Skip to main content

Perovskite Quantum Dots Based Luminescent Solar Concentrators

  • Chapter
  • First Online:
Perovskite Quantum Dots

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 303))

Abstract

Luminescent solar concentrators (LSCs) are emerging technology of current interest as a platform for solar energy harvesting. LSCs can serve as large-area sunlight collectors for photovoltaic cells to reduce the cost of electricity by decreasing the use of expensive photovoltaic materials. Among various types of fluorophores, perovskite quantum dots have been used as light-converters due to their size/shape/composition-tunable wide absorption spectrum, narrow emission spectrum, high quantum yield and structure-engineered large Stokes shift. In this Chapter, we summarized the use of various types of perovskites and different configuration to fabricate high efficiency and large-area LSCs. The optical properties of perovskite are strongly depending on their size, shape and composition. Therefore, one can optimize their structure to obtain the suitable emitters for LSCs. Among various types of perovskites, doped quantum dots offer a great opportunity to synthesize high quality perovskites with both high quantum yield and large Stokes shift, indicating the doped perovskites may be a great candidate as emitters for high efficiency LSCs. We conclude with a detailed account of the latest research progress in synthesis, structure, materials, and performance of LSCs based on perovskite quantum dots and a further perspective on the remaining key issues and open opportunities in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Zhao, F. Rosei, Colloidal quantum dots for solar technologies. Chem 3, 229–258 (2017). https://doi.org/10.1016/j.chempr.2017.07.007

    Article  CAS  Google Scholar 

  2. X. Tong et al., Heavy metal-free, near-infrared colloidal quantum dots for efficient photoelectrochemical hydrogen generation. Nano Energy 31, 441–449 (2017). https://doi.org/10.1016/j.nanoen.2016.11.053

    Article  CAS  Google Scholar 

  3. Y. Zhou et al., Near infrared, highly efficient luminescent solar concentrators. Adv. Energy Mater. 6 (2016). Doi: https://doi.org/10.1002/aenm.201501913

  4. L. Jin et al., Near-infrared colloidal quantum dots for efficient and durable photoelectrochemical solar-driven hydrogen production. Adv. Sci. 3 (2016). Doi: https://doi.org/10.1002/advs.201500345

  5. F. Navarro-Pardo, H. Zhao, Z.M. Wang, F. Rosei, Structure/property relations in “giant” semiconductor nanocrystals: opportunities in photonics and electronics. Acc. Chem. Res. (2017). https://doi.org/10.1021/acs.accounts.7b00467

    Article  Google Scholar 

  6. G.S. Selopal et al., Highly stable colloidal “giant” quantum dots sensitized solar cells. Adv. Func. Mater. 27, 1701468 (2017). https://doi.org/10.1002/adfm.201701468

    Article  CAS  Google Scholar 

  7. X. Tong et al., Near-infrared, heavy metal-free colloidal “giant” core/shell quantum dots. Adv. Energy Mater. 8 (2018). Doi: https://doi.org/10.1002/aenm.201701432

  8. M.G. Debije, P.P.C. Verbunt, Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv. Energy Mater. 2, 12–35 (2012). https://doi.org/10.1002/aenm.201100554

    Article  CAS  Google Scholar 

  9. R. Mazzaro, A. Vomiero, The renaissance of luminescent solar concentrators: the role of inorganic nanomaterials. Adv. Energy Mater. 8 (2018). Doi: https://doi.org/10.1002/aenm.201801903

  10. Y.F. Zhou, H.G. Zhao, D.L. Ma, F. Rosei, Harnessing the properties of colloidal quantum dots in luminescent solar concentrators. Chem. Soc. Rev. 47, 5866–5890 (2018). https://doi.org/10.1039/c7cs00701a

    Article  CAS  Google Scholar 

  11. P.P.C. Verbunt et al., Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals. Adv. Func. Mater. 19, 2714–2719 (2009). https://doi.org/10.1002/adfm.200900542

    Article  CAS  Google Scholar 

  12. I. Coropceanu, M.G. Bawendi, Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency. Nano Lett. 14, 4097–4101 (2014). https://doi.org/10.1021/nl501627e

    Article  CAS  Google Scholar 

  13. C.S. Erickson et al., Zero-reabsorption doped-nanocrystal luminescent solar concentrators. ACS Nano 8, 3461–3467 (2014). https://doi.org/10.1021/nn406360w

    Article  CAS  Google Scholar 

  14. F. Meinardi et al., Large-area luminescent solar concentrators based on ‘stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 8, 392–399 (2014). https://doi.org/10.1038/nphoton.2014.54

    Article  CAS  Google Scholar 

  15. L.R. Bradshaw, K.E. Knowles, S. McDowall, D.R. Gamelin, Nanocrystals for luminescent solar concentrators. Nano Lett. 15, 1315–1323 (2015). https://doi.org/10.1021/nl504510t

    Article  CAS  Google Scholar 

  16. F. Meinardi et al., Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat. Nanotechnol. 10, 878–885 (2015). https://doi.org/10.1038/nnano.2015.178

    Article  CAS  Google Scholar 

  17. V.I. Klimov, T.A. Baker, J. Lim, K.A. Velizhanin, H. McDaniel, Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots. Acs Photonics 3, 1138–1148 (2016). https://doi.org/10.1021/acsphotonics.6b00307

    Article  CAS  Google Scholar 

  18. H.B. Li, K.F. Wu, J. Lim, H.J. Song, V.I. Klimov, Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators. Nature Energy 1, 9 (2016). https://doi.org/10.1038/nenergy.2016.157

    Article  CAS  Google Scholar 

  19. K. Nikolaidou et al., Hybrid perovskite thin films as highly efficient luminescent solar concentrators. Adv. Opt. Mater. 4, 2126–2132 (2016). https://doi.org/10.1002/adom.201600634

    Article  CAS  Google Scholar 

  20. Y. Li, P. Miao, W. Zhou, X. Gong, X. Zhao, N-doped carbon-dots for luminescent solar concentrators. J. Mater. Chem. A 5, 21452–21459 (2017). https://doi.org/10.1039/c7ta05220k

    Article  CAS  Google Scholar 

  21. F. Meinardi et al., Doped halide perovskite nanocrystals for reabsorption-free luminescent solar concentrators. Acs Energy Lett. 2, 2368–2377 (2017). https://doi.org/10.1021/acsenergylett.7b00701

    Article  CAS  Google Scholar 

  22. F. Meinardi, F. Bruni, S. Brovelli, Luminescent solar concentrators for building-integrated photovoltaics. Nature Rev. Mater. 2 (2017). Doi: https://doi.org/10.1038/natrevmats.2017.72

  23. F. Meinardi et al., Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. Nature Photonics 11, 177-+ (2017). Doi: https://doi.org/10.1038/nphoton.2017.5

  24. M. Sharma et al., Near-unity emitting copper-doped colloidal semiconductor quantum wells for luminescent solar concentrators. Adv. Mater. 29 (2017). Doi: https://doi.org/10.1002/adma.201700821

  25. L. Tan et al., Ultrasmall PbS quantum dots: a facile and greener synthetic route and their high performance in luminescent solar concentrators. J. Mater. Chem. A 5, 10250–10260 (2017). https://doi.org/10.1039/c7ta01372h

    Article  CAS  Google Scholar 

  26. H. Zhao, Y. Zhou, D. Benetti, D. Ma, F. Rosei, Perovskite quantum dots integrated in large-area luminescent solar concentrators. Nano Energy 37, 214–223 (2017). https://doi.org/10.1016/j.nanoen.2017.05.030

    Article  CAS  Google Scholar 

  27. M.R. Bergren et al., High-performance CuInS2 quantum dot laminated glass luminescent solar concentrators for windows. Acs Energy Lett. 3, 520–525 (2018). https://doi.org/10.1021/acsenergylett.7b01346

    Article  CAS  Google Scholar 

  28. G Liu, H. Zhao, F. Diao, Z. Ling, Y. Wang, Stable tandem luminescent solar concentrators based on CdSe/CdS quantum dots and carbon dots. J. Mater. Chem. C 6, 10059–10066 (2018)

    Google Scholar 

  29. X. Gong et al., Fabrication of high-performance luminescent solar concentrators using N-doped carbon dots/PMMA mixed matrix slab. Org. Electron. 63, 237–243 (2018). https://doi.org/10.1016/j.orgel.2018.09.028

    Article  CAS  Google Scholar 

  30. G. Liu, H. Zhao, F. Diao, Z. Ling, Y. Wang, Stable tandem luminescent solar concentrators based on CdSe/CdS quantum dots and carbon dots. J. Mater. Chem. C 6, 10059–10066 (2018). https://doi.org/10.1039/c8tc02532k

    Article  CAS  Google Scholar 

  31. J. Shu et al., Monte-Carlo simulations of optical efficiency in luminescent solar concentrators based on all-inorganic perovskite quantum dots. Phys. B 548, 53–57 (2018). https://doi.org/10.1016/j.physb.2018.08.021

    Article  CAS  Google Scholar 

  32. B.R. Sutherland, Cost competitive luminescent solar concentrators. Joule 2, 203–204 (2018). https://doi.org/10.1016/j.joule.2018.02.004

    Article  CAS  Google Scholar 

  33. K. Wu, H. Li, V.I. Klimov, Tandem luminescent solar concentrators based on engineered quantum dots. Nature Photonics 12, 105-+ (2018). Doi: https://doi.org/10.1038/s41566-017-0070-7

  34. H. Zhao et al., Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots. Nano Energy 50, 756–765 (2018). https://doi.org/10.1016/j.nanoen.2018.06.025

    Article  CAS  Google Scholar 

  35. Y. Zhou et al., Colloidal carbon dots based highly stable luminescent solar concentrators. Nano Energy 44, 378–387 (2018). https://doi.org/10.1016/j.nanoen.2017.12.017

    Article  CAS  Google Scholar 

  36. E. Bagherzadeh-Khajehmarjan, A. Nikniazi, B. Olyaeefar, S. Ahmadi-Kandjani, J.M. Nunzi, Bulk luminescent solar concentrators based on organic-inorganic CH3NH3PbBr3 perovskite fluorophores. Sol. Energy Mater. Sol. Cells 192, 44–51 (2019). https://doi.org/10.1016/j.solmat.2018.12.009

    Article  CAS  Google Scholar 

  37. T.A. Cohen et al., Quantum-cutting Yb3+-doped perovskite nanocrystals for monolithic bilayer luminescent solar concentrators. J. Mater. Chem. A 7, 9279–9288 (2019). https://doi.org/10.1039/c9ta01261c

    Article  CAS  Google Scholar 

  38. H. Zhao, R. Sun, Z. Wang, K. Fu, X. Hu, Y. Zhang, Zero‐dimensional perovskite nanocrystals for efficient luminescent solar concentrators. Adv. Funct. Mater. 1902262 (2019). Doi: https://doi.org/10.1002/adfm.201902262

  39. S.K.E. Hill et al., Silicon quantum dot-poly(methyl methacrylate) nanocomposites with reduced light scattering for luminescent solar concentrators. Acs Photonics 6, 170–180 (2019). https://doi.org/10.1021/acsphotonics.8b01346

    Article  CAS  Google Scholar 

  40. X. Luo, T. Ding, X. Liu, Y. Liu, K. Wu, Quantum-cutting luminescent solar concentrators using ytterbium-doped perovskite nanocrystals. Nano Lett. 19, 338–341 (2019). https://doi.org/10.1021/acs.nanolett.8b03966

    Article  CAS  Google Scholar 

  41. B. Mendewala et al., The potential of scalability in high efficiency hybrid perovskite thin film luminescent solar concentrators. Sol. Energy 183, 392–397 (2019). https://doi.org/10.1016/j.solener.2019.03.042

    Article  CAS  Google Scholar 

  42. J. Tong et al., Fabrication of highly emissive and highly stable perovskite nanocrystal-polymer slabs for luminescent solar concentrators. J. Mater. Chem. A 7, 4872–4880 (2019). https://doi.org/10.1039/c8ta12149d

    Article  CAS  Google Scholar 

  43. X. Luo, T. Ding, X. Liu, Y. Liu, K. Wu, Quantum-cutting luminescent solar concentrators using ytterbium-doped perovskite nanocrystals. Nano Lett. (2019). Doi: https://doi.org/10.1021/acs.nanolett.8b03966

  44. Y. You et al., Eco-friendly colloidal quantum dot-based luminescent solar concentrators. Adv. Sci. 6 (2019). Doi: https://doi.org/10.1002/advs.201801967

  45. H. Zhao, Refractive index dependent optical property of carbon dots integrated luminescent solar concentrators. J. Lumin. 211, 150–156 (2019). https://doi.org/10.1016/j.jlumin.2019.03.039

    Article  CAS  Google Scholar 

  46. C. Yan, H. Zhao, D.F. Perepichka, F. Rosei, Lanthanide ion doped upconverting nanoparticles: synthesis, structure and properties. Small 12, 3888–3907 (2016). https://doi.org/10.1002/smll.201601565

    Article  CAS  Google Scholar 

  47. H. Zhao et al., Absorption enhancement in “giant” core/alloyed-shell quantum dots for luminescent solar concentrator. Small 12, 5354–5365 (2016). https://doi.org/10.1002/smll.201600945

    Article  CAS  Google Scholar 

  48. M.J. Talite et al., Greener luminescent solar concentrators with high loading contents based on in situ cross-linked carbon nanodots for enhancing solar energy harvesting and resisting concentration induced quenching. ACS Appl. Mater. Interfaces 10, 34184–34192 (2018). https://doi.org/10.1021/acsami.8b10618

    Article  CAS  Google Scholar 

  49. L.H. Slooff et al., A luminescent solar concentrator with 7.1% power conversion efficiency. Phys. Status Solidi-Rapid Res. Lett. 2, 257–259 (2008). Doi: https://doi.org/10.1002/pssr.200802186

  50. J.A.H.P. Sol, G.H. Timmermans, A.J. van Breugel, A.P.H.J. Schenning, M.G. Debije, Multistate luminescent solar concentrator “smart” windows. Adv. Energy Mater. 8 (2018). Doi: https://doi.org/10.1002/aenm.201702922

  51. H.-J. Song et al., Performance limits of luminescent solar concentrators tested with seed/quantum-well quantum dots in a selective-reflector-based optical cavity. Nano Lett. 18, 395–404 (2018). https://doi.org/10.1021/acs.nanolett.7b04263

    Article  CAS  Google Scholar 

  52. Q.A. Akkerman, A.L. Abdelhady, L. Manna, Zero-dimensional cesium lead halides: history, properties, and challenges. J. Phys. Chem. Lett. 9, 2326–2337 (2018). https://doi.org/10.1021/acs.jpclett.8b00572

    Article  CAS  Google Scholar 

  53. L. Dou et al., Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015). https://doi.org/10.1126/science.aac7660

    Article  CAS  Google Scholar 

  54. J. Yin et al., Intrinsic lead ion emissions in zero-dimensional Cs4PbBr6 nanocrystals. Acs Energy Lett. 2, 2805–2811 (2017). https://doi.org/10.1021/acsenergylett.7b01026

    Article  CAS  Google Scholar 

  55. Z. Yuan et al., One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nature Commun. 8 (2017). Doi: https://doi.org/10.1038/ncomms14051

  56. Y. Zhang et al., Direct-indirect nature of the bandgap in lead-free perovskite nanocrystals. J. Phys. Chem. Lett. 8, 3173–3177 (2017). https://doi.org/10.1021/acs.jpclett.7b01381

    Article  CAS  Google Scholar 

  57. C. Zhou et al., Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chem. Sci. 9, 586–593 (2018). https://doi.org/10.1039/c7sc04539e

    Article  CAS  Google Scholar 

  58. S. Mirershadi, S. Ahmadi-Kandjani, Efficient thin luminescent solar concentrator based on organometal halide perovskite. Dyes Pigm. 120, 15–21 (2015). https://doi.org/10.1016/j.dyepig.2015.03.035

    Article  CAS  Google Scholar 

  59. S.C. Erwin et al., Doping semiconductor nanocrystals. Nature 436, 91–94 (2005). https://doi.org/10.1038/nature03832

    Article  CAS  Google Scholar 

  60. G.K. Grandhi, R. Viswanatha, Tunable infrared phosphors using Cu doping in semiconductor nanocrystals: surface electronic structure evaluation. J. Phys. Chem. Lett. 4, 409–415 (2013). https://doi.org/10.1021/jz3021588

    Article  CAS  Google Scholar 

  61. A.K. Guria, S.K. Dutta, S. Das Adhikari, N. Pradhan, Doping Mn2+ in lead halide perovskite nanocrystals: successes and challenges. Acs Energy Lett. 2, 1014–1021 (2017). Doi: https://doi.org/10.1021/acsenergylett.7b00177

  62. M. He et al., Mn-doped cesium lead halide perovskite nanocrystals with dual-color emission for WLED. Dyes Pigm. 152, 146–154 (2018). https://doi.org/10.1016/j.dyepig.2018.01.045

    Article  CAS  Google Scholar 

  63. C.-H. Hsia, A. Wuttig, H. Yang, An accessible approach to preparing water-soluble Mn2+-doped (CdSSe)ZnS (core) shell nanocrystals for ratiometric temperature sensing. ACS Nano 5, 9511–9522 (2011). https://doi.org/10.1021/nn2025622

    Article  CAS  Google Scholar 

  64. G. Huang et al., Ag- and Mn-doped ZnInS/ZnS dual-emission quantum dots with zone tunability in the color coordinate. Nanotechnology 27 (2016). Doi: https://doi.org/10.1088/0957-4484/27/18/185602

  65. J.Y. Kim et al., Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion. Appl. Catal. B-Environ. 227, 409–417 (2018). https://doi.org/10.1016/j.apcatb.2018.01.041

    Article  CAS  Google Scholar 

  66. W.Y. Liu et al., Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 138, 14954–14961 (2016). https://doi.org/10.1021/jacs.6b08085

    Article  CAS  Google Scholar 

  67. D. Mocatta et al., Heavily doped semiconductor nanocrystal quantum dots. Science 332, 77–81 (2011). https://doi.org/10.1126/science.1196321

    Article  CAS  Google Scholar 

  68. Y. Pan et al., Inherently Eu2+/Eu3+ codoped Sc2O3 nanoparticles as high-performance nanothermometers. Adv. Mater. (Deerfield Beach, Fla.) (2018). Doi: https://doi.org/10.1002/adma.201705256

  69. V.A. Vlaskin, N. Janssen, J. van Rijssel, R. Beaulac, D.R. Gamelin, Tunable dual emission in doped semiconductor nanocrystals. Nano Lett. 10, 3670–3674 (2010). https://doi.org/10.1021/nl102135k

    Article  CAS  Google Scholar 

  70. Z. Wang et al., H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv. Func. Mater. 23, 5444–5450 (2013). https://doi.org/10.1002/adfm.201300486

    Article  CAS  Google Scholar 

  71. P.Arunkumar et al., Probing molecule-like isolated octahedra via-phase stabilization of zero-dimensional cesium lead halide nanocrystals. Nature Commun. 9 (2018). Doi: https://doi.org/10.1038/s41467-018-07097-x

  72. B.M. Benin et al., Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides. Angew. Chem. Int. Ed. 57, 11329–11333 (2018). https://doi.org/10.1002/anie.201806452

    Article  CAS  Google Scholar 

  73. T. Jun et al., Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv. Mater. 30, 6 (2018). https://doi.org/10.1002/adma.201804547

    Article  CAS  Google Scholar 

  74. Y. Wu et al., In situ passivation of PbBr64 octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield. Acs Energy Lett. 3, 2030–2037 (2018). https://doi.org/10.1021/acsenergylett.8b01025

    Article  CAS  Google Scholar 

  75. J. Yin et al., Point defects and green emission in zero-dimensional perovskites. J. Phys. Chem. Lett. 9, 5490–5495 (2018). https://doi.org/10.1021/acs.jpclett.8b02477

    Article  CAS  Google Scholar 

  76. Y. Zhang et al., Zero-dimensional Cs4PbBr6 perovskite nanocrystals. J. Phys. Chem. Lett. 8, 961–965 (2017). https://doi.org/10.1021/acs.jpclett.7b00105

    Article  CAS  Google Scholar 

  77. M. Wei et al., Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators. Nature Energy 4, 197–205 (2019). https://doi.org/10.1038/s41560-018-0313-y

    Article  CAS  Google Scholar 

  78. W. Ma et al., Carbon dots and AIE molecules for highly efficient tandem luminescent solar concentrators. Chem. Commun. (Camb.) 55, 7486–7489 (2019). https://doi.org/10.1039/c9cc02676b

    Article  CAS  Google Scholar 

  79. F. Liu et al., Highly luminescent phase-stable CsPbl3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 11, 10373–10383 (2017). https://doi.org/10.1021/acsnano.7b05442

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiguang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, H. (2020). Perovskite Quantum Dots Based Luminescent Solar Concentrators. In: Zhou, Y., Wang, Y. (eds) Perovskite Quantum Dots. Springer Series in Materials Science, vol 303. Springer, Singapore. https://doi.org/10.1007/978-981-15-6637-0_8

Download citation

Publish with us

Policies and ethics