Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 698 Accesses

Abstract

This chapter gives a brief introduction to metamaterials starting from its definition to the generic (including electromagnetic) metamaterials, through mechanical metamaterial, and finally to the mechanics of metamaterials with special emphasis on negative properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreone A, Cusano A, Cutolo A, Galdi V (eds) (2011) Selected topics in photonic crystals and metamaterials. World Scientific, Singapore

    Google Scholar 

  • Baughman RH, Stafström S, Cui C, Dantas SO (1998) Materials with negative compressibilities in one of more dimensions. Science 279(5356):1522–1524

    CAS  Google Scholar 

  • Bertoldi K, Vitelli V, Christensen J, van Hecke M (2017) Flexible mechanical metamaterials. Nat Rev Mater 2(11):17066

    CAS  Google Scholar 

  • Boley BA, Weiner JH (1997) Theory of thermal stresses. Dover Publications, New York

    Google Scholar 

  • Borja AL (ed) (2017) Metamaterials—Devices and applications. InTechOpen, London

    Google Scholar 

  • Brener I, Liu S, Staude I, Valentine J, Holloway C (2019) Dielectric metamaterials: fundamentals, designs, and applications. Elsevier, Cambridge

    Google Scholar 

  • Cai W, Shalaev VM (2010) Optical metamaterials: fundamentals and applications. Springer, New York

    Google Scholar 

  • Caloz C, Itoh T (2006) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley, Hoboken

    Google Scholar 

  • Canet-Ferrer J (ed) (2019) Metamaterials and metasurfaces. InTechOpen, London

    Google Scholar 

  • Capolino F (ed) (2009) Metamaterials handbook: theory and phenomena of metamaterials. CRC Press, Boca Raton

    Google Scholar 

  • Che K, Yuan C, Wu J, Qi HJ, Meaud J (2017) Three-dimensional-printed multistable mechanical metamaterials with a deterministic deformation sequence. J Appl Mech 84(1):011004

    Google Scholar 

  • Chipouline A, Küppers F (2018) Optical metamaterials: qualitative models. Springer, Cham

    Google Scholar 

  • Choudhury B (ed) (2017) Metamaterial inspired electromagnetic applications: role of intelligent systems. Springer, Singapore

    Google Scholar 

  • Choudhury B, Menon A, Jha RM (2016) Active terahertz metamaterial for biomedical applications. Springer, Singapore

    Google Scholar 

  • Christensen J, Kadic M, Kraft O, Wegener M (2015) Vibrant times for mechanical metamaterials. MRS Commun 5(3):453–462

    CAS  Google Scholar 

  • Cui TJ, Smith D, Liu R (eds) (2010) Metamaterials: theory, design, and applications. Springer, New York

    Google Scholar 

  • Cui TJ, Tang WX, Yang XM, Mei ZL, Jiang WX (2016) Metamaterials: beyond crystals, noncrystals, and quasicrystals. CRC Press, Boca Raton

    Google Scholar 

  • Degabriele EP, Attard D, Grima-Cornish JN, Caruana-Gauci R, Gatt R, Evans KE, Grima JN (2019) On the compressibility properties of the wine-rack-like carbon allotropes and related poly(phenylacetylene) systems. Phys Status Solidi B 256(1):1800572

    Google Scholar 

  • Denz C, Flach S, Kivshar YS (eds) (2010) Nonlinearities in periodic structures and metamaterials. Springer, Berlin

    Google Scholar 

  • Diest K (ed) (2013) Numerical methods for metamaterial design. Springer, Dordrecht

    Google Scholar 

  • Dudek KK, Attard D, Caruana-Gauci R, Wojciechowski KW, Grima JN (2016) Unimode metamaterials exhibiting negative linear compressibility and negative thermal expansion. Smart Mater Struct 25(2):025009

    Google Scholar 

  • Dudek KK, Wojciechowski KW, Dudek MR, Gatt R, Mizzi L, Grima JN (2018a) Potential of mechanical metamaterials to induce their own global rotational motion. Smart Mater Struct 27(5):055007

    Google Scholar 

  • Dudek KK, Gatt R, Dudek MR, Grima JN (2018b) Negative and positive stiffness in auxetic magneto-mechanical metamaterials. Proc R Soc A 474(2215):20180003

    Google Scholar 

  • Eleftheriades GV, Balmain KG (eds) (2005) Negative-refraction metamaterials: fundamental principles and applications. Wiley, Hoboken

    Google Scholar 

  • Engheta N, Ziolkowski RW (eds) (2006) Metamaterials: physics and engineering explorations. Wiley, Hoboken

    Google Scholar 

  • Fine RA, Millero FJ (1973) Compressibility of water as a function of temperature and pressure. J Chem Phys 59(10):5529–5536

    CAS  Google Scholar 

  • Fortes AD, Suard E, Knight KS (2011) Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate. Science 331(6018):742–746

    CAS  Google Scholar 

  • Gao Z, Liu D, Tomanek D (2018) Two-dimensional mechanical metamaterials with unusual Poisson ratio behavior. Phys Rev Appl 10(6):064039

    CAS  Google Scholar 

  • Gibson RF (2012) Principles of composite material mechanics, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Grima JN, Farrugia PS, Gatt R, Zammit V (2007) Connected triangles exhibiting negative Poisson’s ratios and negative thermal expansion. J Phys Soc Jpn 76(2):025001

    Google Scholar 

  • Grima JN, Gatt R, Zammit V, Cauchi R, Attard D (2012a) On the negative Poisson’s ratio and thermal expansion in natrolite. In: Meunier M (ed) Industrial applications of molecular simulatons. CRC Press, Boca Raton, pp 135–152

    Google Scholar 

  • Grima JN, Caruana-Gauci R, Attard D, Gatt R (2012b) Three-dimensional cellular structures with negative Poisson’s ratio and negative compressibility properties. Proc Royal Soc A 468(2146):3121–3138

    Google Scholar 

  • Hao Y, Mittra R (2009) FDTD modeling of metamaterials: theory and applications. Artech House, Norwood

    Google Scholar 

  • Hess O, Gric T (2018) Phenomena of optical metamaterials. Elsevier, Amsterdam

    Google Scholar 

  • Hetnarski RB, Eslami MR (2009) Thermal stresses—Advanced theory and applications. Springer, New York

    Google Scholar 

  • Hewage TAM, Alderson KL, Alderson A, Scarpa F (2016) Double-negative mechanical metamaterials displaying simultaneous negative stiffness and negative Poisson’s ratio properties. Adv Mater 28(46):10323–10332

    CAS  Google Scholar 

  • Huang Y, Zhang X, Kadic M, Liang G (2019) Stiffer, stronger and sentrosymmetrical class of pentamodal mechanical metamaterials. Materials 12(21):3470

    CAS  Google Scholar 

  • Jackson JA, Messner MC, Dudukovic NA, Smith WL, Bekker L, Moran B, Golobic AM, Pascall AJ, Duoss EB, Loh KJ, Spadaccini CM (2018) Field responsive mechanical metamaterials. Sci Advances 4(12):eaau6419

    Google Scholar 

  • Jia Z, Wang L (2019) Instability-triggered triply negative mechanical metamaterial. Phys Rev Appl 12(2):024040

    CAS  Google Scholar 

  • Kaw AK (2006) Mechanics of composite materials, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Krowne CM, Zhang Y (eds) (2007) Physics of negative refraction and negative index materials: optical and electronic aspects and diversified approaches. Springer, Berlin

    Google Scholar 

  • Lee YP, Rhee JY, Yoo YJ, Kim KW (2016) Metamaterials for perfect absorption. Springer, Singapore

    Google Scholar 

  • Lheurette É (ed) (2013) Metamaterials and wave control. Wiley, Hoboken

    Google Scholar 

  • Li J, Huang Y (2013) Time-domain finite element methods for Maxwell’s equations in metamaterials. Springer, Berlin

    Google Scholar 

  • Li D, Ma J, Dong L, Lakes RS (2016) A bi-material structure with Poisson’s ratio tunable from positive to negative via temperature control. Mater Lett 181:285–288

    CAS  Google Scholar 

  • Lim TC (2017a) Auxetic and negative thermal expansion structure based on interconnected array of rings and sliding rods. Phys Status Solidi B 254(12):1600775

    Google Scholar 

  • Lim TC (2017b) 2D structures exhibiting negative area compressibility. Phys Status Solidi B 254(12):1600682

    Google Scholar 

  • Lim TC (2018) A negative hygroscopic expansion material. Mater Sci Forum 928:277–282

    Google Scholar 

  • Lim TC (2019a) A class of shape-shifting composite metamaterial honeycomb structures with thermally-adaptive Poisson’s ratio signs. Compos Struct 226:111256

    Google Scholar 

  • Lim TC (2019b) 2D metamaterial with in-plane positive and negative thermal expansion and thermal shearing based on interconnected alternating bimaterials. Mater Res Express 6(11):115804

    CAS  Google Scholar 

  • Lim TC (2019c) A reinforced kite-shaped microstructure with negative linear and area hygrothermal expansions. Key Eng Mater 803:272–277

    Google Scholar 

  • Lim TC (2019d) A composite metamaterial with sign switchable elastic and hygrothermal properties induced by stress direction and environmental change reversals. Compos Struct 220:185–193

    Google Scholar 

  • Lim TC (2019e) Negative environmental expansion for interconnected array of rings and sliding rods. Phys Status Solidi B 256(1):1800032

    Google Scholar 

  • Lim TC (2019f) Composite metamaterial with sign-switchable coefficients of hygroscopic, thermal and pressure expansions. Adv Compos Hybrid Mater 2(4):657–669

    Google Scholar 

  • Lim TC (2020) Composite metamaterial square grids with sign-flipping expansion coefficients leading to a type of Islamic design. SN Applied Sciences 2(5):918

    Google Scholar 

  • Maier SA (ed) (2011) World scientific handbook of metamaterials and plasmonics. World Scientific, Singapore

    Google Scholar 

  • Mallick PK (2008) Fiber-reinforced composites, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Maradudin AA (ed) (2011) Structured surfaces as optical metamaterials. Cambridge University Press, Cambridge

    Google Scholar 

  • Marqués R, Martín F, Sorolla M (2007) Metamaterials with negative parameters: theory, design, and microwave applications. Wiley, Hoboken

    Google Scholar 

  • Matlack KH, Serra-Garcia M, Palermo A, Huber SD, Daraio C (2018) Designing perturbative metamaterials from discrete models. Nat Mater 17(4):323–328

    CAS  Google Scholar 

  • Miller W, Evans KE, Marmier A (2015) Negative linear compressibility in common materials. Appl Phys Lett 106(23):231903

    Google Scholar 

  • Mirzaali MJ, Caracciolo A, Pahlavani H, Janbaz S, Vergani L, Zadpoor AA (2018a) Multi-material 3D printed mechanical metamaterials: rational design of elastic properties through spatial distribution of hard and soft phases. Appl Phys Lett 113(24):241903

    Google Scholar 

  • Mirzaali MJ, Janbaz S, Strano M, Vergani L, Zadpoor AA (2018b) Shape-matching soft mechanical metamaterials. Scient Rep 8:965

    CAS  Google Scholar 

  • Munk BA (2009) Metamaterials: critique and alternatives. Wiley, Hoboken

    Google Scholar 

  • Nair RU, Dutta M, Mohammed Yazeen PS, Venu KS (2018) EM material characterization techniques for metamaterials. Springer, Singapore

    Google Scholar 

  • Nakano H (2016) Low-profile natural and metamaterial antennas. Wiley, Hoboken

    Google Scholar 

  • Noginov MA, Podolskiy VA (eds) (2011) Tutorials in metamaterials. CRC Press, Boca Raton

    Google Scholar 

  • Nowacki W (1987) Thermoelasticity, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  • Pan F, Li Y, Li Z, Yang J, Liu B, Chen Y (2019) 3D pixel mechanical metamaterials. Adv Mater 31(25):1900548

    Google Scholar 

  • Pendry JB (2007) Fundamentals and applications of negative refraction in metamaterials. Princeton University Press, New Jersey

    Google Scholar 

  • Powell D (2018) Mechanical metamaterials bend the rules of everyday physics. Proc Nat Acad Sci 115(11):2545–2547

    CAS  Google Scholar 

  • Ramakrishna SA, Grzegorczyk TM (2009) Physics and applications of negative refractive index materials. CRC Press, Boca Raton

    Google Scholar 

  • Rout S, Sonkusale S (2017) Active metamaterials: terahertz modulators and detectors. Springer, Cham

    Google Scholar 

  • Sarychev AK, Shalaev VM (2007) Electrodynamics of metamaterials. World Scientific, Singapore

    Google Scholar 

  • Shvets G, Tsukerman I (2011) Plasmonics and plasmonic metamaterials. World Scientific, Singapore

    Google Scholar 

  • Smolyaninov II (2018a) Hyperbolic metamaterials. IOP Publishing, Bristol

    Google Scholar 

  • Smolyaninov II (2018b) Metamaterial multiverse. IOP Publishing, Bristol

    Google Scholar 

  • Solymar L, Shamonina E (2009) Waves in metamaterials. Oxford University Press, Oxford

    Google Scholar 

  • Sujardi JU, Gao L, Du H, Li X, Xiong X, Fang NX, Lu Y (2019) Mechanical metamaterials and their engineering applications. Adv Eng Mater 21(3):1800864

    Google Scholar 

  • Tong XC (2018) Functional metamaterials and metadevices. Springer, Cham

    Google Scholar 

  • Vanbésien O (2012) Artificial materials. Wiley, Hoboken

    Google Scholar 

  • Vangelatos Z, Komvopoulos K, Grigoropoulos CP (2019) Vacancies for controlling the behavior of microstructured three-dimensional mechanical metamaterials. Math Mech Solids 24(2):511–524

    Google Scholar 

  • Wang L, Luo H, Deng S, Sun Y, Wang C (2017) Uniaxial negative thermal expansion, negative linear compressibility, and negative Poisson’s ratio induced by specific topology in Zn[Au(CN)2]2. Inorg Chem 56(24):15101–15109

    CAS  Google Scholar 

  • Werner DH (ed) (2017) Broadband metamaterials in electromagnetics: technology and applications. CRC Press, Boca Raton

    Google Scholar 

  • Werner DH, Kwon DH (eds) (2014) Transformation electromagnetics and metamaterials: fundamental principles and applications. Springer, London

    Google Scholar 

  • Wu W, Hu W, Qian G, Liao H, Xu X, Berto F (2019) Mechanical design and multifunctional applications of chiral mechanical metamaterials: a review. Mater Des 180:107950

    Google Scholar 

  • Yang H, Ma L (2019) Multi-stable mechanical metamaterials by elastic buckling instability. J Mater Sci 54(4):3509–3526

    CAS  Google Scholar 

  • Zadpoor AA (2016) Mechanical meta-materials. Mater Horiz 3(5):371–381

    CAS  Google Scholar 

  • Zayats AV, Maier SA (2013) Active plasmonics and tuneable plasmonic metamaterials. Wiley, Hoboken

    Google Scholar 

  • Zhao Z, Yuan C, Lei M, Yang L, Zhang Q, Chen H, Qi HJ, Fang D (2019) Three-dimensionally printed mechanical metamaterials with thermally tunable auxetic behavior. Phys Rev Appl 11(4):044074

    CAS  Google Scholar 

  • Zouhdi S, Sihvola A, Arsalane M (eds) (2002) Advances in electromagnetics of complex media and metamaterials. Springer, Dordrecht

    Google Scholar 

  • Zouhdi S, Sihvola A, Vinogradov AP (eds) (2009) Metamaterials and plasmonics: fundamentals, modelling, applications. Springer, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teik-Cheng Lim .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lim, TC. (2020). Introduction. In: Mechanics of Metamaterials with Negative Parameters. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-6446-8_1

Download citation

Publish with us

Policies and ethics