli, K. Sutherland, G. Rosengarten, Simulation of upper airway occlusion without and with mandibular advancement in obstructive sleep apnea using fluid-structure interaction. J. Biomech. 46(15), 2586–2592 (2013)

    CrossRef  Google Scholar 

  84. J.H. Zhu, H.P. Lee, K.M. Lim, S.J. Lee, L.S.L. Teo, D.Y. Wang, Passive movement of human soft palate during respiration: A simulation of 3d fluid/structure interaction. J. Biomech. 45(11), 1992–2000 (2012)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Feng, Y. et al. (2021). Clinical CFD Applications 2. In: Inthavong, K., Singh, N., Wong, E., Tu, J. (eds) Clinical and Biomedical Engineering in the Human Nose. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-6716-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6716-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6715-5

  • Online ISBN: 978-981-15-6716-2

  • eBook Packages: EngineeringEngineering (R0)