B. Asgharian, W. Hofmann, R. Bergmann, Particle deposition in a multiple-path model of the human lung. Aerosol Sci. Technol. 34(4), 332–339 (2001)
CrossRef
Google Scholar
S. Ashaat, A.M. Al-Jumaily, Reducing upper airway collapse at lower continuous positive airway titration pressure. J. Biomech. 49(16), 3915–3922 (2016)
CrossRef
Google Scholar
A. Bates, R. Cetto, D. Doorly, R. Schroter, N. Tolley, A. Comerford, The effects of curvature and constriction on airflow and energy loss in pathological tracheas. Respir. Physiol. Neurobiol. 234, 69–78 (2016)
CrossRef
Google Scholar
A. Bates, A. Comerford, R. Cetto, D. Doorly, R. Schroter, N. Tolley, Computational fluid dynamics benchmark dataset of airflow in tracheas. Data Brief 10, 101–107 (2017)
CrossRef
Google Scholar
A. Bates, A. Comerford, R. Cetto, R. Schroter, N. Tolley, D. Doorly, Power loss mechanisms in pathological tracheas. J. Biomech. 49(11), 2187–2192 (2016)
CrossRef
Google Scholar
A.J. Bates, D.J. Doorly, R. Cetto, H. Calmet, A. Gambaruto, N. Tolley, G. Houzeaux, R. Schroter, Dynamics of airflow in a short inhalation. J. R. Soc. Interface 12(102), 20140880 (2015)
Google Scholar
A.J. Bates, N.S. Higano, E.B. Hysinger, R.J. Fleck, A.D. Hahn, S.B. Fain, P.S. Kingma, J.C. Woods, Quantitative assessment of regional dynamic airway collapse in neonates via retrospectively respiratory-gated 1h ultrashort echo time mri. J. Magn. Reson. Imaging 49(3), 659–667 (2019)
CrossRef
Google Scholar
A.J. Bates, A. Schuh, G. Amine-Eddine, K. McConnell, W. Loew, R.J. Fleck, J.C. Woods, C.L. Dumoulin, R.S. Amin, Assessing the relationship between movement and airflow in the upper airway using computational fluid dynamics with motion determined from magnetic resonance imaging. Clin. Biomech. 66, 88–96 (2017)
Google Scholar
A.J. Bates, A. Schuh, K. McConnell, B.M. Williams, J.M. Lanier, M.M. Willmering, J.C. Woods, R.J. Fleck, C.L. Dumoulin, R.S. Amin, A novel method to generate dynamic boundary conditions for airway cfd by mapping upper airway movement with non-rigid registration of dynamic and static mri. Int. J. Numer. Methods Biomed. Eng. 34(12), e3144 (2018)
Google Scholar
G.E. Batista, R.C. Prati, M.C. Monard, A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 6(1), 20–29 (2004)
CrossRef
Google Scholar
K.H. Cha, L.M. Hadjiiski, R.K. Samala, H.-P. Chan, R.H. Cohan, E.M. Caoili, C. Paramagul, A. Alva, A.Z. Weizer, Bladder cancer segmentation in ct for treatment response assessment: application of deep-learning convolution neural networkâĂǎa pilot study. Tomography 2(4), 421 (2016)
Google Scholar
S. Cheng, S. Gandevia, M. Green, R. Sinkus, L. Bilston, Viscoelastic properties of the tongue and soft palate using mr elastography. J. Biomechan. 44(3), 450–454 (2011)
CrossRef
Google Scholar
J.I. Choi, C.S. Kim, Mathematical analysis of particle deposition in human lungs: An improved single path transport model. Inhal. Toxicol. 19, 925–939 (2007)
CrossRef
Google Scholar
P.F. Christ, M.E.A. Elshaer, F. Ettlinger, S. Tatavarty, M. Bickel, P. Bilic, M. Rempfler, M. Armbruster, F. Hofmann, M. DÂĂŹAnastasi et al., Automatic liver and lesion segmentation in ct using cascaded fully convolutional neural networks and 3d conditional random fields, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, Berlin, 2016), pp. 415–423
Google Scholar
A. Comerford, C. Forster, W.A. Wall, Structured tree impedence outflow boundary conditions for 3d lung simulations. J. Biomechan. Eng. 132, 10 (2010)
Google Scholar
J. Dong, Y. Shang, K. Inthavong, H.-K. Chan, J. Tu, Numerical comparison of nasal aerosol administration systems for efficient nose-to-brain drug delivery. Pharm. Res. 35(1), 5 (2018)
Google Scholar
G. Dournes, D. Grodzki, J. Macey, P.-O Girodet, M. Fayon, J.-F. Chateil, M. Montaudon, P. Berger, F. Laurent (2015) Quiet submillimeter mr imaging of the lung is feasible with a petra sequence at 1.5 t. Radiology 276(1), 258–265
Google Scholar
V. Dumoulin, F. Visin, A guide to convolution arithmetic for deep learning. arXiv:1603.07285 (2016)
Y. Feng, C. Kleinstreuer, Analysis of non-spherical particle transport in complex internal shear flows. Phys. Fluids 25(9), 091904 (2013)
Google Scholar
Y. Feng, Z. Xu, A. Haghnegahdar, Computational fluid-particle dynamics modeling for unconventional inhaled aerosols in human respiratory systems. Aerosols-Science and Case Studies (2016)
Google Scholar
Y. Feng, J. Zhao, C. Kleinstreuer, Q. Wang, J. Wang, D.H. Wu, J. Lin, An in silico inter-subject variability study of extra-thoracic morphology effects on inhaled particle transport and deposition. J. Aerosol Sci. 123, 185–207 (2018)
CrossRef
Google Scholar
A. Haghnegahdar, Y. Feng, X. Chen, J. Lin, Computational analysis of deposition and translocation of inhaled nicotine and acrolein in the human body with e-cigarette puffing topographies. Aerosol Sci. Technol. 52(5), 483–493 (2018)
CrossRef
Google Scholar
N. Higano, A. Bates, E. Hysinger, I. St. Onge, R. Fleck, P. Kingma, J. Woods, Dynamic tracheal collapse and correlation to later tracheostomy in neonates with bronchopulmonary dysplasia via quantitative ultrashort echo-time mri, in C16. Clinical Studies in Bronchopulmonary Dysplasia (American Thoracic Society, New York, 2019), pp. A4264–A4264
Google Scholar
N.S. Higano, A.J. Bates, J.A. Tkach, R.J. Fleck, F.Y. Lim, J.C. Woods, P.S. Kingma, Pre-and post-operative visualization of neonatal esophageal atresia/tracheoesophageal fistula via magnetic resonance imaging. J. Pediatr. Surg. Case Rep. 29, 5–8 (2018)
CrossRef
Google Scholar
N.S. Higano, A.D. Hahn, J.A. Tkach, X. Cao, L.L. Walkup, R.P. Thomen, S.L. Merhar, P.S. Kingma, S.B. Fain, J.C. Woods, Retrospective respiratory self-gating and removal of bulk motion in pulmonary ute mri of neonates and adults. Magn. Reson. Med. 77(3), 1284–1295 (2017)
CrossRef
Google Scholar
D.H. Hubel, T.N. Wiesel, Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968)
CrossRef
Google Scholar
K. Inthavong, Z. Tian, J. Tu, W. Yang, C. Xue, Optimising nasal spray parameters for efficient drug delivery using computational fluid dynamics. Comput. Biol. Med. 38(6), 713–726 (2008)
CrossRef
Google Scholar
T. Janke, P. Koullapis, S. Kassinos, K. Bauer, Piv measurements of the siminhale benchmark case. Eur. J. Pharm. Sci. 133, 183–189 (2019)
CrossRef
Google Scholar
K.M. Johnson, S.B. Fain, M.L. Schiebler, S. Nagle, Optimized 3d ultrashort echo time pulmonary mri. Magn. Reson. Med. 70(5), 1241–1250 (2013)
CrossRef
Google Scholar
K. Kamnitsas, E. Ferrante, S. Parisot, C. Ledig, A.V. Nori, A. Criminisi, D. Rueckert, B. Glocker, Deepmedic for brain tumor segmentation, in International workshop on Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries (Springer, Berlin, 2016), pp. 138–149
Google Scholar
K. Kamnitsas, C. Ledig, V.F. Newcombe, J.P. Simpson, A.D. Kane, D.K. Menon, D. Rueckert, B. Glocker, Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)
CrossRef
Google Scholar
D.P. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv:1412.6980 (2014)
L. Koblinger, W. Hofmann, Analysis of human lung morphometric data for stochastic aerosol deposition calculations. Phys. Med. Biol. 30(6), 541–556 (1985)
CrossRef
Google Scholar
L. Koblinger, W. Hofmann, Monte carlo modeling of aerosol deposition in human lungd. part i: Simulation of particle transport in a stochastic lung structure. J. Aerosol Sci. 21(5), 661–674 (1990)
Google Scholar
A.V. Kolanjiyil, C. Kleinstreuer, Nanoparticle mass transfer from lung airways to systemic regions—part i: Whole-lung aerosol dynamics. J. Biomechan. Eng. 135(12), 11 (2013)
Google Scholar
A.V. Kolanjiyil, C. Kleinstreuer, Nanoparticle mass transfer from lung airways to systemic regions—part ii: Multi-compartmental modeling. J. Biomech. Eng. 135, 12 (2013)
Google Scholar
A.V. Kolanjiyil, C. Kleinstreuer, Computationally effecient analysis of particle transport and deposition in a human whole-airway model. part i: theory and model validation. Comput. Biol. Med. 76, 193–204 (2016)
Google Scholar
A.V. Kolanjiyil, C. Kleinstreuer, Computational analysis of aerosol-dynamics in a human whole-lung airway model. J. Aerosol Sci. 114, 301–316 (2017)
CrossRef
Google Scholar
A.V. Kolanjiyil, C. Kleinstreuer, R.T. Sadikot, Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. part ii: Dry powder inhaler application. Comput. Biol. Med. 2017, 247–253 (2017)
Google Scholar
P. Koullapis, P. Hofemeier, J. Sznitman, S. Kassinosa, An efficient computational fluid-particle dynamics method to predict deposition in a simplified approximation of the deep lung. Eur. J. Pharm. Sci. 113, 132–144 (2018)
CrossRef
Google Scholar
Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)
Google Scholar
Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)
CrossRef
Google Scholar
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
CrossRef
Google Scholar
T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection, in Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Google Scholar
A. Lintermann, J. Göbbert, K. Vogt, W. Koch, A. Hetzel, Rhinodiagnost-morphological and functional precision diagnostics of nasal cavities. InSiDE, Innov. Supercomput. Dtsch. 15(2), 106–109 (2017)
Google Scholar
G. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, J.A. Van Der Laak, B. Van Ginneken, C.I. Sánchez, A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)
CrossRef
Google Scholar
P.W. Longest, G. Tian, R. Delvadia, M. Hindle, Development of a stochastic individual path (sip) model for predicting the deposition of pharmaceutical aerosols: Effects of turbulence, polydisperse aerosol size, and evaluation of multiple lung lobes. Aerosol Sci. Technol. 46(12), 1271–1285 (2012)
CrossRef
Google Scholar
P.W. Longest, G. Tian, N. Khajeh-Hosseini-Dalasm, M. Hindle, Validating whole-airway cfd predictions of dpi aerosol deposition at multiple flow rates. J. Aerosol Med. Pulm. Drug Deliv. 29(6), 461–481 (2016)
CrossRef
Google Scholar
W.E. Lorensen, H.E. Cline, Marching cubes: A high resolution 3d surface construction algorithm, in ACM siggraph computer graphics, vol. 21 (ACM, New York, 1987), pp. 163–169
Google Scholar
F. Lu, F. Wu, P. Hu, Z. Peng, D. Kong, Automatic 3d liver location and segmentation via convolutional neural network and graph cut. Int. J. Comput. Assist. Radiol. Surg. 12(2), 171–182 (2017)
CrossRef
Google Scholar
B. Ma, K.R. Lutchen, An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics. Ann. Biomed. Eng. 34(11), 1691–1704 (2006)
CrossRef
Google Scholar
M. Malvè, A. Pérez del Palomar, S. Chandra, J. López-Villalobos, A. Mena, E. Finol, A. Ginel, M. Doblaré, Fsi analysis of a healthy and a stenotic human trachea under impedance-based boundary conditions. J. Biomech. Eng. 133, 2 (2011)
Google Scholar
K.-K. Maninis, J. Pont-Tuset, P. Arbeláez, L. Van Gool, Deep retinal image understanding, in International conference on medical image computing and computer-assisted intervention (Springer, Berlin, 2016), pp. 140–148
Google Scholar
T.B. Martonen, Analytical model of hygroscopic particle behavior in human airways. Bull. Math. Biol. 44(3), 425–442 (1982)
MATH
CrossRef
Google Scholar
M. Mihaescu, E. Gutmark, R. Elluru, J.P. Willging, Large eddy simulation of the flow in a pediatric airway with subglottic stenosis, in 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, p. 775 (2009)
Google Scholar
F. Milletari, N. Navab, S.-A. Ahmadi, V-net: Fully convolutional neural networks for volumetric medical image segmentation. 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016)
Google Scholar
M. Monjezi, R. Dastanpour, M.S. Saidi, A.R. SPishevari, Prediction of particle deposition in the respiratory track using 3dÂĂŞ1d modeling. Sci. Iran. 19(6), 1479–1486 (2012)
Google Scholar
A.I. Pack, Dynamic upper airway imaging during awake respiration in normal subjects and patients with sleep disordered breathing. Am. Rev. Respir. Dis. 148, 1385–1400
Google Scholar
A. Pandal-Blanco, R. Barrio-Perotti, R. Agujetas-Ortiz, A. Fernandez-Tena, Implementation of a specific boundary condition for a simplified symmetric single path cfd lung model with openfoam. Biomech. Model. Mechanobiol. 18, 1759–1771 (2019)
Google Scholar
C. Payer, D. Štern, H. Bischof, M. Urschler, Multi-label whole heart segmentation using cnns and anatomical label configurations, in International Workshop on Statistical Atlases and Computational Models of the Heart (Springer, Berlin, 2017), pp. 190–198
Google Scholar
M.S. Pearce, J.A. Salotti, M.P. Little, K. McHugh, C. Lee, K.P. Kim, N.L. Howe, C.M. Ronckers, P. Rajaraman, A.W. Craft et al., Radiation exposure from ct scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840), 499–505 (2012)
CrossRef
Google Scholar
J. Pirnar, L. Dolenc-Grošelj, I. Fajdiga, I. Žun, Computational fluid-structure interaction simulation of airflow in the human upper airway. J. Biomech. 48(13), 3685–3691 (2015)
CrossRef
Google Scholar
F. Provost, Machine learning from imbalanced data sets 101, in Proceedings of the AAAI 2000 workshop on imbalanced data sets, vol. 68 (AAAI Press, Palo Alto, CA, 2000), pp. 1–3
Google Scholar
H.R. Roth, L. Lu, N. Lay, A.P. Harrison, A. Farag, A. Sohn, R.M. Summers, Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. Med. Image Anal. 45, 94–107 (2018)
CrossRef
Google Scholar
S. Ruder, An overview of gradient descent optimization algorithms. arXiv:1609.04747 (2016)
D. Rueckert, L.I. Sonoda, C. Hayes, D.L. Hill, M.O. Leach, D.J. Hawkes, Nonrigid registration using free-form deformations: Application to breast mr images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)
CrossRef
Google Scholar
T. Schlegl, S.M. Waldstein, W.-D. Vogl, U. Schmidt-Erfurth, G. Langs, Predicting semantic descriptions from medical images with convolutional neural networks, in International Conference on Information Processing in Medical Imaging (Springer, Berlin, 2015), pp. 437–448
Google Scholar
R.J. Schwab, W.B. Gefter, A.I. Pack, E.A. Hoffman, Dynamic imaging of the upper airway during respiration in normal subjects. J. Appl. Physiol. 74(4), 1504–1514 (1993)
CrossRef
Google Scholar
M. Shakeri, S. Tsogkas, E. Ferrante, S. Lippe, S. Kadoury, N. Paragios, I. Kokkinos, Sub-cortical brain structure segmentation using f-cnn’s, in 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) (IEEE, Prague, 2016), pp. 269–272
Google Scholar
W.-C. Su, Y.S. Cheng, Estimation of carbon nanotubes deposition in a human respiratory tract replica. J. Aerosol Sci. 79, 72–85 (2015)
CrossRef
Google Scholar
W.-C. Su, B.K. Ku, P. Kulkarni, Y.S. Cheng, Deposition of graphene nanomaterial aerosols in human upper airways. J. Occup. Environ. Hyg. 13(1), 48–59 (2016)
CrossRef
Google Scholar
B. Suki, R.H. Habib, A.C. Jackson, Wave propagation, input impedance, and wall mechanics of the calf trachea from 16 to 1,600 hz. Am. Physiol. Soc. 75(6), 2755–2766 (1993)
Google Scholar
D.B. Taulbee, C.P. Yu, A theory of aerosol deposition in the humen respirtory tract. J. Appl. Physiol. 38(1), 77–85 (1975)
Google Scholar
M.H. Tawhai, A.J. Pullan, P.J. Hunter, Generation of an anatomically based three-dimensional model of the conducting airways. Ann. Biomed. Eng. 28, 793–802 (2000)
CrossRef
Google Scholar
A. Tena, J. Fernandez, E. Alvarez, P. Casan, D.K. Walters, Design of a numerical model of lung by means of a special boundary condition in the truncated branches. Int. J. Numer. Meth. Biomed. Eng. 33(6), 1–9 (2016)
MathSciNet
Google Scholar
I.E. Vignon-Clementel, C.A. Figueroa, K.E. Jansen, C.A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195, 3776–3796 (2006)
MathSciNet
MATH
CrossRef
Google Scholar
A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis, Deep learning for computer vision: A brief review. Comput. Intell. Neurosci. 2018, 7068349 (2018)
Google Scholar
D.K. Walters, W.H. Luke, Computational fluid dynamics simulations of particle deposition in large-scale, multigenerational lung models. J. Biomech. Eng. 133(1), 011003 (2011)
Google Scholar
Y. Wang, J. Wang, Y. Liu, S. Yu, X. Sun, S. Li, S. Shen, W. Zhao, Fluid-structure interaction modeling of upper airways before and after nasal surgery for obstructive sleep apnea. Int. J. Numer. Methods Biomed. Eng. 28(5), 528–546 (2012)
MathSciNet
MATH
CrossRef
Google Scholar
E. Weibel, Morhometry of the human lung (Academic Press, New York, 1963)
Google Scholar
Z. Zhang, C. Kleinstreuer, C.S. Kim, Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model. Ann. Biomed. Eng. 36(19), 2095–2110 (2008)
CrossRef
Google Scholar
M. Zhao, T. Barber, P. Cistulli, K. Sutherland, G. Rosengarten, Predicting the treatment response of oral appliances for obstructive sleep apnea using computational fluid dynamics and fluid-structure interaction simulations, in ASME 2013 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers Digital Collection, New York (2013)
Google Scholar
M. Zhao, T. Barber, P.A. Cistulli, K. Sutherland, G. Rosengarten, Simulation of upper airway occlusion without and with mandibular advancement in obstructive sleep apnea using fluid-structure interaction. J. Biomech. 46(15), 2586–2592 (2013)
CrossRef
Google Scholar
J.H. Zhu, H.P. Lee, K.M. Lim, S.J. Lee, L.S.L. Teo, D.Y. Wang, Passive movement of human soft palate during respiration: A simulation of 3d fluid/structure interaction. J. Biomech. 45(11), 1992–2000 (2012)
CrossRef
Google Scholar