Skip to main content

Use of Carbon Nanomaterials as Potential Ion-Exchange

  • Chapter
  • First Online:
Environmental Remediation Through Carbon Based Nano Composites

Part of the book series: Green Energy and Technology ((GREEN))

  • 361 Accesses

Abstract

This chapter deals with the use of different varieties of carbon nanomaterial’s (CNMs) as a potential ion-exchange material. Potential modifications of CNMs to enhance their ion-exchange properties such as functionalization of the surfaces of these materials and heteroatom doping have been discussed. Primarily, it is based on functional groups addition which modifies the surface of CNMs thus increasing ion exchange capabilities. The specificity of CNMs for particular ions needs improvement. Heteroatom-doped carbon nanotubes (CNTs) depict better properties over common CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguiar AL, Fagan SB, da Silva LB, Mendez Filho J, Souza Filho AG (2010) Benzonitrile adsorption on Fe-doped carbon nanostructures. J Phys Chem C 114:10790–10795

    Article  CAS  Google Scholar 

  2. Alabi A, Alhajaj A, Cseri L, Szekely G, Budd P, Zou L (2018) Review of nanomaterials-assisted ion exchange membranes for electro membrane desalination. Nat Res J Clean Water 1(1):1–22

    Article  Google Scholar 

  3. Anderson BD, Tracy JB (2014) Nanoscale 6(21):12195

    Article  CAS  Google Scholar 

  4. Bai H et al (2015) Anhydrous proton exchange membranes comprising of chitosan and phosphorylated graphene oxide for elevated temperature fuel cells. J Membr Sci 495:48–60

    Article  CAS  Google Scholar 

  5. Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater 17(1):17–29

    Article  CAS  Google Scholar 

  6. Casavola M, van Huis MA, Bals S, Lambert K, Hens Z, Vanmaekelbergh D (2012) Chem Mater 24(2):294

    Article  CAS  Google Scholar 

  7. Cech J, Curran SA, Zhang D, Dewald JL, Avandhandula A, Kandadai M, Roth S (2006) Functionalisation of multi-walled carbon nanotubes: direct proof of sidewall thiolation. Phys Stat 2, 243(13):3221–3225

    Google Scholar 

  8. Cho G, Park Y, Hong Y-K, Ha D-H (2019) Ion exchange: an advanced synthetic method for complex nanoparticles. Nano Convergence 6:1–17

    Google Scholar 

  9. Choi BG et al (2011) Innovative polymer nanocomposite electrolytes: nanoscale manipulation of ion channels by functionalized graphenes. ACS Nano 5:5167–5174

    Article  CAS  Google Scholar 

  10. De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  Google Scholar 

  11. Fan Z, Lin LC, Buijs W, Vlugt TJH, van Huis MA (2016) Nat Commun 7:11503

    Article  CAS  Google Scholar 

  12. Fenton JL, Steimle BC, Schaak RE (2018) J Am Chem Soc 140(22):6771

    Google Scholar 

  13. He Y, Tong C, Geng L, Liu L, Lü C (2014) Enhanced performance of the sulfonated polyimide proton exchange membranes by graphene oxide: size effect of graphene oxide. J Membr Sci 458:36–46

    Article  CAS  Google Scholar 

  14. Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41(11):1853–1859

    Google Scholar 

  15. Iijima S (1991) Synthesis of carbon nanotubes. Nature 354:56–58

    Article  CAS  Google Scholar 

  16. Justo Y, Goris B, Kamal JS, Geiregat P, Bals S, Hens Z (2012) J Am Chem Soc 134(12):5484

    Google Scholar 

  17. Khare R, Bose S (2005) Carbon nanotube based composites—a review. J Miner Mater Charact Eng 4:31–46

    Google Scholar 

  18. Klaysom C, Marschall R, Wang L, Ladewig BP, Lu GQM (2010) Synthesis of composite ion-exchange membranes and their electrochemical properties for desalination applications. J Mater Chem 20:4669–4674

    Article  CAS  Google Scholar 

  19. Lee DC, Yang HN, Park SH, Kim WJ (2014) Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell. J Membr Sci 452:20–28

    Article  CAS  Google Scholar 

  20. Li N, Zhang F, Wang J, Li S, Zhang S (2009) Dispersions of carbon nanotubes in sulfonated poly-bis(benzimidazobenzisoquinolinones) and their proton conducting composite membranes. Polymer 50:3600–3608

    Article  CAS  Google Scholar 

  21. Liu L, Tong C, He Y, Zhao Y, Lü C (2015) Enhanced properties of quaternized graphenes reinforced polysulfone based composite anion exchange membranes for alkaline fuel cell. J Membr Sci 487:99–108

    Google Scholar 

  22. Moghadassi AR, Koranian P, Hosseini SM, Askari M, Madaeni SS (2014) Surface modification of heterogeneous cation exchange membrane through simultaneous using polymerization of PAA and multi walled carbon nanotubes. J Ind Eng Chem 20:2710–2718

    Article  CAS  Google Scholar 

  23. Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk MI, Grotevent MJ, Kovalenko MV (2015) Nano Lett 15(8):5635

    Article  CAS  Google Scholar 

  24. Perez-Aguilar MV, Munoz-Sandoval E, Diaz-Florez PE, Rangel-Mendez JR (2010) Adsorption of Cadmium and Lead onto oxidized nitrogen-doped mutiwalled carbon nanotubes: equilibrium and kinetics. J Nanopart Res 12:467–480

    Article  CAS  Google Scholar 

  25. Park J, Park J, Lee J, Oh A, Baik H, Lee K (2018) ACS Nano 12(8):7996

    Google Scholar 

  26. Park J, Zheng H, Jun YW, Alivisatos AP (2009) J Am Chem Soc 131(39):13943

    Google Scholar 

  27. Pillay K et al (2011) Nanomaterials for the removal and recovery of heavy metal ions from industrial effluents. Ph.D. thesis, University of the Witwatersrand

    Google Scholar 

  28. Pillay K, Cukrowska EM, Coville NJ (2009) Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. J Hazard Mater 169:1067–1075

    Article  Google Scholar 

  29. Pillay K, Cukrowska EM, Coville NJ (2013) Improved uptake of mercury by Sulphur containing carbon nanotubes. Microchem J 108:124–130

    Article  CAS  Google Scholar 

  30. Powell AE, Hodges JM, Schaak RE (2016) J Am Chem Soc 138(2):471

    Article  CAS  Google Scholar 

  31. Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution: a review. Sep Purif Technol 58:224–231

    Article  CAS  Google Scholar 

  32. Robinson RD, Sadtler B, Demchenko DO, Erdonmez CK, Wang LW, Alivisatos AP (2007) Science 317(5836):355

    Article  CAS  Google Scholar 

  33. Sadtler B, Demchenko DO, Zheng H, Hughes SM, Merkle MG, Dahmen U, Wang LW, Alivisatos AP (2009) J Am Chem Soc 131(14):5285

    Article  CAS  Google Scholar 

  34. Saruyama M, So YG, Kimoto K, Taguchi S, Kanemitsu Y, Teranishi T (2011) J Am Chem Soc 133(44):17598

    Google Scholar 

  35. Sharma PP, Gahlot S, Bhil BM, Gupta H, Kulshrestha V (2015) An environmentally friendly process for the synthesis of an fGO modified anion exchange membrane for electro-membrane applications. RSC Adv 5:38712–38721

    Article  CAS  Google Scholar 

  36. Tseng CY et al (2011) Sulfonated polyimide proton exchange membranes with graphene oxide show improved proton conductivity, methanol crossover impedance, and mechanical properties. Adv Energy Mater 1:1220–1224

    Article  CAS  Google Scholar 

  37. Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Biol Technol Agric 3(17):1–26

    Google Scholar 

  38. Zhang J, Chernomordik BD, Crisp RW, Kroupa DM, Luther JM, Miller EM, Gao J, Beard MC (2015) ACS Nano 9(7):7151

    Google Scholar 

  39. Zhang R, Zhang Y, Zhang Q, Xie H, Qian W, Wei F (2013) Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACS Nano 7:6156–6161

    Article  CAS  Google Scholar 

  40. Zuo X et al (2009) Preparation of organic–inorganic hybrid cation-exchange membranes via blending method and their electrochemical characterization. J Membr Sci 328:23–30

    Article  CAS  Google Scholar 

  41. Zuo X, Yu S, Shi W (2012) Effect of some parameters on the performance of eletrodialysis using new type of PVDF–SiO2 ion-exchange membranes with single salt solution. Desalination 290:83–88

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaneet Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhalla, G., Sharma, A., Kumar, V., Bhalla, B., Saruchi, Kumar, H. (2021). Use of Carbon Nanomaterials as Potential Ion-Exchange. In: Jawaid, M., Ahmad, A., Ismail, N., Rafatullah, M. (eds) Environmental Remediation Through Carbon Based Nano Composites. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6699-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6699-8_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6698-1

  • Online ISBN: 978-981-15-6699-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics