Advertisement

SNP in Forensic DNA Testing

Chapter
  • 244 Downloads

Abstract

Single nucleotide polymorphisms (SNPs) are the most common mutations found in humans and are special molecular signatures providing intricate information pertaining to human migration patterns, ancestral history, and predisposition to diseases. In present modern forensic era, SNPs in the human populations are being used by investigative agencies across the world as productive and sometimes definitive evidence in solving cases especially pertaining to suspect/victim identification or establishing relatedness. In the present book chapter, we have provided a comprehensive account of the use of SNPs in forensic sciences. We have explained the various conventional and most modern cutting edge strategies and approaches of typing SNPs. Most importantly we have detailed the numerous applications of SNP genotyping in DNA forensics including disaster victim identification, suspect identification at the crime scene, and establishing precisely the disputes related to paternity. We have also included a few landmark case-studies which used SNP typing to reach conclusive verdict.

Keywords

SNP Genotyping NGS Kinship-analysis 

References

  1. Braun A, Little DP, Koster H (1997) Detecting CFTR gene mutations by using primer oligo base extension and mass spectrometry. Clin Chem 43:1151–1158CrossRefGoogle Scholar
  2. Budowle B, van Daal A (2008) Forensically relevant SNP classes. BioTechniques 44:603–610CrossRefGoogle Scholar
  3. Decorte R (2010) Genetic identification in the 21st century—current status and future developments. Forensic Sci Int 201:160–164CrossRefGoogle Scholar
  4. Dixon LA, Murray CM, Archer EJ, Dobbins AE, Koumi P, Gill P (2005) Validation of a 21-locus autosomal SNP multiplex for forensic identification purposes. Forensic Sci Int 154:62–77CrossRefGoogle Scholar
  5. Dixon LA, Dobbins AE, Pulker HK, Butler JM, Vallone PM, Coble MD, Parson W, Berger B, Grubwieser P, Mogensen HS, Morling N, Nielsen K, Sanchez JJ, Petkovski E, Carracedo A, Sanchez-Diz P, Ramos-Luis E, Briōn M, Irwin JA, Just RS, Loreille O, Parsons TJ, Syndercombe-Court D, Schmitter H, Stradmann-Bellinghausen B, Bender K, Gill P (2006) Analysis of artificially degraded DNA using STRs and SNPs—results of a collaborative European (EDNAP) exercise. Forensic Sci Int 164:33–44CrossRefGoogle Scholar
  6. Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R (2010) Forensic identification using skin bacterial communities. Proc Natl Acad Sci U S A 107:6477–6481CrossRefGoogle Scholar
  7. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251:767–773CrossRefGoogle Scholar
  8. Haff LA, Smirnov IP (1997) Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome Res 7:378–388CrossRefGoogle Scholar
  9. Han JL, Kraft P, Nan H, Guo Q, Chen C, Qureshi A (2008) A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet 4:e1000074CrossRefGoogle Scholar
  10. Kidd KK, Pakstis AJ, Speed WC, Grigorenko EL, Kajuna SL, Karoma NJ, Kungulilo S, Kim JJ, Lu RB, Odunsi A, Okonofua F, Parnas J, Schulz LO, Zhukova OV, Kidd JR (2006) Developing a SNP panel for forensic identification of individuals. Forensic Sci Int 164:20–32CrossRefGoogle Scholar
  11. Kim S, Shi S, Bonome T, Ulz ME, Edwards JR, Fodstad H, Russo JJ, Ju J (2003) Multiplex genotyping of the human beta2-adrenergic receptor gene using solid-phase capturable dideoxynucleotides and mass spectrometry. Anal Biochem 316:251–258CrossRefGoogle Scholar
  12. Klimentidis YC, Shriver MD (2009) Estimating genetic ancestry proportions from faces. PLoS One 4:e4460CrossRefGoogle Scholar
  13. Lilje L, Lillsaar T, Rätsep R, Simm J, Aaspõllu A (2013) Soil sample metagenome NGS data management for forensic investigation. Forensic Sci Int Genet 4:e35–e36CrossRefGoogle Scholar
  14. Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl 4:357–362CrossRefGoogle Scholar
  15. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380CrossRefGoogle Scholar
  16. McEwen SA, Wilson TM, Ashford DA, Heegaard ED, Kournikakis B (2006) Microbial forensics for natural and intentional incidents of infectious disease involving animals. Rev Sci Tech 25:329–339CrossRefGoogle Scholar
  17. Morimoto C, Manabe S, Fujimoto S, Hamano Y, Tamaki K (2017) Discrimination of relationships with the same degree of kinship using chromosomal sharing patterns estimated from high-density SNPs. Forensic Sci Int Genet 33:10–16CrossRefGoogle Scholar
  18. Nassir R, Kosoy R, Tian C, White PA, Butler LM, Silva G, Kittles R, Alarcon-Riquelme ME, Gregersen PK, Belmont JW, De La Vega FM, Seldin MF (2009) An ancestry informative marker set for determining continental origin: validation and extension using human genome diversity panels. BMC Genet 10:39CrossRefGoogle Scholar
  19. Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A 91:5022–5026CrossRefGoogle Scholar
  20. Phillips C, Prieto L, Fondevila M, Salas A, Gómez-Tato A, Alvarez-Dios J, Alonso A, Blanco-Verea A, Brión M, Montesino M, Carracedo A, Lareu MV (2009) Ancestry analysis in the 11-M Madrid bomb attack investigation. PLoS One 4:e6583CrossRefGoogle Scholar
  21. Walsh S, Liu F, Ballantyne KN, van Oven M, Lao O, Kayser M (2011) IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Sci Int Genet 5:170–180CrossRefGoogle Scholar
  22. Ziętkiewicz E, Yotova V, Gehl D, Wambach T, Arrieta I, Batzer M, Cole DE, Hechtman P, Kaplan F, Modiano D, Moisan JP, Michalski R, Labuda D (2003) Haplotypes in the dystrophin DNA segment point to a mosaic origin of modern human diversity. Am J Hum Genet 73:994–1015CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of BiochemistryAll India Institute of Medical SciencesBibinagarIndia
  2. 2.DNA Fingerprinting Unit, State Forensic Science Laboratory, Department of Home (Police)Government of Madhya PradeshSagarIndia
  3. 3.BioAptagen Laboratories Private LimitedGuwahatiIndia

Personalised recommendations