Skip to main content

Minimally Invasive Thoracic Deformity Surgery

  • Chapter
  • First Online:
Minimally Invasive Thoracic Spine Surgery

Abstract

Conventional open surgical procedures for the treatment of thoracic spine deformity can be associated with significant approach-related morbidity. Recent advances in minimal access technologies have led to the development of posterior minimally invasive approaches for thoracic deformity correction. Minimally invasive surgery (MIS) for thoracic spine deformity is very challenging area and MIS use is very limited in the thoracic spine deformity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glassman SD, Hamill CL, Bridwell KH, Schwab FJ, Dimar JR, Lowe TG. The impact of perioperative complications on clinical outcome in adult deformity surgery. Spine (Phila Pa 1976). 2007;32:2764–70.

    Article  Google Scholar 

  2. Jacobaeus H. Possibility of the use of cytoscope for investigation of serous cavities. Munch Med Wochenschr. 1910;57:2090–2.

    Google Scholar 

  3. Jacobaeus H. The practical importance of thoracoscopy in surgery of the chest. Surg Gynecol Obstet. 1922;34:289–96.

    Google Scholar 

  4. Mack MJ, Regan JJ, Bobechko WP, Acuff TE. Application of thoracoscopy for diseases of the spine. Ann Thorac Surg. 1993;56:736–8.

    Article  CAS  Google Scholar 

  5. Rosenthal D, Rosenthal R, de Simone A. Removal of a protruded thoracic disc using microsurgical endoscopy. A new technique. Spine. 1994;19:1087–91.

    Article  CAS  Google Scholar 

  6. Dakwar E, Cardona RF, Smith DA, Uribe JS. Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg Focus. 2010;28(3):E8.

    Article  Google Scholar 

  7. Tormenti MJ, Maserati MB, Bonfield CM, Okonkwo DO, Kanter AS. Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus. 2010;28(3):E7.

    Article  Google Scholar 

  8. Wang MY, Mummaneni PV. Minimally invasive surgery for thoracolumbar spinal deformity: initial clinical experience with clinical and radiographic outcomes. Neurosurg Focus. 2010;28(3):E9.

    Article  Google Scholar 

  9. Newton PO, Cardelia JM, Farnsworth CL, Baker KJ, Bronson DG. A biomechanical comparison of open and thoracoscopic anterior spinal release in a goat model. Spine. 1998;23:530–6.

    Article  CAS  Google Scholar 

  10. Wall EJ, Bylski-Austrow DI, Shelton FS, Crawford AH, Kolata RJ, Baum DS. Endoscopic discectomy increases thoracic spine flexibility as effectively as open discectomy. A mechanical study in a porcine model. Spine. 1998;23:9–16.

    Article  CAS  Google Scholar 

  11. Amini A, Beisse R, Schmidt MH. Thoracoscopic debridement and stabilization of pyogenic vertebral osteomyelitis. Surg Laparosc Endosc Percutan Tech. 2007;17:354–7.

    Article  Google Scholar 

  12. Grewal H, Betz RR, D’Andrea LP, Clements DH, Porter ST. A prospective comparison of thoracoscopic vs open anterior instrumentation and spinal fusion for idiopathic thoracic scoliosis in children. J Pediatr Surg. 2005;40:153–7.

    Article  Google Scholar 

  13. Huang EY, Acosta JM, Gardocki RJ, Danielson PD, Skaggs DL, Reynolds RA, et al. Thoracoscopic anterior spinal release and fusion: evolution of a faster, improved approach. J Pediatr Surg. 2002;37:1732–5.

    Article  Google Scholar 

  14. Lonner BS, Kondrachov D, Siddiqi F, Hayes V, Scharf C. Thoracoscopic spinal fusion compared with posterior spinal fusion for the treatment of thoracic adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2006;88:1022–34.

    Article  Google Scholar 

  15. Lonner BS, Kondrachov D, Siddiqi F, Hayes V, Scharf C. Thoracoscopic spinal fusion compared with posterior spinal fusion for the treatment of thoracic adolescent idiopathic scoliosis. Surgical technique. J Bone Joint Surg Am. 2007;89(2 Suppl):142–56.

    PubMed  Google Scholar 

  16. Newton PO, Marks M, Faro F, Betz R, Clements D, Haher T, et al. Use of video-assisted thoracoscopic surgery to reduce perioperative morbidity in scoliosis surgery. Spine. 2003;28:S249–54.

    Article  Google Scholar 

  17. Newton PO, White KK, Faro F, Gaynor T. The success of thoracoscopic anterior fusion in a consecutive series of 112 pediatric spinal deformity cases. Spine. 2005;30:392–8.

    Article  Google Scholar 

  18. Picetti GD III, Pang D, Bueff HU. Thoracoscopic techniques for the treatment of scoliosis: early results in procedure development. Neurosurgery. 2002;51:978–84.

    PubMed  Google Scholar 

  19. Upasani VV, Newton PO. Anterior and thoracoscopic scoliosis surgery for idiopathic scoliosis. Orthop Clin North Am. 2007;38:531–40.

    Article  Google Scholar 

  20. Wong HK, Hee HT, Yu Z, Wong D. Results of thoracoscopic instrumented fusion versus conventional posterior instrumented fusion in adolescent idiopathic scoliosis undergoing selective thoracic fusion. Spine. 2004;29:2031–9.

    Article  Google Scholar 

  21. Lonner BS, Scharf C, Antonacci D, Goldstein Y, Panagopoulos G. The learning curve associated with thoracoscopic spinal instrumentation. Spine. 2005;30:2835–40.

    Article  Google Scholar 

  22. Kim HS, Lee CS, Jeon BH, Park JO. Sagittal plane analysis of adolescent idiopathic scoliosis after VATS (video-assisted thoracoscopic surgery) anterior instrumentations. Yonsei Med J. 2007;48:90–6.

    Article  Google Scholar 

  23. Kaneda K, Asano S, Hashimoto T, Satoh S, Fujiya M. The treatment of osteoporotic posttraumatic vertebral collapse using the Kaneda device and bioactive ceramic vertebral prosthesis. Spine (Phila Pa 1976). 1992;17:S295–303.

    Article  CAS  Google Scholar 

  24. Ma R, Chow R, Shen FH. Kümmell’s disease: delayed posttraumatic osteonecrosis of the vertebral body. Eur Spine J. 2010;19:1065–70.

    Article  Google Scholar 

  25. Buchowski JM, Bridwell KH, Lenke LG. Neurologic complications of lumbar pedicle subtraction osteotomy: a 10-year assessment. Spine (Phila Pa 1976). 2007;32:2245–52.

    Article  Google Scholar 

  26. Li KC, Li AF, Hsieh CH, Liao TH, Chen CH. Another option to treat Kümmell’s disease with cord compression. Eur Spine J. 2007;16:1479–87.

    Article  Google Scholar 

  27. Lee SH, Jain V, Lee SH, Baek OK, Moon KH. Transpedicular intrabody cage insertion with posterior spine stabilization in Kümmell disease: a report of two cases. World Neurosurg. 2018;116:236–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junseok Bae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choi, J.H., Bae, J., Jeon, SH. (2021). Minimally Invasive Thoracic Deformity Surgery. In: Lee, SH., Bae, J., Jeon, SH. (eds) Minimally Invasive Thoracic Spine Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-15-6615-8_31

Download citation

Publish with us

Policies and ethics