Skip to main content

Cut-Elimination with Depths

  • Chapter
  • First Online:
Ordinal Analysis with an Introduction to Proof Theory

Part of the book series: Logic in Asia: Studia Logica Library ((LIAA))

  • 196 Accesses

Abstract

In this chapter we first introduce a standard cut-elimination procedure for the first-order logic and the \(\omega \)-logic, by which we see that the tree-height of the resulting cut-free proofs is bounded by a tower of exponential functions. Such a control of the tree-heights in cut-elimination is one of the most important results in ordinal analysis. A partial cut-elimination with a control holds as well for applied calculi. The partial result is sometimes helpful for us to analyze mathematical theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Axioms \(\varGamma ,\bar{L},L\) in \({\textit{\textbf{G}}}_{\omega }\) could be restricted to \(L\equiv (t\in X)\), cf. footnote 2. Therefore if \(\varGamma ,L\) is an axiom for a false closed literal L, then so is \(\varGamma \).

  2. 2.

    Wlog we can assume \(\lnot C\) occurs in both uppersequents. Otherwise augment \(\lnot C\) by Weakening Lemma 3.1.

  3. 3.

    For the finitary calculus \({\textit{\textbf{G}}}_{1}'\), \(\alpha <\omega \) suffices, but for an infinitary calculus such as \({\textit{\textbf{G}}}_{\omega }'\), we need the natural sum of ordinals.

  4. 4.

    No renaming is needed here, but we need it to deal with a second-order \(\varepsilon \)-calculus in the Exercise 3.3.

References

  1. Arai, T.: Non-elementary speed-ups in logic calculi. Math. Logic Quat. 54, 629–640 (2008)

    Article  Google Scholar 

  2. Arai, T.: Quick cut-elimination for strictly positive cuts. Ann. Pure Appl. Logic 162, 807–815 (2011)

    Article  Google Scholar 

  3. Berger, U., Buchholz, W., Schwichtenberg, H.: Refined program extraction from classical proofs. Ann. Pure Appl. Logic 114, 3–25 (2002)

    Article  Google Scholar 

  4. Cantini, A.: On the relationship between choice and comprehension principles in second order arithmetic. J. Symb. Logic 52, 360–373 (1986)

    Article  Google Scholar 

  5. Friedman, H.: Classically and intuitionistically provable recursive functions. In: Scott, D., Müllerm, G. H. (eds.) Higher Set Theory, pp. 21–28. Lecture Notes in Mathematics, vol. 669. Springer, Berlin (1978)

    Google Scholar 

  6. Gentzen, G.: Untersuchungen über das logische Schließen. Math. Zeitschr. 39(I), 176–210: II, 405–431 (1934/35)

    Google Scholar 

  7. Gentzen, G.: Über das Verhältnis zwischen intuitionistischer und klassischer Logik. Arch. Math. Logik Grundl. 16, 119–132 (1974)

    Article  Google Scholar 

  8. Girard, J.-Y.: A survey of \(\Pi ^{1}_{2}\)-logic. In: Pfeiffer, H., Los, J., Cohen, L.J. (eds.) Logic, Methodology and Philosophy of Sciences VI, pp. 89–107 North-Holland (1986)

    Google Scholar 

  9. Gödel, K.: Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines mathematischen Kolloquiums 4, 34–38 (1933)

    Google Scholar 

  10. Mints, G.E.: Quick cut-elimination for monotone cuts. In: Mints, G., Muskens, R. (Eds.), Games, Logic, and Constructive Sets, Stanford, CA, 2000, pp. 75–83, CSLI Lecture Notes, vol.161, CSLIPubl., Stanford (2003)

    Google Scholar 

  11. Moser, G., R. Zach, R., The epsilon calculus and Herbrand complexity. Studia Logica, vol. 82, pp. 133–155 (2006)

    Google Scholar 

  12. Orevkov, V.P. : Lower bounds for the lengthening of proofs after cut-elimination (Russian), Zapiski Nauchnykh Seminarov Leningradskago Otdeleniya ONena Lenina Mathematicheskogo Instituta imeni V. A. Steklova Akademii Nauk SSSR (LOMI), vol. 88, pp. 137–162, 242–243 (1979). Translated in Journal of Soviet Mathematics, vol. 20, 2337–2350 (1982)

    Google Scholar 

  13. Sato, K.: Ordinal analyses for monotone and cofinal transfinite inductions. Arch. Math. Logic. 59, 277–291 (2020)

    Google Scholar 

  14. Schwichtenberg, S., Wainer, S.S.: Proofs and Computations. Perspective in Logic, ASL. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  15. Statman, R.: Lower bounds on Herbrand’s theorem. Proc. AMS 75, 104–107 (1979)

    Google Scholar 

  16. Tait, W.W.: Normal derivability in classical logic. In: Barwise. J. (ed.) Syntax and semantics of infinitary languages, Lecture Notes in Mathematics, vol. 72, pp. 204–236 (1968)

    Google Scholar 

  17. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge Tracts in Theoretical Computer Science, vol. 43. Cambridge University Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyasu Arai .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arai, T. (2020). Cut-Elimination with Depths. In: Ordinal Analysis with an Introduction to Proof Theory. Logic in Asia: Studia Logica Library. Springer, Singapore. https://doi.org/10.1007/978-981-15-6459-8_3

Download citation

Publish with us

Policies and ethics