Skip to main content

3d-Printed Bending-Active Formwork for Shell Structures

  • Chapter
  • First Online:
Architectural Intelligence

Abstract

This paper presents a novel building technique for the formwork of thin shell structures with 3d-printed bending-active mesh sheets. To enhance the structural stiffness of the flexible plastic materials, bending-active form is applied to utilize the geometry stiffening effect through the large deformation of bending. As it is the main problem to determine the final geometry of the bent surface, design methods with consideration of the numerical simulation is researched and both simulations via dynamic relaxation and finite element method are presented. Several demonstrator pavilions and the building process are shown to test the feasibilities of the presented building techniques in the real shell project. It is expected that this method could be applied into more thin shell projects to realize an efficient building technology with less exhaust of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flügge, W. (2013). Stresses in shells. Springer Science & Business Media.

    Google Scholar 

  2. Adriaenssens, S., Block, P., Veenendaal, D., & Williams, C. (2014). Shell structures for architecture: Form finding and optimization. Routledge.

    Google Scholar 

  3. Piker, D. J. A. D. (2013). Kangaroo: Form finding with computational physics. Architectural Design, 83, 136–137.

    Google Scholar 

  4. Rippmann, M., Lachauer, L., & Block, P. (2012). Rhinovault-designing funicular form with rhino. In Computer software. ETH Zurich.

    Google Scholar 

  5. Garlock, M. E. M., Billington, D. P., & Burger, N. (2008). Félix Candela: Engineer, builder, structural artist. Princeton University Art Museum.

    Google Scholar 

  6. Chilton, J. (2010). Heinz Isler’s infinite spectrum: Form-finding in design. Architectural Design, 80, 64–71.

    Article  Google Scholar 

  7. Hennicke, J., Flächentragwerke, S. I. F. L., & Flächentragwerke, S. S. W. (1974). Gitterschalen: Bericht über das japanisch-deutsche Forschungsprojekt STI, durchgeführt... am Institut für Leichte Flächentragwerke (IL), Universität Stuttgart... Weiterführung... im Sonderforschungsbereich 64 “Weitgespannte Flächentragwerke” der Deutschen Forschungsgemeinschaft. Krämer.

    Google Scholar 

  8. Lienhard, J. (2014). Bending-active structures: Form-finding strategies using elastic deformation in static and kinetic systems and the structural potentials therein.

    Google Scholar 

  9. Wang, X., Guo, Z., Zhang, X., Jin, J., & Yuan, P. F. (2019). Design, analysis and robotic fabrication of a bending-active shell structure with thin sheets based on curved-crease-folding technique.

    Google Scholar 

  10. Schleicher, S., Rastetter, A., La Magna, R., Schönbrunner, A., Haberbosch, N., & Knippers, J. (2015). Form-finding and design potentials of bending-active plate structures. In Modelling behaviour. Springer.

    Google Scholar 

  11. Van Mele, T., Liew, A., Mendez, T., & Rippmann, M. (2017). COMPAS: A framework for computational research in architecture and structures.

    Google Scholar 

  12. Fab-Union. (2019). FUROBOT. 0.5.1 ed.

    Google Scholar 

  13. Yuan, P. F., & Philippe, B. (2019). Robotic force printing: A joint workshop of MIT/ETH/Tongji. Shanghai, China: Tongji University Press.

    Google Scholar 

  14. Wang, X., Tam, K.-M. M., Beaudouin-Mackay, A., Hoyle, B., Mason, M., Guo, Z., et al. (2019). Tile-vault construction on bending-actuated robotically 3D-printed formwork. In Proceedings of the IASS Symposium 2019, Barcelona.

    Google Scholar 

Download references

Acknowledgements

Prof. Philippe Block, Prof. Philip F. Yuan, Dr. Ing. Xiang Wang, Kam-Ming Mark Tam, Gene Ting-Chun Kao, Zain Karsan, Alex Beaudouin, Ce Li, Ben Hoyle, Molly Mason, Weizhe Gao, Weiran Zhu, Zhe Guo, Dalma Foldesi, Hyerin Lee, Jung In Seo, Anna Vasileiou, Youyuan Luo, D, Xiao Zhang, Liming Zhang and Hua Chai.

This research is funded by the National Natural Science Foundation of China (Grant No. 51578378).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X. et al. (2020). 3d-Printed Bending-Active Formwork for Shell Structures. In: Yuan, P.F., Xie, M., Leach, N., Yao, J., Wang, X. (eds) Architectural Intelligence. Springer, Singapore. https://doi.org/10.1007/978-981-15-6568-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6568-7_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6567-0

  • Online ISBN: 978-981-15-6568-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics