Skip to main content

Reversible Sodium and Potassium-Ion Intercalation in Na0.44MnO2

  • Conference paper
  • First Online:
Recent Research Trends in Energy Storage Devices

Abstract

Global demands drew attention towards energy production and storage technologies in the twenty-first century. Lithium-ion batteries cannot satisfy needs because of limited resources of Li. Sodium-ion batteries can be a promising alternate replacement with a redox potential E (Na+/Na) = −2.71 V vs SHE. Potassium-ion batteries have recently gained interest in competing with sodium with a redox potential of E (K+/K) = −2.93 V and has an advantage of smaller stokes radius. Herein, we tried to understand the K-insertion and de-insertion in sodium-based transition metal oxide (Na0.44MnO2). The tunnel-type Na0.44MnO2 was prepared by combustion synthesis technique which has an orthorhombic structure with a space group of Pbam. It has 3D tunnel-type structure with large and small tunnels as a path for diffusion of ions. For the first time, tunnel-type Na0.44MnO2 was investigated as K+-ion intercalation host. This study shows reversible K+-ion intercalation with an initial discharge of 74 mAh g−1 at C/20 current rate and good cycling stability up to 50 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, Q., Hu, Z., Chen, M., Gu, Q., Dou, Y., Sun, Z., Chou, S., Dou, S.X.: Multiangular rod-shaped Na0.44MnO2 as cathode materials with high rate and long life for sodium-ion batteries. ACS Appl. Mater. Interfaces 9(4), 3644–3652 (2017)

    Google Scholar 

  2. Chen, Z., Yuan, T., Pu, X., Yang, H., Ai, X., Xia, Y., Cao, Y.: Symmetric sodium-ion capacitor based on Na0.44MnO2 nanorods for low-cost and high-performance energy storage. ACS Appl. Mater. Interfaces 10(14), 11689–11698 (2018)

    Google Scholar 

  3. Nose, M., Nakayama, H., Nobuhara, K., Yamaguchi, H., Nakanishi, S., Iba, H.: Na4Co3(PO4)2P2O7: A novel storage material for sodium-ion batteries. J. Power Sources 234, 175–179 (2013)

    Article  Google Scholar 

  4. Park, Y.U., Seo, D.H., Kim, H., Kim, J., Lee, S., Kim, B., Kang, K.: A family of high-performance cathode materials for Na-ion batteries, Na3(VO1−xPO4)2F1+2x (0 ≤ x ≤ 1): combined first-principles and experimental study. Adv. Funct. Mater. 24(29), 4603–4614 (2014)

    Article  Google Scholar 

  5. Komaba, S., Hasegawa, T., Dahbi, M., Kubota, K.: Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015)

    Article  Google Scholar 

  6. Eftekhari, A.: A. Potassium secondary cell based on prussian blue cathode. J. Power Sources 126(1), 221–228 (2004)

    Google Scholar 

  7. Vaalma, C., Giffin, A.G., Buchholz, D., Passerini, S.: Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black. J. Electrochem. Soc. 163, 1295–1299 (2016)

    Google Scholar 

  8. Wang, X., Xu, X., Niu, C., Meng, J., Huang, M., Liu, X., Liu, Z., Mai, L.: Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries. Nano Lett. 17, 544–550 (2017)

    Article  Google Scholar 

  9. Chihara, K., Katogi, A., Kubota, K., Komaba, S.: KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. Chem. Commun. 53, 5208–5211 (2017)

    Article  Google Scholar 

  10. Xing, Z., Jian, Z., Luo, W., Qi, Y., Bommier, C., Chong, E.S., Li, Z., Hu, L., Ji, X.: A perylene anhydride crystal as a reversible electrode for K-ion batteries. Energy Storage Mater. 2, 63–68 (2016)

    Article  Google Scholar 

  11. Hironaka, Y., Kubota, K., Komaba, S.: P2-and P3-KxCoO2 as an electrochemical potassium intercalation host. Chem. Commun. 53, 3693–3696 (2017)

    Article  Google Scholar 

  12. Kim, H., Kim, J.C., Bo, S.H., Shi, T., Kwon, D.H., Ceder, G.: K-ion batteries based on a P2-type K0.6CoO2 cathode. Adv. Energy Mater. 7(17), 1700098 (2017)

    Google Scholar 

  13. Sada, K., Senthilkumar, B., Barpanda, P.: Electrochemical potassium-ion intercalation in NaxCoO2: a novel cathode material for potassium-ion batteries. Chem. Commun. 53(61), 8588–8591 (2017)

    Article  Google Scholar 

  14. Naveen, N., Woon, B.P., Su, C.H., Satendra, P.S., Young, H.J., Docheon, A., Kee, S.S., Myoungho, P.: Reversible K+-insertion/deinsertion and concomitant Na+-redistribution in P′3-Na0.52CrO2 for high-performance potassium-ion battery cathodes. Chem. Mater., 30(6), 2049–2057 (2018)

    Google Scholar 

  15. Sada, K., Senthilkumar, B., Barpanda, P.: Potassium-ion intercalation mechanism in layered Na2Mn3O7. ACS Appl. Energy Mater. 1(10), 5410–5416 (2018)

    Google Scholar 

  16. Sauvage, F., Laffont, L., Tarascon, J.M., Baudrin, E.: Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg. Chem. 46(8), 3289–3294 (2007)

    Google Scholar 

  17. Wang, C.H., Yeh, Y.W., Wongittharom, N., Wang, Y.C., Tseng, C.J., Lee, S.W., Chang, W.S., Chang, J.K.: Rechargeable Na/Na0.44MnO2 cells with ionic liquid electrolytes containing various sodium solutes. J. Power Sources 274, 1016–1023 (2015)

    Google Scholar 

  18. Heejin, K., Dong, J.K., Dong, H.S., Min, S.Y., Kisuk, K., Do, K.K., Yousung, J.: Ab Initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery. Chem. Mater. 24(6), 1205–1211 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the Science and Engineering Research Board (SERB, Government of India) in form of an Early Career Research Award (ECR/2015/000525). B.S. thanks SERB for a National Postdoctoral Fellowship (PDF/2015/00217). The authors thank Shell Technology Centre (STC) Bangalore for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baskar Senthilkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Senthilkumar, B., Vanam, S.P., Barpanda, P. (2021). Reversible Sodium and Potassium-Ion Intercalation in Na0.44MnO2. In: Sharma, Y., Varma, G.D., Mukhopadhyay, A., Thangadurai, V. (eds) Recent Research Trends in Energy Storage Devices. Springer, Singapore. https://doi.org/10.1007/978-981-15-6394-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6394-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6393-5

  • Online ISBN: 978-981-15-6394-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics