Advertisement

3d-Printed Bending-Active Formwork for Shell Structures

Chapter
  • 363 Downloads

Abstract

This paper presents a novel building technique for the formwork of thin shell structures with 3d-printed bending-active mesh sheets. To enhance the structural stiffness of the flexible plastic materials, bending-active form is applied to utilize the geometry stiffening effect through the large deformation of bending. As it is the main problem to determine the final geometry of the bent surface, design methods with consideration of the numerical simulation is researched and both simulations via dynamic relaxation and finite element method are presented. Several demonstrator pavilions and the building process are shown to test the feasibilities of the presented building techniques in the real shell project. It is expected that this method could be applied into more thin shell projects to realize an efficient building technology with less exhaust of materials.

Keywords

Bending-active Shell structure Formwork 3d printing Simulation 

Notes

Acknowledgements

Prof. Philippe Block, Prof. Philip F. Yuan, Dr. Ing. Xiang Wang, Kam-Ming Mark Tam, Gene Ting-Chun Kao, Zain Karsan, Alex Beaudouin, Ce Li, Ben Hoyle, Molly Mason, Weizhe Gao, Weiran Zhu, Zhe Guo, Dalma Foldesi, Hyerin Lee, Jung In Seo, Anna Vasileiou, Youyuan Luo, D, Xiao Zhang, Liming Zhang and Hua Chai.

This research is funded by the National Natural Science Foundation of China (Grant No. 51578378).

References

  1. 1.
    Flügge, W. (2013). Stresses in shells. Springer Science & Business Media.Google Scholar
  2. 2.
    Adriaenssens, S., Block, P., Veenendaal, D., & Williams, C. (2014). Shell structures for architecture: Form finding and optimization. Routledge.Google Scholar
  3. 3.
    Piker, D. J. A. D. (2013). Kangaroo: Form finding with computational physics. Architectural Design, 83, 136–137.Google Scholar
  4. 4.
    Rippmann, M., Lachauer, L., & Block, P. (2012). Rhinovault-designing funicular form with rhino. In Computer software. ETH Zurich.Google Scholar
  5. 5.
    Garlock, M. E. M., Billington, D. P., & Burger, N. (2008). Félix Candela: Engineer, builder, structural artist. Princeton University Art Museum.Google Scholar
  6. 6.
    Chilton, J. (2010). Heinz Isler’s infinite spectrum: Form-finding in design. Architectural Design, 80, 64–71.CrossRefGoogle Scholar
  7. 7.
    Hennicke, J., Flächentragwerke, S. I. F. L., & Flächentragwerke, S. S. W. (1974). Gitterschalen: Bericht über das japanisch-deutsche Forschungsprojekt STI, durchgeführt... am Institut für Leichte Flächentragwerke (IL), Universität Stuttgart... Weiterführung... im Sonderforschungsbereich 64 “Weitgespannte Flächentragwerke” der Deutschen Forschungsgemeinschaft. Krämer.Google Scholar
  8. 8.
    Lienhard, J. (2014). Bending-active structures: Form-finding strategies using elastic deformation in static and kinetic systems and the structural potentials therein.Google Scholar
  9. 9.
    Wang, X., Guo, Z., Zhang, X., Jin, J., & Yuan, P. F. (2019). Design, analysis and robotic fabrication of a bending-active shell structure with thin sheets based on curved-crease-folding technique.Google Scholar
  10. 10.
    Schleicher, S., Rastetter, A., La Magna, R., Schönbrunner, A., Haberbosch, N., & Knippers, J. (2015). Form-finding and design potentials of bending-active plate structures. In Modelling behaviour. Springer.Google Scholar
  11. 11.
    Van Mele, T., Liew, A., Mendez, T., & Rippmann, M. (2017). COMPAS: A framework for computational research in architecture and structures.Google Scholar
  12. 12.
    Fab-Union. (2019). FUROBOT. 0.5.1 ed.Google Scholar
  13. 13.
    Yuan, P. F., & Philippe, B. (2019). Robotic force printing: A joint workshop of MIT/ETH/Tongji. Shanghai, China: Tongji University Press.Google Scholar
  14. 14.
    Wang, X., Tam, K.-M. M., Beaudouin-Mackay, A., Hoyle, B., Mason, M., Guo, Z., et al. (2019). Tile-vault construction on bending-actuated robotically 3D-printed formwork. In Proceedings of the IASS Symposium 2019, Barcelona.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Tongji UniversityShanghaiPeople’s Republic of China
  2. 2.Swiss Federal Institute of Technology in ZurichZürichSwitzerland
  3. 3.Department of Architecture, School of Architecture and PlanningMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Block Research Group, Institute of Technology in ArchitectureSwiss Federal Institute of Technology in ZurichZürichSwitzerland
  5. 5.College of Architecture and Urban PlanningTongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations