Skip to main content

Multilevel Neuron Model Construction Related to Structural Brain Changes Using Hypergraph

  • Conference paper
  • First Online:
Progress in Advanced Computing and Intelligent Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1199))

Abstract

Birth of neurons in the human brain relocates from their place of birth to other regions of the brain. Designing a model to read the structural changes in the brain will help scientists to understand more about the process of the life cycle of neurons. In this paper, Hypergraph-based model for recognizing the structural changes during the birth and death of neurons was developed and its performance was evaluated quantitatively with small-world network and robust connectivity measures. This neuron reconstruction model will operate as a treatment modality to cure brain diseases and disorders that affect the lives of millions of human being.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Levine, D.S.: Theory of the Brain and Mind: Visions and History. Artif. Intell. Age Neural Networks Brain Comput. 191–203 (2019). https://doi.org/10.1016/B978-0-12-815480-9.00009-8

  2. Einevoll, G.T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de Kamps, M., Migliore, M., Ness, T.V., Plesser, H.E., Schürmann, F.: The Scientific Case for Brain Simulations. Neuron. 102, 735–744 (2019). https://doi.org/10.1016/J.NEURON.2019.03.027

    Article  Google Scholar 

  3. Colombo, M.: Olaf Sporns: Discovering the Human Connectome. Minds Mach. 24, 217–220 (2014). https://doi.org/10.1007/s11023-013-9334-2

    Article  Google Scholar 

  4. van den Heuvel, M.P., Sporns, O.: A cross-disorder connectome landscape of brain dysconnectivity. Nat. Rev. Neurosci. 20, 435–446 (2019). https://doi.org/10.1038/s41583-019-0177-6

    Article  Google Scholar 

  5. Teeter, C., Iyer, R., Menon, V., Gouwens, N., Feng, D., Berg, J., Szafer, A., Cain, N., Zeng, H., Hawrylycz, M., Koch, C., Mihalas, S.: Generalized leaky integrate-and-fire models classify multiple neuron types. Nat. Commun. 9, 709 (2018). https://doi.org/10.1038/s41467-017-02717-4

    Article  Google Scholar 

  6. Sporns, O.: Graph theory methods: applications in brain networks. Dialogues Clin. Neurosci. 20, 111–121 (2018)

    Google Scholar 

  7. Lippert, T., Thomas: HPC for the human brain project. In: Proceedings of the 28th ACM international conference on Supercomputing - ICS ’14. pp. 1–1. ACM Press, New York, New York, USA (2014). https://doi.org/10.1145/2597652.2616584

  8. Yadati, N., Nitin, V., Nimishakavi, M., Yadav, P., Louis, A., Talukdar, P.: Link Prediction in Hypergraphs using Graph Convolutional Networks (2018)

    Google Scholar 

  9. Bhalla, S., Dura-Bernal, S., Suter, B.A., Gleeson, P., Cantarelli, M., Quintana, A., Rodriguez, F., Kedziora, D.J., Chadderdon, G.L., Kerr, C.C., Neymotin, S.A., McDougal, R.A., Hines, M., Shepherd, G.M., Lytton, W.W.: NetPyNE, a tool for data-driven multiscale modeling of brain circuits. https://doi.org/10.7554/eLife.44494.001

  10. Biamonte, J., Faccin, M., De Domenico, M.: Complex networks from classical to quantum. Commun. Phys. 2, 53 (2019). https://doi.org/10.1038/s42005-019-0152-6

    Article  Google Scholar 

  11. Fleischer, V., Radetz, A., Ciolac, D., Muthuraman, M., Gonzalez-Escamilla, G., Zipp, F., Groppa, S.: Graph Theoretical Framework of Brain Networks in Multiple Sclerosis: A Review of Concepts. Neuroscience 403, 35–53 (2019). https://doi.org/10.1016/j.neuroscience.2017.10.033

    Article  Google Scholar 

  12. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009 103. 10, 186–198 (2009). https://doi.org/10.1038/nrn2575

  13. Lee, H., Kim, E., Ha, S., Kang, H., Huh, Y., Lee, Y., Lim, S., Lee, D.S.: Volume entropy for modeling information flow in a brain graph. Sci. Rep. 9, 256 (2019). https://doi.org/10.1038/s41598-018-36339-7

    Article  Google Scholar 

  14. Stam, C.J.: Modern network science of neurological disorders. Nat. Rev. Neurosci. 15, 683–695 (2014). https://doi.org/10.1038/nrn3801

    Article  Google Scholar 

  15. Bansal, K., Nakuci, J., Muldoon, S.F.: Personalized brain network models for assessing structure-function relationships. Curr. Opin. Neurobiol. 52, 42–47 (2018). https://doi.org/10.1016/J.CONB.2018.04.014

    Article  Google Scholar 

  16. Lynn, C.W., Bassett, D.S.: The physics of brain network structure, function and control. Nat. Rev. Phys. 1, 318–332 (2019). https://doi.org/10.1038/s42254-019-0040-8

    Article  Google Scholar 

  17. Shalini, R., Mohan, R.: Drugs Relationship Discovery using Hypergraph. Int. J. Inf. Technol. Comput. Sci. 10, 54–63 (2018). https://doi.org/10.5815/ijitcs.2018.06.06

    Article  Google Scholar 

  18. Mohan R Shalini R: Neuroinformatics Conference, https://abstracts.g-node.org/conference/NI2018/abstracts#/uuid/340cca06-1ea0-42bc-9a37-04f07828da89

  19. Shalini R, Mohan R: Diagnosis of Alzheimer’s disease using Hypergraph. In: G-Node (2018). https://doi.org/10.12751/incf.ni2018.0098

  20. Ritz, A., Avent, B., Murali, T.M.: Pathway Analysis with Signaling Hypergraphs. IEEE/ACM Trans. Comput. Biol. Bioinforma. 14, 1042–1055 (2017). https://doi.org/10.1109/TCBB.2015.2459681

    Article  Google Scholar 

  21. Wei, K., Cieslak, M., Greene, C., Grafton, S.T., Carlson, J.M.: Sensitivity analysis of human brain structural network construction. Netw. Neurosci. 1, 446–467 (2017)

    Google Scholar 

  22. Mertz, A., Slough, W.: Graphics with TikZ. Pr, E X J (2007)

    Google Scholar 

  23. Berge, C.: Hypergraph-Combinatorics of finite sets. North Holland (1989)

    Google Scholar 

  24. Bretto, A. : Hypergraph Theory : An Introduction. Springer, cham; New York (2013)

    Google Scholar 

  25. Weisstein, E.W.: Incidence Matrix, http://mathworld.wolfram.com/IncidenceMatrix.html

  26. Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C.R., Jagust, W., Trojanowski, J.Q., Toga, A.W., Beckett, L.: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers. Dement. 1, 55–66 (2005). https://doi.org/10.1016/j.jalz.2005.06.003

    Article  Google Scholar 

  27. Naresh, Korrapati: Alzheimer’s Disease and Memory Loss - A Review. (2016). https://doi.org/10.4172/2161-0460.1000259

    Article  Google Scholar 

  28. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature. 393, 440–442 (1998). https://doi.org/10.1038/30918

    Article  MATH  Google Scholar 

  29. Liu, J., Zhou, M., Wang, S., Liu, P.: A comparative study of network robustness measures. Front. Comput. Sci. 11, 568–584 (2017). https://doi.org/10.1007/s11704-016-6108-z

    Article  Google Scholar 

  30. Golas, U.: Analysis and Correctness of Algebraic Graph and Model Transformations. Vieweg+Teubner, Wiesbaden (2011). https://doi.org/10.1007/978-3-8348-9934-7

  31. Yoo, H.-J.: 1.2 Intelligence on Silicon: From Deep-Neural-Network Accelerators to Brain Mimicking AI-SoCs. In: 2019 IEEE International Solid- State Circuits Conference—(ISSCC). pp. 20–26. IEEE (2019). https://doi.org/10.1109/ISSCC.2019.8662469

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan Ramasundaram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramanathan, S., Ramasundaram, M. (2021). Multilevel Neuron Model Construction Related to Structural Brain Changes Using Hypergraph. In: Panigrahi, C.R., Pati, B., Mohapatra, P., Buyya, R., Li, KC. (eds) Progress in Advanced Computing and Intelligent Engineering. Advances in Intelligent Systems and Computing, vol 1199. Springer, Singapore. https://doi.org/10.1007/978-981-15-6353-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6353-9_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6352-2

  • Online ISBN: 978-981-15-6353-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics