Skip to main content

Diversification of Sugar and Sugarcane Industry: Agro-industrial Alternatives

  • Chapter
  • First Online:
Sugar and Sugar Derivatives: Changing Consumer Preferences

Abstract

This chapter highlights the current importance and further prospects of sugar and sugarcane as a renewable energy resource and agro-industrial alternative through diversification of the sugar industry. The current reality is that sugar cannot be considered as the sole product of a sugar mill factory. The different agro-wastes generated in sugar factories such as bagasse, molasses, pressmud, ashes and vinasse have diversified uses through value addition. Sugar industry is now a biomass-based industry which can, on the one hand, develop products for the food as well as non-food sector and, on the other, value-added products, fertilizer, bio-fuels, chemicals, etc. Various products with high nutritive and industrial value along with bio-product diversification and second-generation ethanol production and many other potential sugar industry products are mentioned. Future economics of these value-added products of sugarcane, especially bio-ethanol, depends on government policies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GI:

Glycaemic index

SB:

Sugarcane bagasse

SCBA:

Sugarcane bagasse ash

SmF:

Submerged fermentation

SP:

Spathaspora passalidarum

SPM:

Sugarcane pressmud

SS:

Scheffersomyces stipitis

SS:

Sugarcane straw

SSC:

Solid-state cultivation

References

  • Abdulkadir TS, Oyejobi DO, Lawal AA (2014) Evaluation of sugarcane bagasse ash as a replacement for cement in concrete works. Acta Tehnica Corviniensis VII:71–76

    Google Scholar 

  • Albarelli JQ, Santos DT, Ensinas AV, Marechal F, Cocero MJ, Meireles MAA (2018) Product diversification in the sugarcane biorefinery through algae growth and supercritical CO2 extraction: thermal and economic analysis. Renew Energy 129:776–785

    Article  CAS  Google Scholar 

  • Ansari KB, Gaikar VG (2014) Pressmud as an alternate resource for hydrocarbons and chemicals by thermal pyrolysis. Ind Eng Chem Res 53:1878–1889

    Article  CAS  Google Scholar 

  • Boviatsi E, Papadaki A, Efthymiou M-N, Nychas EG-N, Papanikolaou S, da Silva JAC, Freire DMG, Koutinas A (2019) Valorization of sugarcane molasses for the production of microbial lipids via fermentation of two Rhodosporidium strains for enzymatic synthesis of polyol esters. J Chem Technol Biotechnol 95(2):402–407. https://doi.org/10.1002/jctb.5985

    Article  CAS  Google Scholar 

  • Bull TA, Glasziou KT (1979) Sugarcane. In: Lovett JV, Lazenby A (eds) Australian field crops: tropical cereals, oilseeds, grain legumes and other crops. Angus and Robertson Publishers, Sydney, pp 95–113

    Google Scholar 

  • Canilha L, Chandel AK, Milessi TSDS, Antunes FAF, da Costa Freitas WL, Felipe MDGA, da Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:1. https://doi.org/10.1155/2012/989572

    Article  CAS  Google Scholar 

  • Canilha L, de Cássia Lacerda Brambilla Rodrigues R, Antunes FAF, Chandel AK, Milessi TSDS, Felipe MDGA, da Silva SS (2013) Bioconversion of hemicellulose from sugarcane biomass into sustainable products. In: Chandel AK, da Silva SS (eds) Sustainable degradation of lignocellulosic biomass, techniques, applications and commercialization, eBook (PDF) isbn: 978-953-51-6339-8. https://doi.org/10.5772/1490

  • Chonde SG, Raut PD, Bhosale P (2012) Studies on extraction of sugarcane wax from press mud of sugar factories from Kolhapur district, Maharashtra. J Environ Res Dev 6(3A):715–720

    Google Scholar 

  • Christofoletti CA, Escher JP, Correia JE, Marinho JFU, Fontanetti CS (2013) Sugarcane vinasse: environmental implications of its use. Waste Manag 33(12):2752–2761

    Article  CAS  Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann JC (1996) Characterization of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413

    Article  Google Scholar 

  • Eggleston G, Salassi M, Richard E, Birkett H (2007) Sustainability of the sugar industry: future value addition from sugarcane. Int Sugar J 109(1303):415–432

    Google Scholar 

  • Farias D, Filho FG (2019) Co-culture strategy for improved 2G bioethanol production using a mixture of sugarcane molasses and bagasse hydrolysate as substrate. Biochemical Engineering Journal 147:29–38. https://doi.org/10.1016/j.bej.2019.03.020

    Article  CAS  Google Scholar 

  • Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges, and future direction. Energy Fuel 20(4):1727–1737. https://doi.org/10.1021/ef060097w

    Article  CAS  Google Scholar 

  • Furtado A, Lupo JS, Hoang NV, Healey A, Singh S, Simmons BA, Henry RJ (2014) Modifying plants for biofuel and biomaterial production. Plant Biotechnol J 12:1246–1258. https://doi.org/10.1111/pbi.12300

    Article  CAS  PubMed  Google Scholar 

  • George D, Begum KMMS, Maheswari PU (2020) Sugarcane bagasse (SCB) based pristine cellulose hydrogel for delivery of grape pomace polyphenol drug. Waste Biomass Valor 11:851–860. https://doi.org/10.1007/s12649-018-0487-3

    Article  CAS  Google Scholar 

  • Gharib-Bibalan S (2018) High value-added products recovery from sugar processing by-products and residuals by green technologies: opportunities, challenges, and prospects. Food Eng Rev 10(2):95–111

    Article  CAS  Google Scholar 

  • Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol 14:2000–2014

    Article  Google Scholar 

  • Inarkar MB, Lele SS (2012) Extraction and characterization of sugarcane peel wax. Int Scholar Res Notices 2012:1–6. https://doi.org/10.5402/2012/340158

    Article  CAS  Google Scholar 

  • Jagannadha Rao PVK, Das M, Das SK (2007) Jaggery—a traditional Indian sweetener. Indian J Tradit Knowl 6:95–102

    Google Scholar 

  • Kimbeng CA, Froyland D, Appo D, Corcoran A, Hetherington M (2001) An appraisal of early generation selection in the Central Queensland sugarcane improvement program. Proc Australian Soc Sugarcane Technol 23:129–135

    Google Scholar 

  • Kumar R, Saha SK, Kumar D, Mahesh MS, Malapure CD (2017a) Effect of dietary utilization of sugarcane press mud on production performance of Muzaffarnagari lambs. Trop Anim Health Prod 49(7):1439–1446

    Article  Google Scholar 

  • Kumar S, Meena RS, Jinger D, Jatav HS, Banjara T (2017b) Use of pressmud compost for improving crop productivity and soil health. Int J Chem Stud 5(2):384–389

    Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    Article  CAS  Google Scholar 

  • Milligan S, Gravois KA, Bischoff KP, Martin FA (1990) Crop effects on genetic relationships among sugarcane traits. Crop Sci 30(4):927. https://doi.org/10.2135/cropsci1990.0011183X003000040034x

    Article  Google Scholar 

  • Modani PO, Vyawahare MR (2013) Utilization of bagasse ash as a partial replacement of fine aggregate in concrete. Procedia Eng 51:25–29

    Article  CAS  Google Scholar 

  • Mohan N (2019) Sustainability of sugar industry in northern region-sugar production & beyond. In: Sah AK, Prakash B, Baitha A, Gupta CK, Sharma L, Singh AK (eds) Souvenir, national workshop on sugarcane: challenges & future strategies for doubling farmers’ income, November 14, 2019, ICAR-IISR, Lucknow, pp 11–20

    Google Scholar 

  • Nath A, Dutta D, Kumar P, Singh JP (2015) Review on recent advances in value addition of jaggery based products. J Food Process Technol 6:440

    Google Scholar 

  • Oliveira AF, de Carvalho Matos V, Bastos RG (2012) Cultivation of Aspergillus niger on sugarcane bagasse with vinasse. Biosci J Uberlândia 28(6):889–894

    Google Scholar 

  • Pawar LB, Karnavat MS, Rode KS, Sharma MV, Sonawane US, Wagh YR (2018) Sugarcane bagasse ash is also being utilized for the construction of low volume traffic roads (village roads, city street roads and other arterial roads). In: 6th international conference on recent trends in engineering & technology (ICRTET-2018), pp 833–838

    Google Scholar 

  • Peskett L, Slater R, Stevens C, Dufey A (2007) Biofuels, agriculture and poverty reduction. Paper produced for the DFID Renewable Natural Resources and Agriculture Team ODI London, Trade & Industry Monitor, pp. 45–52

    Google Scholar 

  • Price S (1963) Cytogenetics of modern sugar canes. Econ Bot 17(2):97–106

    Article  Google Scholar 

  • Raza G, Ali K, Hassan MA, Khan I (2019) Sugarcane as a bioenergy source. In: Khan MT, Khan IA (eds) Sugarcane biofuels. Status, potential, and prospects of the sweet crop to fuel the world. Springer, Basel, pp 3–19. https://doi.org/10.1007/978-3-030-18597-8_1

    Chapter  Google Scholar 

  • Reis C, Hu B (2017) Vinasse from sugarcane ethanol production: better treatment or better utilization? Front Energ Res 5:7. https://doi.org/10.3389/fenrg.2017.00007

    Article  Google Scholar 

  • Rosillo-Calle F, Walter A (2006) Global market for bioethanol: historical trends and future prospects. Energy Sustain Dev 10(1):20–32. https://doi.org/10.1016/S0973-0826(08)60504-9

    Article  Google Scholar 

  • Sarangi BK, Mudliar SN, Bhatt P, Kalve S, Chakrabarti T and Pandey RA (2008) Compost from sugarmill pressmud and distillery spentwash for sustainable agriculture. In: Hao X (ed) Compost I. Dynamic soil, dynamic plant vol. 2 (Special Issue 1), pp 35–49

    Google Scholar 

  • Sarker TS, Azam SMGG, Bonanomi G (2017) Recent advances in sugarcane industry solid by-products valorization. Waste Biomass Valor 8(2):241–266

    Article  CAS  Google Scholar 

  • Shweil SF (2001) Diversification of sugar industry. In: Mahmoud MR, Baron P, Bayoumi MR (eds.) Proceedings of an international conference “The role of the arab region in the world sugar economy” held in Luxor, Egypt, 18-21 February 2001, pp 65–81

    Google Scholar 

  • Silva CO, Gallo FA, Bomdespacho LQ, Kushida MM, Petrus RR (2016) Sugarcane juice processing: microbiological monitoring. J Food Process Technol 7(8):607

    Article  Google Scholar 

  • Singh R, Kapoor V, Kumar V (2012) Utilization of agro-industrial wastes for the simultaneous production of amylase and xylanase by thermophilic actinomycetes. Braz J Microbiol 43(4):1545–1552. https://doi.org/10.1590/S1517-838220120004000039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh P, Singh SN, Tiwari AK, Pathak SK, Singh AK, Srivastava S, Mohan N (2019) Integration of sugarcane production technologies for enhanced cane and sugar productivity targeting to increase farmers’ income: strategies and prospects. 3Biotech 9(2):48. https://doi.org/10.1007/s13205-019-1568-0

    Article  Google Scholar 

  • Sreenivasan TV, Ahloowalia BS, Heinz DJ (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 211–253

    Chapter  Google Scholar 

  • Srivastava S (2000) Cytogenetics of sugarcane. In: Shahi HN, Shrivastava AK, Sinha OK (eds) 50 years of sugarcane research in India. Lucknow, IISR, pp 55–71

    Google Scholar 

  • Srivastava S (2002) Numerical heterogeneity of chromosomes and nucleoli in some elite genotypes of sugarcane. Indian J Genet 62:296–299

    Google Scholar 

  • Srivastava S (2009) Chromosome comportment of some elite sugarcane genotypes during meiosis and its implications. Indian J Sugarcane Technol 24(1&2):23–25

    Google Scholar 

  • Srivastava S, Gupta PS (2004) Fluorescent in-situ detection of r-DNA sites on somatic chromosomes of different species in an inter-specific hybrid of sugarcane. Indian J Sugarcane Technol 19(1 & 2):55–57

    Google Scholar 

  • Srivastava S, Gupta PS (2006) Genetic relationship of sugarcane genotypes used as parents in breeding programmes. Nucleus 49(3):155–163

    Google Scholar 

  • Srivastava S, Kumar P (2019) Potential of sugarcane in modern energy development in India. Trends Biosci 12(12):870–873

    Google Scholar 

  • Srivastava S, Srivastava HM (1998) Chromosome pairing affinity and disjunction in elite sugarcane genotypes. Indian J of Sugarcane Technol 13:121–126

    Google Scholar 

  • Srivastava HM, Srivastava S (2000) Sugarcane breeding and varietal improvement during last fifty years (1947-97) in India. In: Shahi HN, Srivastava AK, Sinha OK (eds) 50 years of sugarcane research in India. Lucknow, IISR, pp 72–90

    Google Scholar 

  • Srivastava S, Srivastava HM (2001) Genome characterization of Saccharum spp. hybrids: preferential chromosome pairing. In: Proceedings 24th ISSCT conference, Brisbane, Australia, pp 520–523

    Google Scholar 

  • Srivastava S, Pathak AD, Saxena VK (2013) Chromosome number spectrum in parents and progeny populations of sugarcane. Indian J Sugarcane Technol 28(01):37–38

    Google Scholar 

  • Taylor AK (2000) From raw sugar to raw materials. Chem Innov 30(11):45–48

    CAS  Google Scholar 

  • Tew TL, Cobill R (2008) Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 249–272

    Google Scholar 

  • Waclawovsky AJ, Sato P, Lembke C, Moore PH, Souza G (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8(3):263–276. https://doi.org/10.1111/j.1467-7652.2009.00491.x

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Birch RG (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol J 5(1):109–117

    Article  CAS  Google Scholar 

  • Yadav S (2019) Utilization of sugarcane bagasse ash in bitumen. Int J Eng Res Technol 8(4):479–481

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, S. (2020). Diversification of Sugar and Sugarcane Industry: Agro-industrial Alternatives. In: Mohan, N., Singh, P. (eds) Sugar and Sugar Derivatives: Changing Consumer Preferences. Springer, Singapore. https://doi.org/10.1007/978-981-15-6663-9_10

Download citation

Publish with us

Policies and ethics