Skip to main content

Perovskite Quantum Dots for Photovoltaic Applications

  • Chapter
  • First Online:
Perovskite Quantum Dots

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 303))

Abstract

Perovskite solar cell with easy solution processing and high efficiency has been considered as a promising photovoltaic technology, but the material instability makes it questionable for practical applications. Perovskite quantum dots (QDs) provide new possibilities to resolve these concerns. In this chapter, we will discuss the backgrounds, fundamentals, synthesis methods and device physics of the perovskite QDs based solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Song et al., A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ. Sci. 10, 1297–1305 (2017). https://doi.org/10.1039/c7ee00757d

    Article  CAS  Google Scholar 

  2. J. Guo, J. Min, A cost analysis of fully solution-processed ITO-free organic solar modules. Adv. Energy Mater. 9, 1802521 (2019). https://doi.org/10.1002/aenm.201802521

    Article  CAS  Google Scholar 

  3. A. Jeffrey, A.M.H. Pierre, V.K. Prashant, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530–1538 (2015)

    Google Scholar 

  4. J.M. Frost et al., Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014)

    Article  CAS  Google Scholar 

  5. C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2018)

    Article  Google Scholar 

  6. T. Leijtens et al., Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5, 1500962 (2015)

    Article  Google Scholar 

  7. S. Bai et al., Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019). https://doi.org/10.1038/s41586-019-1357-2

    Article  CAS  Google Scholar 

  8. G. Divitini et al., In situ observation of heat-induced degradation of perovskite solar cells. Nat. Energy 1, 1–6 (2016)

    Article  Google Scholar 

  9. K. Domanski et al., Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 10, 604–613 (2017)

    Article  CAS  Google Scholar 

  10. H.J. Snaith et al., Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)

    Article  CAS  Google Scholar 

  11. L. Shi et al., Accelerated lifetime testing of organic-inorganic perovskite solar cells encapsulated by polyisobutylene. ACS Appl. Mater. Interfaces 9, 25073–25081 (2017). https://doi.org/10.1021/acsami.7b07625

    Article  CAS  Google Scholar 

  12. R. Cheacharoen et al., Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci. 11, 144–150 (2018)

    Article  CAS  Google Scholar 

  13. Y. Zhang, Y. Liu, Y. Li, Z. Yang, S. Liu, Perovskite CH3NH3Pb(BrxI1-x)(3) single crystals with controlled composition for fine-tuned bandgap towards optimized optoelectronic applications. J. Mater. Chem. C 4, 9172–9178 (2016). https://doi.org/10.1039/c6tc03592b

    Article  CAS  Google Scholar 

  14. B.G. Kim, W. Jang, J.S. Cho, D.H. Wang, Tailoring solubility of methylammonium lead halide with non-stoichiometry molar ratio in perovskite solar cells: morphological and electrical relationships for high current generation. Sol. Energy Mater. Sol. Cells 192, 24–35 (2019). https://doi.org/10.1016/j.solmat.2018.12.010

    Article  CAS  Google Scholar 

  15. Z. Wang et al., Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017)

    Article  CAS  Google Scholar 

  16. G.-W. Kim, G. Kang, M. Malekshahi Byranvand, G.-Y. Lee, T. Park, Gradated mixed hole transport layer in a perovskite solar cell: improving moisture stability and efficiency. ACS Appl. Mater. Interfaces 9, 27720–27726 (2017)

    Article  CAS  Google Scholar 

  17. F. Han et al., Cesium iodide interface modification for high efficiency, high stability and low hysteresis perovskite solar cells. Electrochim. Acta 236, 122–130 (2017). https://doi.org/10.1016/j.electacta.2017.03.139

    Article  CAS  Google Scholar 

  18. H. Zhu, et al., Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency. Adv. Mater., e1907757. https://doi.org/10.1002/adma.201907757 (2020)

  19. Q. Han et al., Additive engineering for high-performance room-temperature-processed perovskite absorbers with micron-size grains and microsecond-range carrier lifetimes. Energy Environ. Sci. 10, 2365–2371 (2017). https://doi.org/10.1039/c7ee02272g

    Article  CAS  Google Scholar 

  20. J. Tong et al., Carrier lifetimes of >1 mus in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019). https://doi.org/10.1126/science.aav7911

    Article  CAS  Google Scholar 

  21. S. Yang et al., Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 141, 5781–5787 (2019)

    Article  CAS  Google Scholar 

  22. A. Swarnkar et al., Quantum dot-induced phase stabilization of alpha-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016). https://doi.org/10.1126/science.aag2700

    Article  CAS  Google Scholar 

  23. S.S. Shin et al., Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356, 167–171 (2017)

    Article  CAS  Google Scholar 

  24. R.E. Beal et al., Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7, 746–751 (2016)

    Article  CAS  Google Scholar 

  25. G.E. Eperon et al., Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695 (2015)

    Article  CAS  Google Scholar 

  26. Q. Wang et al., µ-graphene crosslinked CsPbI3 quantum dots for high efficiency solar cells with much improved stability. Adv. Energy Mater. 8, 1800007 (2018)

    Article  Google Scholar 

  27. K. Chen et al., Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Adv. Func. Mater. 29, 1900991 (2019)

    Article  Google Scholar 

  28. J. Yuan et al., Band-aligned polymeric hole transport materials for extremely low energy loss α-CsPbI3 perovskite nanocrystal solar cells. Joule 2, 2450–2463 (2018)

    Article  CAS  Google Scholar 

  29. E.M. Sanehira, et al., Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3, eaao4204 (2017)

    Google Scholar 

  30. X. Ling, et al., 14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation. Adv. Energy Mater. 9, 1900721 (2019)

    Google Scholar 

  31. J. Xue et al., Surface ligand management for stable FAPbI3 perovskite quantum dot solar cells. Joule 2, 1866–1878 (2018)

    Article  CAS  Google Scholar 

  32. J. Xue et al., A small-molecule, “charge driver” enables perovskite quantum dot solar cells with efficiency approaching 13%. Adv. Mater. 31, 1900111 (2019)

    Article  Google Scholar 

  33. F. Zhang et al., Colloidal synthesis of air-stable CH3NH3PbI3 quantum dots by gaining chemical insight into the solvent effects. Chem. Mater. 29, 3793–3799 (2017)

    Article  CAS  Google Scholar 

  34. A. Hazarika et al., Perovskite quantum dot photovoltaic materials beyond the reach of thin films: full-range tuning of A-site cation composition. ACS Nano 12, 10327–10337 (2018)

    Article  CAS  Google Scholar 

  35. F. Li, et al., Perovskite quantum dot solar cells with 15.6% efficiency and improved stability enabled by an α-CsPbI3/FAPbI3 bilayer structure. ACS Energy Lett. 4, 2571–2578 (2019)

    Google Scholar 

  36. M. Hao et al., Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 5, 79–88 (2020). https://doi.org/10.1038/s41560-019-0535-7

    Article  CAS  Google Scholar 

  37. Q. Zhao et al., High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nat. Commun. 10, 1–8 (2019)

    Article  Google Scholar 

  38. S. Sharma, N. Weiden, A. Weiss, Phase diagrams of quasibinary systems of the type: ABX3—A′ BX3; ABX3—AB′ X3, and ABX3—ABX′ 3; X= halogen. Zeitschrift für Physikalische Chemie 175, 63–80 (1992)

    Article  CAS  Google Scholar 

  39. M. Abdi-Jalebi, et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497+. https://doi.org/10.1038/nature25989 (2018)

  40. Y. Wang et al., Thermodynamically stabilized beta-CsPbI3-based perovskite solar cells with efficiencies >18. Science 365, 591–595 (2019). https://doi.org/10.1126/science.aav8680

    Article  CAS  Google Scholar 

  41. W. Chen et al., Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule 3, 191–204 (2019). https://doi.org/10.1016/j.joule.2018.10.011

    Article  CAS  Google Scholar 

  42. J. Shi et al., Efficient and stable CsPbI 3 perovskite quantum dots enabled by in situ ytterbium doping for photovoltaic applications. J. Mater. Chem. A 7, 20936–20944 (2019)

    Article  CAS  Google Scholar 

  43. Q. Zeng, et al., Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Adv. Mater. (Deerfield Beach, Fla.). https://doi.org/10.1002/adma.201705393 (2018)

  44. J.B. Hoffman, G. Zaiats, I. Wappes, P.V. Kamat, CsPbBr 3 solar cells: controlled film growth through layer-by-layer quantum dot deposition. Chem. Mater. 29, 9767–9774 (2017)

    Article  CAS  Google Scholar 

  45. Q.A. Akkerman et al., Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy 2, 1–7 (2016)

    CAS  Google Scholar 

  46. L. Protesescu et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015)

    Article  CAS  Google Scholar 

  47. A. Swarnkar et al., Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016)

    Article  CAS  Google Scholar 

  48. Q.A. Akkerman et al., Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137, 10276–10281 (2015)

    Article  CAS  Google Scholar 

  49. C. Wang, A.S. Chesman, J.J. Jasieniak, Stabilizing the cubic perovskite phase of CsPbI 3 nanocrystals by using an alkyl phosphinic acid. Chem. Commun. 53, 232–235 (2017)

    Article  CAS  Google Scholar 

  50. D. Ghosh, M.Y. Ali, D.K. Chaudhary, S. Bhattacharyya, Dependence of halide composition on the stability of highly efficient all-inorganic cesium lead halide perovskite quantum dot solar cells. Sol. Energy Mater. Sol. Cells 185, 28–35 (2018)

    Article  CAS  Google Scholar 

  51. X. Li et al., CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Func. Mater. 26, 2435–2445 (2016)

    Article  CAS  Google Scholar 

  52. L. Protesescu et al., Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals. ACS Nano 11, 3119–3134 (2017)

    Article  CAS  Google Scholar 

  53. D. Luo et al., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018)

    Article  CAS  Google Scholar 

  54. T. Jiang et al., Realizing high efficiency over 20% of low-bandgap Pb–Sn-alloyed perovskite solar cells by in situ reduction of Sn4+. Solar RRL 4, 1900467 (2019). https://doi.org/10.1002/solr.201900467

    Article  CAS  Google Scholar 

  55. Q. Jiang et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019)

    Article  CAS  Google Scholar 

  56. J. Jean, Getting high with quantum dot solar cells. Nat. Energy 5, 10–11 (2020). https://doi.org/10.1038/s41560-019-0534-8

    Article  CAS  Google Scholar 

  57. L.M. Wheeler et al., Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc. 140, 10504–10513 (2018)

    Article  CAS  Google Scholar 

  58. J.A. Christians, et al., 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), pp. 81–84 (IEEE)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang (Michael) Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, X., Huang, S., Tian, Y., Jiang, T., Yang, Y.(. (2020). Perovskite Quantum Dots for Photovoltaic Applications. In: Zhou, Y., Wang, Y. (eds) Perovskite Quantum Dots. Springer Series in Materials Science, vol 303. Springer, Singapore. https://doi.org/10.1007/978-981-15-6637-0_9

Download citation

Publish with us

Policies and ethics