Skip to main content

The Interplay Between Exosomes and Spermatozoa

  • Chapter
  • First Online:
Role of Exosomes in Biological Communication Systems

Abstract

Extracellular vesicles (EVs) are the membrane-bound vesicles found in the majority of body fluids. They play an imperative role in intracellular communications. EVs, such as exosomes and microvesicles (MVs), contain different functional molecules, including lipids, nucleic acids (microRNA, mRNA, and DNAs), and proteins. These functional molecules upon attachment with the target cells result in different phenotypic and functional modifications, ultimately affecting adhesiveness, regeneration, resistance to external factors, and viability. Different in vitro research trials have been conducted in the past to exploit the therapeutic potential of EVs. EVs are secreted in the different segments of the reproductive tract (male and female), including epididymosomes, prostasomes, uterosomes, and oviductosomes. EVs associated with the reproductive system share structural similarities with exosomes and MVs. Spermatozoa interact with these vesicles during their passage through the reproductive system. This spermatozoa-vesicle interaction is considered to be crucial for the proper functioning of spermatozoa. These vesicles contribute molecules necessary for different physiological events such as maturation, motility acquisition, activation, protection, capacitation, acrosomal reaction, and fertilization. Recently, in vitro exosomal treatment of spermatozoa has been reported to improve the quality of both cooled and frozen spermatozoa. In conclusion, the EVs secreted in the reproductive system are associated with the acquisition of different functions of spermatozoa, a prerequisite for fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE:

Angiotensin converting enzyme

ADAM:

A disintegrin metalloproteases

ADP:

Adenosine diphosphate

ALH:

Amplitude of lateral head displacement

ATP:

Adenosine triphosphate

BSA:

Bovine serum albumin

CAT-D:

Cathepsin D

CD52/HE5:

Cluster of differentiation 52 (epididymal sperm binding protein 5)

ELSPBP1:

Epididymal sperm binding protein 1

ER:

Endoplasmic reticulum

EVs:

Extracellular vesicles

GAPR-1/GLIPR2:

Golgi-associated plant pathogenesis-related protein 1

GDP:

Guanosine diphosphate

GGT:

γ-Glutamyltransferase

GPI:

Glycosyl-phosphatidylinositol

GPR1L1:

Glioma pathogenesis-related protein 1

GPX5:

Glutathione peroxidase 5

Grp 78:

Glucose-regulated protein 78

HSP70:

Heat shock protein 70

HSP90:

Heat shock protein 90

HSPA8:

Heat shock protein A8

MDA:

Malondialdehyde

MIF:

Macrophage migration inhibitory factor

MVDP:

Mouse vas deferens protein

MVE:

Multivesicular endosomes

MVs:

Microvesicles

OVGP:

Oviduct-specific glycoprotein

PAP:

Prostatic acid phosphatase (protein-specific protein)

PAS6/7:

Lactadherin

PBS:

Phosphate-buffered saline

PMCA4:

Plasma membrane Ca ATPase 4

Ppfia3:

Liprin alpha 3

PSA:

Prostate-specific antigen

PSCA:

Prostate stem cell antigen

ROMO1 :

ROS modulator gene

SEM:

Scanning electron microscopy

SPAM1/PH20:

Sperm adhesion molecule 1

TEM:

Transmission electron microscopy

TMPRSS2:

Type 2 transmembrane serine protease

UBC:

Ubiquitin

ZP:

Zona pellucida

References

  • Aalberts M, van Dissel-Emiliani FM, van Adrichem NP, van Wijnen M, Wauben MH, Stout TA, Stoorvogel W (2012) Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans. Biol Reprod 86(82):81–88

    Google Scholar 

  • Aalberts M, Stout TA, Stoorvogel W (2014) Prostasomes: extracellular vesicles from the prostate. Reproduction 147:R1–R14

    Article  CAS  PubMed  Google Scholar 

  • Abe H, Sendai Y, Satoh T, Hoshi H (1995) Bovine oviduct-specific glycoprotein: a potent factor for maintenance of viability and motility of bovine spermatozoa in vitro. Mol Reprod Dev 42:226–232

    Article  CAS  PubMed  Google Scholar 

  • Abney TO, Williams WL (1970) Inhibition of sperm capacitation by intrauterine deposition of seminal plasma decapacitation factor. Biol Reprod 2:14–17

    Article  CAS  PubMed  Google Scholar 

  • Acuña O, Vilella I, Cánovas S, Coy P, Jiménez-Movilla M, Avilés M (2014) Detection of SPAM1 in exosomes isolated from the bovine oviductal fluid. Reprod Domest Animals 49:97–98

    Google Scholar 

  • Admyre C, Johansson SM, Qazi KR, Filén J-J, Lahesmaa R, Norman M, Neve EP, Scheynius A, Gabrielsson S (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179:1969–1978

    Article  CAS  PubMed  Google Scholar 

  • Agrawal Y, Vanha-Perttula T (1987) Effect of secretory particles in bovine seminal vesicle secretion on sperm motility and acrosome reaction. Reproduction 79:409–419

    Article  CAS  Google Scholar 

  • Ahmad M, Ahmad R, Murtaza G (2011) Comparative bioavailability and pharmacokinetics of flurbiprofen 200 mg SR pellets from India and France. Adv Clin Exp Med 20(5):599–604

    Google Scholar 

  • Al-Dossary AA, Martin-DeLeon PA (2016) Role of exosomes in the reproductive tract oviductosomes mediate interactions of oviductal secretion with gametes/early embryo. Front Biosci 21:1278–1285

    Article  CAS  Google Scholar 

  • Al-Dossary AA, Strehler EE, Martin-DeLeon PA (2013) Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PLoS One 8:e80181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Dossary AA, Bathala P, Caplan JL, Martin-DeLeon PA (2015) Oviductosome-sperm membrane interaction in cargo delivery detection of fusion and underlying molecular players using three-dimensional super-resolution structured illumination microscopy (SR-SIM). J Biol Chem 290:17710–17723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almiñana C, Corbin E, Tsikis G, Alcântara-Neto AS, Labas V, Reynaud K, Galio L, Uzbekov R, Garanina AS, Druart X (2017) Oviduct extracellular vesicles protein content and their role during oviduct—embryo cross-talk. Reproduction 154:253–268

    Article  Google Scholar 

  • Alminana-Brines C (2015) Snooping on a private conversation between the oviduct and gametes/embryos. Anim Reprod 12(3):366–374

    Google Scholar 

  • Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360:295–305

    Article  CAS  PubMed  Google Scholar 

  • Arienti G, Polci A, Carlini E, Palmerini CA (1997) Transfer of CD26/dipeptidyl peptidase IV (EC 3.5. 4.4) from prostasomes to sperm. FEBS Lett 410:343–346

    Article  CAS  PubMed  Google Scholar 

  • Arienti G, Carlini E, De Cosmo AM, Di Profio P, Palmerini CA (1998a) Prostasome-like particles in stallion semen. Biol Reprod 59:309–313

    Article  CAS  PubMed  Google Scholar 

  • Arienti G, Carlini E, Polci A, Cosmi E, Palmerini C (1998b) Fatty acid pattern of human prostasome lipid. Archiv Biochem Biophys 358:391–395

    Article  CAS  Google Scholar 

  • Asea A, Jean-Pierre C, Kaur P, Rao P, Linhares IM, Skupski D, Witkin SS (2008) Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J Reprod Immunol 79:12–17

    Article  CAS  PubMed  Google Scholar 

  • Asquith KL, Baleato RM, McLaughlin EA, Nixon B, Aitken RJ (2004) Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. J Cell Sci 117:3645–3657

    Article  CAS  PubMed  Google Scholar 

  • Asuvapongpatana S, Saewu A, Chotwiwatthanakun C, Vanichviriyakit R, Weerachatyanukul W (2013) Localization of cathepsin D in mouse reproductive tissues and its acquisition onto sperm surface during epididymal sperm maturation. Acta Histochem 115:425–433

    Article  CAS  PubMed  Google Scholar 

  • Aumüller G, Renneberg H, Schiemann P-J, Wilhelm B, Seitz J, Konrad L, Wennemuth G (1997) The role of apocrine released proteins in the post-testicular regulation of human sperm function. Adv Exp Med Biol 242:193–219

    Article  Google Scholar 

  • Aumüller G, Wilhelm B, Seitz J (1999) Apocrine secretion—fact or artifact? Ann Anat 181:437–446

    Article  PubMed  Google Scholar 

  • Avilés M, Coy P, Rizos D (2015) The oviduct: a key organ for the success of early reproductive events. Anim Front 5:25–31

    Article  Google Scholar 

  • Bedford J (1994) The status and the state of the human epididymis. Hum Reprod 9:2187–2199

    Article  CAS  PubMed  Google Scholar 

  • Belleannee C, Thimon V, Sullivan R (2012) Region-specific gene expression in the epididymis. Cell Tissue Res 349:717–731

    Article  PubMed  Google Scholar 

  • Boatman DE, Magnoni GE (1995) Identification of a sperm penetration factor in the oviduct of the golden hamster. Biol Reprod 52:199–207

    Article  CAS  PubMed  Google Scholar 

  • Brody I, Ronquist G, Gottfries A (1983) Ultrastructural localization of the prostasome-an organelle in human seminal plasma. Ups J Med Sci 88:63–80

    Article  CAS  PubMed  Google Scholar 

  • Burg MB (1995) Molecular basis of osmotic regulation. Am J Phys 268:F983–F996

    CAS  Google Scholar 

  • Burns G, Brooks K, Wildung M, Navakanitworakul R, Christenson LK, Spencer TE (2014) Extracellular vesicles in luminal fluid of the ovine uterus. PLoS One 9:e90913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caballero J, Frenette G, D'Amours O, Belleannée C, Lacroix-Pepin N, Robert C, Sullivan R (2012) Bovine sperm raft membrane associated Glioma pathogenesis-related 1-like protein 1 (GliPr1L1) is modified during the epididymal transit and is potentially involved in sperm binding to the zona pellucida. J Cell Physiol 227:3876–3886

    Article  CAS  PubMed  Google Scholar 

  • Caby M-P, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17:879–887

    Article  CAS  PubMed  Google Scholar 

  • Carlsson L, Ronquist G, Stridsberg M, Johansson L (1997) Motility stimulant effects of prostasome inclusion in swim-up medium on cryopreserved human spermatozoa. Arch Androl 38:215–221

    Article  CAS  PubMed  Google Scholar 

  • Carlsson L, Påhlson C, Bergquist M, Ronquist G, Stridsberg M (2000) Antibacterial activity of human prostasomes. Prostate 44:279–286

    Article  CAS  PubMed  Google Scholar 

  • Chabory E, Damon C, Lenoir A, Kauselmann G, Kern H, Zevnik B, Garrel C, Saez F, Cadet R, Henry-Berger J (2009) Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Invest 119:2074–2085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19:43–51

    Article  CAS  PubMed  Google Scholar 

  • Cooper T (1998) Interactions between epididymal secretions and spermatozoa. J Reprod Fertil Suppl 53:119–136

    Google Scholar 

  • Coy P, Garcia-Vázquez FA, Visconti PE, Avilés M (2012) Roles of the oviduct in mammalian fertilization. Reproduction 144:649–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cross NL (1996a) Effect of cholesterol and other sterols on human sperm acrosomal responsiveness. Mol Reprod Dev 45:212–217

    Article  CAS  PubMed  Google Scholar 

  • Cross NL (1996b) Human seminal plasma prevents sperm from becoming acrosomally responsive to the agonist, progesterone: cholesterol is the major inhibitor. Biol Reprod 54:138–145

    Article  CAS  PubMed  Google Scholar 

  • Cross N, Mahasreshti P (1997) Prostasome fraction of human seminal plasma prevents sperm from becoming acrosomally responsive to the agonist progesterone. Arch Androl 39:39–44

    Article  CAS  PubMed  Google Scholar 

  • D’Amours O, Bordeleau L-J, Frenette G, Blondin P, Leclerc P, Sullivan R (2012a) Binder of sperm 1 and epididymal sperm binding protein 1 are associated with different bull sperm subpopulations. Reproduction 143:759–771

    Article  PubMed  CAS  Google Scholar 

  • D’Amours O, Frenette G, Bordeleau L-J, Allard N, Leclerc P, Blondin P, Sullivan R (2012b) Epididymosomes transfer epididymal sperm binding protein 1 (ELSPBP1) to dead spermatozoa during epididymal transit in bovine. Biol Reprod 87(94):91–11

    Google Scholar 

  • D’Souza-Schorey C, Clancy JW (2012) Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev 26:1287–1299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dacheux J, Gatti J, Castella S, Metayer S, Fouchecourt S, Dacheux F (2003) The epididymal proteome. Paper presented at the third international conference on the epididymis charlottesveill, Virginia, USA. The Van Doren, Virginia

    Google Scholar 

  • Dacheux J, Belghazi M, Lanson Y, Dacheux F (2006) Human epididymal secretome and proteome. Mol Cell Endocrinol 250:36–42

    Article  CAS  PubMed  Google Scholar 

  • Davis B (1980) Interaction of lipids with the plasma membrane of sperm cells. I. The antifertilization action of cholesterol. Arch Androl 5:249–254

    Article  CAS  PubMed  Google Scholar 

  • Davis B (1982) Uterine fluid proteins bind sperm cholesterol during capacitation in the rabbit. Experientia 38:1063–1064

    Article  CAS  PubMed  Google Scholar 

  • Du J, Shen J, Wang Y, Pan C, Pang W, Diao H, Dong W (2016) Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane. Oncotarget 7:58832

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubbink HJ, Verkaik NS, Faber PW, Trapman J, Schröder FH, Romijn JC (1996) Tissue-specific and androgen-regulated expression of human prostate-specific transglutaminase. Biochem J 315:901–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ecroyd H, Sarradin P, Dacheux J-L, Gatti J-L (2004) Compartmentalization of prion isoforms within the reproductive tract of the ram. Biol Reprod 71:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Eickhoff R, Baldauf C, Koyro H-W, Wennemuth G, Suga Y, Seitz J, Henkel R, Meinhardt A (2004) Influence of macrophage migration inhibitory factor (MIF) on the zinc content and redox state of protein-bound sulphydryl groups in rat sperm: indications for a new role of MIF in sperm maturation. Mol Hum Reprod 10:605–611

    Article  CAS  PubMed  Google Scholar 

  • Escudier B, Dorval T, Chaput N, André F, Caby M-P, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S (2005) Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med 3:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fabiani R (1994) Functional and biochemical characteristics of human prostasomes: minireview based on a doctoral thesis. Ups J Med Sci 99:73–111

    Article  CAS  PubMed  Google Scholar 

  • Fabiani R, Johansson L, Lundkvist Ö, Ronquist G (1994a) Enhanced recruitment of motile spermatozoa by prostasome inclusion in swim-up medium. Hum Reprod 9:1485–1489

    Article  CAS  PubMed  Google Scholar 

  • Fabiani R, Johansson L, Lundkvist Ö, Ulmsten U, Ronquist G (1994b) Promotive effect by prostasomes on normal human spermatozoa exhibiting no forward motility due to buffer washings. Eur J Obstet Gynecol Reprod Biol 57:181–188

    Article  CAS  PubMed  Google Scholar 

  • Fernandez JA, Heeb MJ, Radtke K-P, Griffin MJ (1997) Potent blood coagulant activity of human semen due to prostasome-bound tissue factor. Biol Reprod 56:757–763

    Article  CAS  PubMed  Google Scholar 

  • Fernández D, Valdivia A, Irazusta J, Ochoa C, Casis L (2002) Peptidase activities in human semen. Peptides 23:461–468

    Article  PubMed  Google Scholar 

  • Fornés MW, De Rosas JC (1991) Interactions between rat epididymal epithelium and spermatozoa. Anat Rec 231:193–200

    Article  PubMed  Google Scholar 

  • Fornes M, Barbieri A, Cavicchia J (1995a) Morphological and enzymatic study of membrane-bound vesicles from the lumen of the rat epididymis. Andrologia 27:1–5

    Article  CAS  PubMed  Google Scholar 

  • Fornes W, Sosa M, Bertini F, Burgos M (1995b) Vesicles in rat epididymal fluid. Existence of two populations differing in ultrastructure and enzymatic composition. Andrologia 27:233–237

    Article  CAS  PubMed  Google Scholar 

  • Frenette G, Sullivan R (2001) Prostasome-like particles are involved in the transfer of P25b from the bovine epididymal fluid to the sperm surface. Mol Reprod Dev 59:115–121

    Article  CAS  PubMed  Google Scholar 

  • Frenette G, Lessard C, Sullivan R (2002) Selected proteins of “prostasome-like particles” from epididymal cauda fluid are transferred to epididymal caput spermatozoa in bull. Biol Reprod 67:308–313

    Article  CAS  PubMed  Google Scholar 

  • Frenette G, Lessard C, Madore E, Fortier MA, Sullivan R (2003) Aldose reductase and macrophage migration inhibitory factor are associated with epididymosomes and spermatozoa in the bovine epididymis. Biol Reprod 69:1586–1592

    Article  CAS  PubMed  Google Scholar 

  • Frenette G, Girouard J, D’Amours O, Allard N, Tessier L, Sullivan R (2010) Characterization of two distinct populations of epididymosomes collected in the intraluminal compartment of the bovine cauda epididymis. Biol Reprod 83:473–480

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Yoshioka Y, Ochiya T (2016) Extracellular vesicle transfer of cancer pathogenic components. Cancer Sci 107:385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fullwood NJ, Lawlor AJ, Martin-Hirsch PL, Matanhelia SS, Martin FL (2019) An analysis of benign human prostate offers insights into the mechanism of apocrine secretion and the origin of prostasomes. Sci Rep 9:1–11

    Article  CAS  Google Scholar 

  • Fusi FM, Viganò P, Daverio R, Busacca M, Vignali M (1994) Effects of the coculture with human endometrial cells on the function of spermatozoa from subfertile men. Fertil Steril 61:160–167

    Article  CAS  PubMed  Google Scholar 

  • Gatti J-L, Castella S, Dacheux F, Ecroyd H, Metayer S, Thimon V, Dacheux J-L (2004) Post-testicular sperm environment and fertility. Anim Reprod Sci 82:321–339

    Article  PubMed  Google Scholar 

  • Gatti J-L, Métayer S, Belghazi M, Dacheux F, Dacheux J-L (2005) Identification, proteomic profiling, and origin of ram epididymal fluid exosome-like vesicles. Biol Reprod 72:1452–1465

    Article  CAS  PubMed  Google Scholar 

  • Ghersevich S, Massa E, Zumoffen C (2015) Oviductal secretion and gamete interaction. Reproduction 149:R1–R14

    Article  PubMed  CAS  Google Scholar 

  • Girouard J, Frenette G, Sullivan R (2008) Seminal plasma proteins regulate the association of lipids and proteins within detergent-resistant membrane domains of bovine spermatozoa. Biol Reprod 78:921–931

    Article  CAS  PubMed  Google Scholar 

  • Girouard J, Frenette G, Sullivan R (2009) Compartmentalization of proteins in epididymosomes coordinates the association of epididymal proteins with the different functional structures of bovine spermatozoa. Biol Reprod 80:965–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girouard J, Frenette G, Sullivan R (2011) Comparative proteome and lipid profiles of bovine epididymosomes collected in the intraluminal compartment of the caput and cauda epididymidis. Int J Androl 34:e475–e486

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ, Raposo G (2013) As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles 2:20389

    Article  Google Scholar 

  • Griffiths GS, Galileo DS, Reese K, Martin-DeLeon PA (2008) Investigating the role of murine epididymosomes and uterosomes in GPI-linked protein transfer to sperm using SPAM1 as a model. Mol Reprod Dev 75:1627–1636

    Article  CAS  PubMed  Google Scholar 

  • Griffiths GS, Galileo DS, Aravindan RG, Martin-DeLeon PA (2009) Clusterin facilitates exchange of glycosyl phosphatidylinositol-linked SPAM1 between reproductive luminal fluids and mouse and human sperm membranes. Biol Reprod 81:562–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimalt P, Bertini F, Fornés MW (2000) High-affinity sites for B-D-galactosidase on membrane-bound vesicles isolated from rat epididymal fluid. Arch Androl 44:85–91

    Article  CAS  PubMed  Google Scholar 

  • György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68:2667–2688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harding C, Heuser J, Stahl P (1984) Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur J Cell Biol 35:256–263

    CAS  PubMed  Google Scholar 

  • Hess C, Sadallah S, Hefti A, Landmann R, Schifferli J-A (1999) Ectosomes released by human neutrophils are specialized functional units. J Immunol 163:4564–4573

    Article  CAS  PubMed  Google Scholar 

  • Holme PA, Solum NO, Brosstad F, Røger M, Abdelnoor M (1994) Demonstration of platelet-derived microvesicles in blood from patients with activated coagulation and fibrinolysis using a filtration technique and western blotting. Thromb Haemost 72:666–671

    Article  CAS  PubMed  Google Scholar 

  • Jones R, Mann TRR, Sherins R (1978) Adverse effects of peroxidized lipid on human spermatozoa. Proc R Soc Lond B Biol Sci 201:413–417

    Article  CAS  PubMed  Google Scholar 

  • Kagota S, Taniguchi K, Lee S-W, Ito Y, Kuranaga Y, Hashiguchi Y, Inomata Y, Imai Y, Tanaka R, Tashiro K (2019) Analysis of extracellular vesicles in gastric juice from gastric cancer patients. Int J Mol Sci 20:953

    Article  CAS  PubMed Central  Google Scholar 

  • Kim W-S, Park B-S, Sung J-H, Yang J-M, Park S-B, Kwak S-J, Park J-S (2007) Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 48:15–24

    Article  CAS  PubMed  Google Scholar 

  • King RS, Anderson SH, Killian GJ (1994) Effect of bovine oviductal estrus-associated protein on the ability of sperm to capacitate and fertilize oocytes. J Androl 15:468–478

    CAS  PubMed  Google Scholar 

  • Kirchhoff C, Hale G (1996) Cell-to-cell transfer of glycosylphosphatidylinositol-anchored membrane proteins during sperm maturation. Mol Hum Reprod 2:177–184

    Article  CAS  PubMed  Google Scholar 

  • Koch S, Acebron SP, Herbst J, Hatiboglu G, Niehrs C (2015) Post-transcriptional Wnt signaling governs epididymal sperm maturation. Cell 163:1225–1236

    Article  CAS  PubMed  Google Scholar 

  • Krapf D, Ruan YC, Wertheimer EV, Battistone MA, Pawlak JB, Sanjay A, Pilder SH, Cuasnicu P, Breton S, Visconti PE (2012) cSrc is necessary for epididymal development and is incorporated into sperm during epididymal transit. Dev Biol 369:43–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai Y, Chang F, Lee C, Lee J, Huang H, Wang M, Chan P, Chang M, Soong Y (1996) Coculture of human spermatozoa with reproductive tract cell monolayers can enhance sperm functions better than coculture with Vero cell monolayers. J Assist Reprod Genet 13:417–422

    Article  CAS  PubMed  Google Scholar 

  • Legler DF, Doucey M-A, Schneider P, Chapatte L, Bender FC, Bron C (2005) Differential insertion of GPI-anchored GFPs into lipid rafts of live cells. FASEB J 19:73–75

    Article  CAS  PubMed  Google Scholar 

  • Li H, Huang S, Guo C, Guan H, Xiong C (2012) Cell-free seminal mRNA and microRNA exist in different forms. PLoS One 7:e34566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin B, Ferguson C, White JT, Wang S, Vessella R, True LD, Hood L, Nelson PS (1999) Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res 59:4180–4184

    CAS  PubMed  Google Scholar 

  • Machtinger R, Laurent LC, Baccarelli AA (2015) Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update 22:182–193

    PubMed  PubMed Central  Google Scholar 

  • Maehashi E, Sato C, Ohta K, Harada Y, Matsuda T, Hirohashi N, Lennarz WJ, Kitajima K (2003) Identification of the Sea Urchin 350-kDa sperm-binding protein as a New Sialic Acid-binding lectin that belongs to the heat shock protein 110 family implication of its binding to gangliosides in sperm lipid rafts in fertilization. J Biol Chem 278:42050–42057

    Article  CAS  PubMed  Google Scholar 

  • Manin M, Lecher P, Martinez A, Tournadre S, Jean C (1995) Exportation of mouse vas deferens protein, a protein without a signal peptide, from mouse vas deferens epithelium: a model of apocrine secretion. Biol Reprod 52:50–62

    Article  CAS  PubMed  Google Scholar 

  • Martin-DeLeon PA (2006) Epididymal SPAM1 and its impact on sperm function. Mol Cell Endocrinol 250:114–121

    Article  CAS  PubMed  Google Scholar 

  • Martin-DeLeon PA (2016) Uterosomes: exosomal cargo during the estrus cycle and interaction with sperm. Front Biosci (Schol Ed) 8:115–122

    Article  Google Scholar 

  • Martinez A, Aigueperse C, Val P, Dussault M-H, Tournaire C, Berger M, Veyssière G, Jean C, Martinez A-ML (2001) Physiological functions and hormonal regulation of mouse vas deferens protein (AKR1B7) in steroidogenic tissues. Chem Biol Interact 130:903–917

    Article  PubMed  Google Scholar 

  • Masyuk AI, Huang BQ, Ward CJ, Gradilone SA, Banales JM, Masyuk TV, Radtke B, Splinter PL, LaRusso NF (2010) Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am J Physiol Gastrointest Liver Physiol 299:G990–G999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mokarizadeh A, Rezvanfar M-A, Dorostkar K, Abdollahi M (2013) Mesenchymal stem cell derived microvesicles: trophic shuttles for enhancement of sperm quality parameters. Reprod Toxicol 42:78–84

    Article  CAS  PubMed  Google Scholar 

  • Muñiz M, Riezman H (2000) Intracellular transport of GPI-anchored proteins. EMBO J 19:10–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Naresh S, Atreja SK (2015) The protein tyrosine phosphorylation during in vitro capacitation and cryopreservation of mammalian spermatozoa. Cryobiology 70:211–216

    Article  CAS  PubMed  Google Scholar 

  • Ng YH, Rome S, Jalabert A, Forterre A, Singh H, Hincks CL, Salamonsen LA (2013) Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLoS One 8:e58502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson BO, Jin M, Einarsson B, Persson BE, Ronquist G (1998) Monoclonal antibodies against human prostasomes. Prostate 35:178–184

    Article  CAS  PubMed  Google Scholar 

  • Ogawa Y, Miura Y, Harazono A, Kanai-Azuma M, Akimoto Y, Kawakami H, Yamaguchi T, Toda T, Endo T, Tsubuki M (2011) Proteomic analysis of two types of exosomes in human whole saliva. Biol Pharm Bull 34:13–23

    Article  CAS  PubMed  Google Scholar 

  • Oh JS, Han C, Cho C (2009) ADAM7 is associated with epididymosomes and integrated into sperm plasma membrane. Mol Cells 28:441–446

    Article  CAS  PubMed  Google Scholar 

  • Pan B-T, Teng K, Wu C, Adam M, Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101:942–948

    Article  CAS  PubMed  Google Scholar 

  • Park KH, Kim BJ, Kang J, Nam TS, Lim JM, Kim HT, Park JK, Kim YG, Chae SW, Kim UH (2011) Ca+2 signaling tools acquired from prostasomes are required for progesterone-induced sperm motility. Sci Signal 4(173):ra31

    Article  PubMed  CAS  Google Scholar 

  • Piehl LL, Fischman ML, Hellman U, Cisale H, Miranda PV (2013) Boar seminal plasma exosomes: effect on sperm function and protein identification by sequencing. Theriogenology 79:1071–1082

    Article  CAS  PubMed  Google Scholar 

  • Pisitkun T, Shen R-F, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci 101:13368–13373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qamar AY, Fang X, Kim MJ, Cho J (2019) Improved post-thaw quality of canine semen after treatment with exosomes from conditioned medium of adipose-derived mesenchymal stem cells. Animals 9:865

    Article  PubMed Central  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief C, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Ratajczak MZ (2006) Microvesicles: from “dust to crown”. Blood 108:2885–2886

    Article  CAS  Google Scholar 

  • Reilly JN, McLaughlin EA, Stanger SJ, Anderson AL, Hutcheon K, Church K, Mihalas BP, Tyagi S, Holt JE, Eamens AL (2016) Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Sci Rep 6:1–15

    Article  CAS  Google Scholar 

  • Rejraji H, Sion B, Prensier G, Carreras M, Motta C, Frenoux J-M, Vericel E, Grizard G, Vernet P, Drevet JR (2006) Lipid remodeling of murine epididymosomes and spermatozoa during epididymal maturation. Biol Reprod 74:1104–1113

    Article  CAS  PubMed  Google Scholar 

  • Riegman PH, Vlietstra RJ, van der Korput HA, Romijn JC, Trapman J (1991) Identification and androgen-regulated expression of two major human glandular kallikrein-1 (hGK-1) mRNA species. Mol Cell Endocrinol 76:181–190

    Article  CAS  PubMed  Google Scholar 

  • Ronquist G, Brody I (1985) The prostasome: its secretion and function in man. Biochim Biophys Acta 822:203–218

    Article  CAS  PubMed  Google Scholar 

  • Ronquist G, Frithz G (1986) Prostasomes in human semen contain ADP and GDP. Acta Eur Fertil 17:273–276

    CAS  PubMed  Google Scholar 

  • Ronquist G, Nilsson BO (2002) Prostasomes, 81. Portland Press, London

    Google Scholar 

  • Ronquist G, Brody I, Gottfries A, Stegmayr B (1978) An Mg2+ and Ca2+—stimulated adenosine triphosphatase in human prostatic fluid-part II. Andrologia 10:427–433

    Article  CAS  PubMed  Google Scholar 

  • Ronquist KG, Ronquist G, Carlsson L, Larsson A (2009) Human prostasomes contain chromosomal DNA. Prostate 69:737–743

    Article  CAS  PubMed  Google Scholar 

  • Ronquist GK, Larsson A, Ronquist G, Isaksson A, Hreinsson J, Carlsson L, Stavreus-Evers A (2011) Prostasomal DNA characterization and transfer into human sperm. Mol Reprod Dev 78:467–476

    Article  CAS  PubMed  Google Scholar 

  • Rooney I, Davies A, Griffiths D, Williams JD, Davies M, Meri S, Lachmann P, Morgan B (1991) The complement-inhibiting protein, protectin (CD59 antigen), is present and functionally active on glomerular epithelial cells. Clin Exp Immunol 83:251–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rooney IA, Atkinson JP, Krul ES, Schonfeld G, Polakoski K, Saffitz JE, Morgan BP (1993) Physiologic relevance of the membrane attack complex inhibitory protein CD59 in human seminal plasma: CD59 is present on extracellular organelles (prostasomes), binds cell membranes, and inhibits complement-mediated lysis. J Exp Med 177:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Rooney IA, Heuser JE, Atkinson JP (1996) GPI-anchored complement regulatory proteins in seminal plasma. An analysis of their physical condition and the mechanisms of their binding to exogenous cells. J Clin Investig 97:1675–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saccary L, She Y-M, Oko R, Kan FW (2013) Hamster oviductin regulates tyrosine phosphorylation of sperm proteins during in vitro capacitation. Biol Reprod 89(38):31–11

    Google Scholar 

  • Saez F, Motta C, Boucher D, Grizard G (1998) Antioxidant capacity of prostasomes in human semen. Mol Hum Reprod 4:667–672

    Article  CAS  PubMed  Google Scholar 

  • Saez F, Motta C, Boucher D, Grizard G (2000) Prostasomes inhibit the NADPH oxidase activity of human neutrophils. Mol Hum Reprod 6:883–891

    Article  CAS  PubMed  Google Scholar 

  • Schrimpf SP, Hellman U, Carlsson L, Larsson A, Ronquist G, Nilsson BO (1999) Identification of dipeptidyl peptidase IV as the antigen of a monoclonal anti-prostasome antibody. Prostate 38:35–39

    Article  CAS  PubMed  Google Scholar 

  • Schuh K, Cartwright EJ, Jankevics E, Bundschu K, Liebermann J, Williams JC, Armesilla AL, Emerson M, Oceandy D, Knobeloch K-P (2004) Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol Chem 279:28220–28226

    Article  CAS  PubMed  Google Scholar 

  • Sensibar JA, Griswold MD, Sylvester SR, Buttyan R, Bardin CW, Cheng CY, Dudek S, Lee C (1991) Prostatic ductal system in rats: regional variation in localization of an androgen-repressed gene product, sulfated glycoprotein-2. Endocrinology 128:2091–2102

    Article  CAS  PubMed  Google Scholar 

  • Shedden K, Xie XT, Chandaroy P, Chang YT, Rosania GR (2003) Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res 63:4331–4337

    CAS  PubMed  Google Scholar 

  • Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L, Wilkins AD, Sun Q, Pallauf K, MacDuff D (2013) Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494:201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siciliano L, Marciano V, Carpino A (2008) Prostasomes-like vesicles stimulates acrosome reaction of pig spermatozoa. Reprod Biol Endocrinol 6

    Google Scholar 

  • Simon M, Raposo G (2009) Exosomes-vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581

    Article  CAS  Google Scholar 

  • Simon L, Murphy K, Shamsi M, Liu L, Emery B, Aston K, Hotaling J, Carrell D (2014) Paternal influence of sperm DNA integrity on early embryonic development. Hum Reprod 29:2402–2412

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569

    Article  CAS  PubMed  Google Scholar 

  • Stefani S, Aguiari G, Bozza A, Maestri I, Magri E, Cavazzini P, Piva R (1994) Androgen responsiveness and androgen receptor gene expression in human kidney cells in continuous culture. Biochem Mol Biol Int 32:597–604

    CAS  PubMed  Google Scholar 

  • Stegmayr B, Ronquist G (1982) Promotive effect on human sperm progressive motility by prostasomes. Urol Res 10:253–257

    Article  CAS  PubMed  Google Scholar 

  • Sullivan R (1999) Interaction between sperm and epididymal secretory proteins. In: Gagnon IC (ed) The male gamete: from basic to clinical applications. Cache River Press, Vienna, IL, pp 130–136

    Google Scholar 

  • Suryawanshi AR, Khan SA, Joshi CS, Khole VV (2012) Epididymosome-mediated acquisition of MMSDH, an androgen-dependent and developmentally regulated epididymal sperm protein. J Androl 33:963–974

    Article  CAS  PubMed  Google Scholar 

  • Sutovsky P, Moreno R, Ramalho-Santos J, Dominko T, Thompson WE, Schatten G (2001) A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J Cell Sci 114:1665–1675

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Asano A, Eriksson B, Niwa K, Nagai T, Rodriguez-Martinez H (2002) Capacitation status and in vitro fertility of boar spermatozoa: effects of seminal plasma, cumulus-oocyte-complexes-conditioned medium and hyaluronan. Int J Androl 25:84–93

    Article  CAS  PubMed  Google Scholar 

  • Swinnen JV, Esquenet M, Goossens K, Heyns W, Verhoeven G (1997) Androgens stimulate fatty acid synthease in the human prostate cancer cell line LNCaP. Cancer Res 57:1086–1090

    CAS  PubMed  Google Scholar 

  • Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581

    Article  CAS  PubMed  Google Scholar 

  • Thimon V, Frenette G, Saez F, Thabet M, Sullivan R (2008) Protein composition of human epididymosomes collected during surgical vasectomy reversal: a proteomic and genomic approach. Hum Reprod 23:1698–1707

    Article  CAS  PubMed  Google Scholar 

  • Tosoian J, Loeb S (2010) PSA and beyond: the past, present, and future of investigative biomarkers for prostate cancer. Sci World J 10:1919–1931

    Article  CAS  Google Scholar 

  • Trams EG, Lauter CJ, Salem N Jr, Heine U (1981) Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta 645:63–70

    Article  CAS  PubMed  Google Scholar 

  • Treviño CL, Serrano CJ, Beltrán C, Felix R, Darszon A (2001) Identification of mouse TRP homologs and lipid rafts from spermatogenic cells and sperm. FEBS Lett 509:119–125

    Article  PubMed  Google Scholar 

  • Ulrix W, Swinnen JV, Heyns W, Verhoeven G (1998) Identification of the phosphatidic acid phosphatase type 2a isozyme as an androgen-regulated gene in the human prostatic adenocarcinoma cell line LNCaP. J Biol Chem 273:4660–4665

    Article  CAS  PubMed  Google Scholar 

  • Utleg AG, Yi EC, Xie T, Shannon P, White JT, Goodlett DR, Hood L, Lin B (2003) Proteomic analysis of human prostasomes. Prostate 56:150–161

    Article  CAS  PubMed  Google Scholar 

  • Vella L, Sharples R, Lawson V, Masters C, Cappai R, Hill A (2007) Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol 211:582–590

    Article  CAS  PubMed  Google Scholar 

  • Vernet P, Faure J, Dufaure JP, Drevet JR (1997) Tissue and developmental distribution, dependence upon testicular factors and attachment to spermatozoa of GPX5, a murine epididymis-specific glutathione peroxidase. Mol Reprod Dev 47:87–98

    Article  CAS  PubMed  Google Scholar 

  • Vernet P, Rock E, Mazur A, Rayssiguier Y, Dufaure JP, Drevet JR (1999) Selenium-independent epididymis-restricted glutathione peroxidase 5 protein (GPX5) can back up failing Se-dependent GPXs in mice subjected to selenium deficiency. Mol Reprod Dev 54:362–370

    Article  CAS  PubMed  Google Scholar 

  • Vernet P, Aitken R, Drevet J (2004) Antioxidant strategies in the epididymis. Mol Cell Endocrinol 216:31–39

    Article  CAS  PubMed  Google Scholar 

  • Yanagimachi R (1994) Mammalian fertilization. In: Knobil E, Neill J (eds) The physiology of reproduction. Raven Press, New York, pp 189–317

    Google Scholar 

  • Yanagimachi R, Kamiguchi Y, Mikamo K, Suzuki F, Yanagimachi H (1985) Maturation of spermatozoa in the epididymis of the Chinese hamster. Am J Anat 172:317–330

    Article  CAS  PubMed  Google Scholar 

  • Yeung C, Cooper T, Schröter S, Kirchhoff C, Nieschlag E (1998) Epididymal secretion of CD52 as measured in human seminal plasma by a fluorescence immunoassay. Mol Hum Reprod 4:447–451

    Article  CAS  PubMed  Google Scholar 

  • Yeung C, Perez-Sanchez F, Schroter S, Kirchhoff C, Cooper T (2001) Changes of the major sperm maturation-associated epididymal protein HE5 (CD52) on human ejaculated spermatozoa during incubation in capacitation conditions. Mol Hum Reprod 7:617–624

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Martin-DeLeon PA (2003) Mouse Spam1 (PH-20) is a multifunctional protein: evidence for its expression in the female reproductive tract. Biol Reprod 69:446–454

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Yang X, Jia Z, Reid RL, Leclerc P, Kan F (2016) Recombinant human oviductin regulates protein tyrosine phosphorylation and acrosome reaction. Reproduction 152:561–573

    Article  CAS  PubMed  Google Scholar 

  • Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nat Med 4:594

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of everyone in the publication team, especially the anonymous referees for their valuable suggestions. We also extend our gratitude to the copyright authorities for their positive response to our permission request to use different figures. In addition, we also acknowledge the funding agency “Cooperative research program of RDA (CCAR, grant numbers grant numbers PJ013954012019 and PJ014786012020)” for funding our lab work related to dog semen and exosomes.

Disclosure of interests: All authors declare they have no conflict of interest.

Ethical approval: All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Study related to dog semen and exosomes (both published and unpublished work) conducted by Qamar et al. (2019) was performed in accordance with the “Guide for the Care and Use of Laboratory Animals” at Seoul National University (approval no. SNU-180731-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongki Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qamar, A.Y., Fang, X., Bang, S., Mahiddine, F.Y., Kim, M.J., Cho, J. (2021). The Interplay Between Exosomes and Spermatozoa. In: Alzahrani, F.A., Saadeldin, I.M. (eds) Role of Exosomes in Biological Communication Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-6599-1_5

Download citation

Publish with us

Policies and ethics