Skip to main content

Part of the book series: Logic in Asia: Studia Logica Library ((LIAA))

  • 194 Accesses

Abstract

In this chapter let us begin with the celebrated result by G. Gentzen stating that the proof-theoretic ordinal of the first-order arithmetic PA is equal to the first epsilon number \(|\mathsf{PA}|=\varepsilon _{0}=\min \{\alpha >\omega : 2^{\alpha }=\alpha \}\). Our proof of the fact \(|\mathsf{PA}|\le \varepsilon _{0}\) is based on an elimination of first-order cut formulas. When we lower the cut degree by one, the tree-height of the resulting proof increases by one exponential. Thus the ordinal \(\alpha =|\mathsf{PA}|\) needs to be a fixed point \(2^{\alpha }=\alpha \) of an exponential function. Moreover \(|\mathsf{PA}|>\omega \) due to the presence of complete induction schema. The main result in this chapter is a slight generalization of Gentzen’s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The theory \(\text{ FiX }(\mathsf{PA})\) is also denoted by \(\widehat{ID}\) or \(\widehat{ID}(\mathsf{PA})\) in Sect. 5.4 below.

References

  1. Abrusci, V.M., Girard, J.-Y., Van de Wiele, J.: Some uses of dilators in combinatorial problems, part I. In: Simpson, S.G. (ed.) Logic and Combinatorics. Contemporary Mathematics, vol. 65, pp. 25–54. AMS, Providence (1987)

    Google Scholar 

  2. Ackermann, W.: Zur Widerspruchsfreiheit der Zahlentheorie. Math. Ann. 117, 162–194 (1940)

    Google Scholar 

  3. Arai, T.: Slow growing analogue to Buchholz’ proof. Ann. Pure Appl. Logic 54, 101–120 (1991)

    Google Scholar 

  4. Arai, T.: Some results on cut-elimination, provable well-orderings, induction and reflection. Ann. Pure Appl. Logic 95, 93–184 (1998)

    Google Scholar 

  5. Arai, T.: Consistency proof via pointwise induction. Arch. Math. Logic 37, 149–165 (1998)

    Google Scholar 

  6. Arai, T.: Variations on a theme by Weiermann. J. Symb. Logic 63, 897–925 (1998)

    Google Scholar 

  7. Arai, T.: Introduction to finitary analyses of proof figures. In: Cooper, S.B., Truss, J.K. (eds.) Sets and Proofs. London Mathematical Society Lecture Notes, vol. 258, pp. 1–25. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  8. Arai, T.: On the slowly well orderedness of \(\varepsilon _{0}\). Math. Logic Quart. 48, 125–130 (2002)

    Google Scholar 

  9. Arai, T.: Epsilon substitution method for theories of jump hierarchies. Arch. Math. Logic 41, 123–153 (2002)

    Google Scholar 

  10. Arai, T.: Intuitionistic fixed point theories over Heyting arithmetic. In: Feferman, S., Sieg, W.(eds.) Proofs, Categories and Computations. Essays in honor of Grigori Mints, pp. 1–14. College Publications, King’s College London (2010)

    Google Scholar 

  11. Arai, T.: Provably \(\Delta ^{0}_{2}\) and weakly descending chains. In Arai, T. Feng, Q., Kim, B., Wu, G., Yang, Y. (eds.) Proceedings of the 11th Asian Logic Conference, pp. 1–21, World Scientific Publishing (2011)

    Google Scholar 

  12. Arai, T.: Quick cut-elimination for strictly positive cuts. Ann. Pure Appl. Logic 162, 807–815 (2011)

    Google Scholar 

  13. Arai, T.: Nested PLS. Arch. Math. Logic 50, 395–409 (2011)

    Google Scholar 

  14. Arai, T.: Intuitionistic fixed point theories over set theories. Arch. Math. Logic 54, 531–553 (2015)

    Google Scholar 

  15. Arai, T.: Proof-theoretic strengths of the well ordering principles. Arch. Math. Logic. 59, 257–275 (2020)

    Google Scholar 

  16. Arai, T., Fernández-Duque, D., Wainer, S., Weiermann, A.: Predicatively unprovable termination of the Ackermannian Goodstein process. Proc. Amer. Math. Soc. 148, 3567–3582 (2020)

    Google Scholar 

  17. Beckmann, A.: Separating fragments of bounded arithmetic. Ph.D. thesis, Westfälische Wilhelms-Universität Münster (1996)

    Google Scholar 

  18. Beckmann, A.: Dynamic ordinal analysis. Arch. Math. Logic 43, 303–334 (2003)

    Google Scholar 

  19. Buchholz, W.: An independence result for \((\Pi ^1_1-CA)+BI\). Ann. Pure Appl. Logic 33, 131–155 (1987)

    Google Scholar 

  20. Buchholz, W.: Explaining Gentzen’s consistency proof within infinitary proof theory. In: Golttlob, G., Leitsch, A., Mundici, D.(eds), Computational Logic and Proof Theory. 5th Kurt Gödel Colloquium, KGC’97. Lecture Notes in Computer Science, vol. 1298, pp. 4–17, Springer, Berlin (1997)

    Google Scholar 

  21. Buchholz, W.: An intuitionistic fixed point theory. Arch. Math. Logic 37, 21–27 (1997)

    Google Scholar 

  22. Buchholz, W.: On Gentzen’s first consistency proof for arithmetic. In: Kahle, R., Rathjen, M.(eds.) Gentzen’s Centenary. The Quest for Consistency, pp. 63–87. Springer, Berlin (2015)

    Google Scholar 

  23. Buchholz, W., Cichon, E.A., Weiermann, A.: A uniform approach to fundamental sequences and hierarchies. Math. Logic Q. 40, 273–286 (1994)

    Google Scholar 

  24. Buchholz, W., Feferman, S., Sieg, W., Pohlers, W.: Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies. Lecture Notes in Mathematics, vol. 897. Springer, Berlin (1981)

    Google Scholar 

  25. Buchholz, W., Pohlers, W.: Provable well orderings of formal theories for transfinitely iterated inductive definitions. J. Symb. Logic 43, 118–125 (1978)

    Google Scholar 

  26. Buchholz, W., Wainer, S.S.: Provably computable functions and the fast growing hierarchy, In: Simpson, S.G. (ed.) Logic and Combinatorics. Contemporary Mathematics, vol. 65, pp. 179–198. AMS (1987)

    Google Scholar 

  27. Cichon, E.A.: A short proof of two recently discovered independence proofs using recursion theoretic methods. Proc. AMS 87, 704–706 (1983)

    Google Scholar 

  28. Fairtlough, M., Wainer, S.S.: Hierarchies of provably recursive functions. In: Buss, S.R. (ed.) Handbook of Proof Theory, pp. 149–207. Elsevier (1998)

    Google Scholar 

  29. Feferman, S.: Iterated inductive fixed-point theories: applications to Hancock’s conjecture. In: Metakides, G. (ed.) Patras Logic Symposion, pp. 171–196. North-Holland, Amsterdam (1982)

    Google Scholar 

  30. Gentzen, G.: Die Widerspruchsfreiheit der reinen Zahlentheorie. Math. Ann. 112, 493–565 (1936)

    Google Scholar 

  31. Gentzen, G.: Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie, Forschungen zur Logik und Grundlegung der exakten Wissenschaften. Neue Folge 4, 19–44 (1938)

    Google Scholar 

  32. Gentzen, G.: Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie. Math. Ann. 119, 143–161 (1943)

    Google Scholar 

  33. Gentzen, G.: Der erste Widerspruchsfreiheitsbeweis für die klassische Zahlentheorie. Arch. Math. Logik Grundl. 16, 97–118 (1974)

    Google Scholar 

  34. Girard, J.-Y.: \(\Pi ^{1}_{2}\)-logic, Part 1: Dilators. Ann. Math. Logic 21, 75–219 (1981)

    Google Scholar 

  35. Girard, J.-Y.: Proof Theory and Logical Complexity, vol. 1. Bibliopolis, Napoli (1987)

    Google Scholar 

  36. Goodman, N.: Relativized realizability in intuitionistic arithmetic of all finite types. J. Symb. Logic 43, 23–44 (1978)

    Google Scholar 

  37. Goodstein, R.L.: On the restricted ordinal theorem. J. Symb. Logic 9, 33–41 (1944)

    Google Scholar 

  38. Jervell, H.: A normalization in first order arithmetic, In: Fenstad, J.E. (ed) Proceedings of 2nd Scandinavian Logic Symposium, pp. 93–108. North-Holland (1971)

    Google Scholar 

  39. Kirby, L.A.S., Paris, J.B.: Accessible independence results for Peano Arithmetic. Bull. Lond. Math. Soc. 14, 285–293 (1982)

    Google Scholar 

  40. Kreisel, G.: On the interpretation of non-finitist proofs II. J. Symb. Logic 17, 43–58 (1952)

    Google Scholar 

  41. Kreisel, G., Lévy, A.: Reflection principles and their use for establishing the complexity of axiomatic systems. Z. Math. Logik Grundlagen Math. 14, 97–142 (1968)

    Google Scholar 

  42. Mints, G.E., Finite investigations of transfinite derivations, In: Selected Papers in Proof Theory, pp. 17–72. Bibliopolis, Napoli (1992)

    Google Scholar 

  43. Mints, G.E.: Quick cut-elimination for monotone cuts, in: Mints, G., Muskens, R. (Eds.), Games, Logic, and Constructive Sets, Stanford, CA, 2000. CSLI Lecture Notes, vol. 161, pp.75–83. CSLI Publishing, Stanford (2003)

