Skip to main content

Analogies Across Auxetic Models

  • Chapter
  • First Online:
Mechanics of Metamaterials with Negative Parameters

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 675 Accesses

Abstract

This chapter views 2D auxetic models, including 3D deformation models with 2D auxetic behavior, from mechanism perspective instead of geometrical perspective. On this basis, auxetic models across different geometrical groups can be regrouped into clusters that exhibit analogy in deformation mechanism. Factors that are taken into consideration include the identification of corresponding rotation and non-rotation units, as well as linkages/joints between rotation and non-rotation units and non-linkages/non-joints across various auxetic models. As a result, five clusters of auxetic models have been identified, in which auxetic models within each cluster are analogous to each other. The identified clusters are those that exhibit: (1) double periodicity in the rotation direction of their rotating units, (2) synchronized rotation direction of their rotation units, (3) single periodicity in the rotation direction of their rotating units, (4) random rotation of their rotation units, and (5) non-rotation of units. Results from this analogy identification place auxetic models in a systematic representation and will enrich the future development of auxetic models, particularly, those that do not fall within these five clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderson A (1999) A triumph of lateral thought. Chem Ind 10:384–391

    Google Scholar 

  • Alderson A, Alderson KL, Chirima G, Ravirala N, Zied KM (2010) The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs. Compos Sci Technol 70(7):1034–1041

    Article  Google Scholar 

  • Bertoldi K, Reis PM, Wilshaw S, Mullin T (2010) Negative Poisson’s ratio behavior induced by an elastic instability. Adv Mater 22(3):361–366

    Article  CAS  Google Scholar 

  • Chen YJ, Scarpa F, Liu YJ, Leng JS (2013) Elasticity of antitetrachiral anisotropic lattices. Int J Solids Struct 50(6):996–1004

    Article  Google Scholar 

  • Gaspar N, Ren XJ, Smith CW, Grima JN, Evans KE (2005) Novel honeycombs with auxetic behavior. Acta Mater 53(8):2439–2445

    Article  CAS  Google Scholar 

  • Gibson LJ, Ashby MF (1988) Cellular solids: structure & properties. Pergamon Press, Oxford

    Google Scholar 

  • Grima JN, Evans KE (2000) Auxetic behavior from rotating squares. J Mater Sci Lett 19(17):1563–1565

    Article  CAS  Google Scholar 

  • Grima JN, Williams JJ, Evans KE (2005a) Networked calix[4]arene polymers with unusual mechanical properties. Chem Commun 32:4065–4067

    Article  Google Scholar 

  • Grima JN, Gatt R, Alderson A, Evans KE (2005b) On the potential of connected stars as auxetic systems. Mol Simul 31(13):925–935

    Article  CAS  Google Scholar 

  • Grima JN, Zammit V, Gatt R, Alderson A, Evans KE (2007) Auxetic behavior from rotating semi-rigid units. Phys Status Solidi B 244(3):866–882

    Article  CAS  Google Scholar 

  • Grima JN, Gatt R, Farrugia PS (2008) On the properties of auxetic meta-tetrachiral structures. Phys Status Solidi B 245(3):511–520

    Article  CAS  Google Scholar 

  • Grima JN, Winczewski S, Mizzi L, Grech MC, Cauchi R, Gatt R, Attard D, Wojciechowski KW, Rybicki J (2015) Tailoring graphene to achieve negative Poisson’s ratio properties. Adv Mater 27(8):1455–1459

    Article  CAS  Google Scholar 

  • Haghpanah B, Papadopoulos J, Mousanezhad D, Nayeb-Hashemi H, Vaziri A (2014) Buckling of regular, chiral and hierarchical honeycombs under a general macroscopic stress state. Proc Royal Soc A 470(2167):20130856

    Article  Google Scholar 

  • He CB, Liu PW, Griffin AC (1998) Toward negative Poisson ratio polymers through molecular design. Macromol 31(9):3145–3147

    Article  CAS  Google Scholar 

  • He CB, Liu PW, McMullan PJ, Griffin AC (2005) Toward molecular auxetics: main chain liquid crystalline polymers consisting of laterally attached para-quaterphenyls. Phys Status Solidi B 242(3):576–584

    Article  CAS  Google Scholar 

  • Hewage TAM, Alderson KL, Alderson A, Scarpa F (2016) Double-negative mechanical metamaterials displaying simultaneous negative stiffness and negative Poisson’s ratio properties. Adv Mater 28(46):10323–10332

    Article  CAS  Google Scholar 

  • Javid F, Smith-Roberge E, Innes MC, Shanian A, Weaver JC, Bertoldi K (2015) Dimpled elastic sheets: a new class of non-porous negative Poisson’s ratio materials. Scient Rep 5:18373

    Article  CAS  Google Scholar 

  • Jiang Y, Li Y (2017) 3D printed chiral cellular solids with amplified auxetic effects due to elevated internal rotation. Adv Eng Mater 19(2):1600609

    Article  Google Scholar 

  • Larsen UD, Sigmund O, Bouwstra S (1997) Design and fabrication of compliant mechanisms and material structures with negative Poisson’s ratio. J Microelectromech Syst 6(2):99–106

    Article  Google Scholar 

  • Lim TC (2014) Semi-auxetic yarns. Phys Status Solidi B 251(2):273–280

    Article  CAS  Google Scholar 

  • Lim TC (2017a) Analogies across auxetic models based on deformation mechanism. Phys Status Solidi RRL 11(6):1600440

    Article  Google Scholar 

  • Lim TC (2017b) Auxetic and negative thermal expansion structure based on interconnected array of rings and sliding rods. Phys Status Solidi B 254(12):1600775

    Article  Google Scholar 

  • Lim TC (2019) Negative environmental expansion for interconnected array of rings and sliding rods. Phys Status Solidi B 256(1):1800032

    Article  Google Scholar 

  • Mousanezhad D, Babaee S, Ebrahimi H, Ghosh R, Hamouda AS, Bertoldi K, Vaziri A (2015) Hierarchical honeycomb auxetic metamaterials. Scient Rep 5:18306

    Article  CAS  Google Scholar 

  • Muto K, Bailey RW, Mitchell KJ (1963) Special requirements for the design of nuclear power stations to withstand earthquakes. Proc Inst Mech Eng 177(1):155–203

    Article  Google Scholar 

  • Ravirala N, Alderson A, Alderson KL (2007) Interlocking hexagon model for auxetic behavior. J Mater Sci 42(17):7433–7445

    Article  CAS  Google Scholar 

  • Shim J, Shan S, Kosmrlj A, Kang SH, Chen ER, Weaver JC. Bertoldi K (2013) Harnessing instabilities for design of soft reconfigurable auxetic/chiral materials. Soft Matter 9(34):8198–8202

    Google Scholar 

  • Smith CW, Grima JN, Evans KE (2000) A novel mechanism for generating auxetic behavior in reticulated foams: missing rib foam model. Acta Mater 48(17):4349–4356

    Article  CAS  Google Scholar 

  • Taylor M, Francesconi L, Gerendas M, Shanian A, Carson C, Bertoldi K (2013) Low porosity metallic periodic structures with negative Poisson’s ratio. Adv Mater 26(15):2365–2370

    Article  Google Scholar 

  • Theocaris PS, Stavroulakis GE, Panagiotopoulos (1997) Negative Poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach. Arch Appl Mech 67(4):274–286

    Google Scholar 

  • Tretiakov KV, Wojciechowski KW (2005) Monte Carlo simulation of two-dimensional hard body systems with extreme values of the Poisson’s ratio. Phys Status Solidi B 242(3):730–741

    Article  CAS  Google Scholar 

  • Wojciechowski KW (1987) Constant thermodynamic tension Monte-Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers. Mol Phys 61(5):1247–1258

    Article  CAS  Google Scholar 

  • Wojciechowski KW (1989) Two-dimensional isotropic system with a negative Poisson ratio. Phys Lett A 137(1&2):60–64

    Article  Google Scholar 

  • Wojciechowski KW, Branka AC (1989) Negative Poisson ratio in a two-dimensional ‘‘isotropic’’ solid. Phys Rev A 40(12):7222–7225

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teik-Cheng Lim .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lim, TC. (2020). Analogies Across Auxetic Models. In: Mechanics of Metamaterials with Negative Parameters. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-6446-8_3

Download citation

Publish with us

Policies and ethics