    Google Scholar 

  44. Pohlers, W.: Beweistheorie der iterierten induktiven Definitionen. Habilitattionsschrift, MĂĽnchen (1977)

    Google Scholar 

  45. Rathjen, M.: Goodstein’s theorem revisited. In: Kahle, R., Rathjen, M.(eds.) Gentzen’s Centenary. The Quest for Consistency, pp. 225–242. Springer (2015)

    Google Scholar 

  46. Rose, H.E.: Subrecursion: Functions and hierarchies. Oxford Logic Guides, vol. 9. Oxford University Press, Oxford (1984)

    Google Scholar 

  47. Rüede, C., Strahm, T.: Intuitionistic fixed point theories for strictly positive operators. Math. Log. Q. 48, 195–202 (2002)

    Google Scholar 

  48. Sato, K.: Ordinal analyses for monotone and cofinal transfinite inductions. Arch. Math. Logic. 59, 277–291 (2020)

    Google Scholar 

  49. Schmidt, D.: Built-up systems of fundamental sequences and hierarchies of number-theoretic functions. Arch. Math. Logik Grundl. 18, 47–53 (1976)

    Google Scholar 

  50. Schütte, K.: Beweistheoretische Erfassung der unendlichen Induktion in der Zahlentheorie. Math. Ann. 122, 369–389 (1951)

    Google Scholar 

  51. Schwichtenberg, H.: Eine Klassifikation der \(\varepsilon _{0}\)-rekursiven Funktionen. Zeitsch. Math. Logik Grundl. Math. 17, 61–74 (1971)

    Google Scholar 

  52. Schwichtenberg, S., Wainer, S.S.: Proofs and Computations. Perspective in Logic, ASL, Cambridge UP (2012)

    Google Scholar 

  53. Simpson, S.G.: Nichtbeweisbarkeit von gewissen kombinatorischen Eigenschaften endlicher Bäume. Arch. math. Logik Grundl. 25(1985), 45–65 (1985)

    Google Scholar 

  54. Simpson, S.G.: Subsystems of second order arithmetic, 2nd edn. Perspectives in Logic, Cambridge UP (2009)

    Google Scholar 

  55. Stephan, F., Yang, Y., L. Yu, Turing degrees and the Ershov hierarchy. In: Arai, T., Brendle, J., Chong, C. T. R. Downey, R., Q. Feng, G., Kikyo, T., Ono, H. (eds.), Proceedings of the 10th Asian Logic Conference, 2009, pp. 300–321. World Scientific, Singapore (2009)

    Google Scholar 

  56. Tait, W.W.: Gentzen’s original consistency proof and the bar theorem. In: Kahle, R., Rathjen, M.(eds.) Gentzen’s Centenary. The Quest for Consistency, pp. 213–228. Springer (2015)

    Google Scholar 

  57. Takeuti, G.: On the fundamental conjecture of GLC I. J. Math. Soc. Jpn. 7, 249–275 (1955)

    Google Scholar 

  58. Takeuti, G.: A remark on Gentzen’s paper "Beweibarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie". Proc. Jpn. Acad. 39, 263–269 (1963)

    Google Scholar 

  59. Takeuti, G.: Proof Theory, 2nd edn. North-Holland, Amsterdam (1987). reprinted from Dover Publications (2013)

    Google Scholar 

  60. Wainer, S.S.: Ordinal recursion and a refinement of the extended Grzegorczyk hierarchy. J. Symb. Logic 38, 281–292 (1972)

    Google Scholar 

  61. Wainer, S.S.: Slow growing versus fast growing. J. Symb. Logic 54, 608–614 (1989)

    Google Scholar 

  62. Weiermann, A.: Investigations on slow versus fast growing: How to majorize slow growing functions nontrivially by fast growing ones. Arch. Math. Logic 34, 313–330 (1995)

    Google Scholar 

  63. Weiermann, A.: How to characterize provably total functions by local predicativity. J. Symb. Logic 61, 52–69 (1996)

    Google Scholar 

  64. Weiermann, A.: Analytic combinatorics, proof-theoretic ordinals, and the phase transitions for independence results. Ann. Pure Appl. Logic 136, 189–218 (2005)

    Google Scholar 

  65. Weiermann, A.: Ackermannian Goodstein principles for first order Peano arithmetic. In: Friedman, S-D., Raghavan, D., Yang, Y. (eds.) Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, Sets and Computations, pp. 157–181 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyasu Arai .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arai, T. (2020). Epsilon Numbers. In: Ordinal Analysis with an Introduction to Proof Theory. Logic in Asia: Studia Logica Library. Springer, Singapore. https://doi.org/10.1007/978-981-15-6459-8_4

Download citation

Publish with us

Policies and ethics