Skip to main content

Performance Evaluation of RF and SVM for Sugarcane Classification Using Sentinel-2 NDVI Time-Series

  • Conference paper
  • First Online:
Progress in Advanced Computing and Intelligent Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1199))

Abstract

Sentinel-2 optical time-series images obtained at high resolution are creditable for cropland mapping which is the key for sustainable agriculture. The presented work was conducted in a heterogeneous region in Sameerwadi with an aim to classify sugarcane crops, with mainly two groups so as to provide a sugarcane field map, using Sentinel-2 normalized difference vegetation index (NDVI) time-series data. The potential of two better-known machine learning (ML) classifiers, random forest (RF) and support vector machine (SVM), was investigated to identify seven classes including sugarcane, early sugarcane, maize, waterbody, fallow land, built-up and bare land, and a sugarcane crop map is produced. Both the classifiers were able to effectively classify sugarcane areas and other land covers from the time-series data. Our results show that RF achieved higher overall accuracy (88.61%) than SVM having an overall accuracy of 81.86%. This study demonstrated that utilizing the Sentinel-2 NDVI time-series with RF and SVM successfully classified sugarcane crop fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Everingham, Y.L., Lowe, K.H., Donald, D.A., Coomans, D.H., Markley, J.: Advanced satellite imagery to classify sugarcane crop characteristics. Agron. Sustain. Dev. 27(2), 111–117 (2007)

    Google Scholar 

  2. Saini, R., Ghosh, S.K.: Crop classification on single date sentinel-2 imagery using random forest and suppor vector machine. Int. Arch. Photogramm. Remote Sens. & Spat. Inform. Sci. (2018)

    Google Scholar 

  3. Gomez, C., White, J.C., Wulder, M.A.: Optical remotely sensed time series data for land cover classification: a review. ISPRS J. Photogramm. Remote Sens. 116, 55–72 (2016)

    Google Scholar 

  4. Long, J.A., Lawrence, R.L., Greenwood, M.C., Marshall, L., Miller, P.R.: Object-oriented crop classification using multitemporal ETM + SLC-off imagery and random forest. GISci. Remote Sens. 50(4), 418–436 (2013)

    Google Scholar 

  5. Muller, H., Rufin, P., Griffiths, P., Siqueira, A.J.B., Hostert, P.: Mining dense landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens. Environ. 156, 490–499 (2015)

    Google Scholar 

  6. Zheng, B., Myint, S.W., Thenkabail, P.S., Aggarwal, R.M.: A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. Int. J. Appl. Earth Obs. Geoinf. 34, 103–112 (2015)

    Google Scholar 

  7. Man, C.D., Nguyen, T.T., Bui, H.Q., Lasko, K., Nguyen, T.N.T.: Improvement of land-cover classification over frequently cloud-covered areas using landsat 8 time-series composites and an ensemble of supervised classifiers. Int. J. Remote Sens. 39(4), 1243–1255 (2018)

    Google Scholar 

  8. Senf, C., Leitao, P.J., Pflugmacher, D., van der Linden, S., Hostert, P.: Mapping land cover in complex Mediterranean landscapes using landsat: improved classification accuracies from integrating multi-seasonal and synthetic imagery. Remote Sens. Environ. 156, 527–536 (2015)

    Google Scholar 

  9. Jia, K., Liang, S., Zhang, N., Wei, X., Gu, X., Zhao, X., et al.: Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data. ISPRS J. Photogramm. Remote Sens. 93, 49–55 (2014)

    Google Scholar 

  10. Boschetti, M., Stroppiana, D., Brivio, P.A., Bocchi, S.: Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. Int. J. Remote Sens. 30(18), 4643–4662 (2009)

    Google Scholar 

  11. Arvor, D., Jonathan, M., Meirelles, M.S.P., Dubreuil, V., Durieux, L.: Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. Int. J. Remote Sens. 32(22), 7847–7871 (2011)

    Google Scholar 

  12. Maus, V., Câmara, G., Cartaxo, R., Sanchez, A., Ramos, F.M., de Queiroz, G.R.: A time-weighted dynamic time warping method for land-use and land-cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(8), 3729–3739 (2016)

    Google Scholar 

  13. Vieira, M.A., Formaggio, A.R., Renno, C.D., Atzberger, C., Aguiar, D.A., Mello, M.P.: Object based image analysis and data mining applied to a remotely sensed landsat time-series to map sugarcane over large areas. Remote Sens. Environ. 123, 553–562 (2012)

    Google Scholar 

  14. Zhou, Z., Huang, J., Wang, J., Zhang, K., Kuang, Z., Zhong, S., Song, X.: Object-oriented classification of sugarcane using time-series middle-resolution remote sensing data based on adaboost. PLoS ONE 10(11), e0142069 (2015)

    Google Scholar 

  15. Mulianga, B., Begue, A., Clouvel, P., Todoroff, P.: Mapping cropping practices of a sugarcane-based cropping system in Kenya using remote sensing. Remote Sens. 7(11), 14428–14444 (2015)

    Google Scholar 

  16. El Hajj, M., Begue, A., Guillaume, S., Martine, J.-F.: Integrating SPOT-5 time series, crop growth modeling and expert knowledge for monitoring agricultural practices—The case of sugarcane harvest on Reunion Island. Remote Sens. Environ. 113(10), 2052–2061 (2009)

    Google Scholar 

  17. Belgiu, M., Csillik, O.: Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 204, 509–523 (2018)

    Google Scholar 

  18. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    MATH  Google Scholar 

  19. Mohite, J., Karale, Y., Pappula, S., TP, A. S., Sawant, S. D., & Hingmire, S.: Detection of pesticide (Cyantraniliprole) residue on grapes using hyperspectral sensing. In: Sensing for Agriculture and Food Quality and Safety IX, vol. 10217, p. 102170P (2017)

    Google Scholar 

  20. Poona, N., Van Niekerk, A., Ismail, R.: Investigating the utility of oblique tree-based ensembles for the classification of hyperspectral data. Sensors 16(11), 1918 (2016)

    Google Scholar 

  21. Yin, H., Pflugmacher, D., Li, A., Li, Z., Hostert, P.: Land use and land cover change in Inner Mongolia-understanding the effects of China’s re-vegetation programs. Remote Sens. Environ. 204, 918–930 (2018)

    Google Scholar 

  22. Loggenberg, K., Strever, A., Greyling, B., Poona, N.: Modelling water stress in a Shiraz Vineyard using hyperspectral imaging and machine learning. Remote Sens. 10(2), 202 (2018)

    Google Scholar 

  23. Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M., Rigol-Sanchez, J.P.: An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 67, 93–104 (2012)

    Google Scholar 

  24. Truong, Y., Lin, X., Beecher, C.: Learning a complex metabolomic dataset using random forests and support vector machines. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 835–840 (2004)

    Google Scholar 

  25. Mountrakis, G., Im, J., Ogole, C.: Support vector machines in remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 66(3), 247–259 (2011)

    Google Scholar 

  26. Khobragade, A., Athawale, P., Raguwanshi, M.: Optimization of statistical learning algorithm for crop discrimination using remote sensing data. In: 2015 IEEE International Advance Computing Conference (IACC), pp. 570–574 (2015)

    Google Scholar 

  27. Foody, G.M., Mathur, A.: A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 42(6), 1335–1343 (2004)

    Google Scholar 

  28. Behmann, J., Mahlein, A.-K., Rumpf, T., Römer, C., Plümer, L.: A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precision Agric. 16(3), 239–260 (2015)

    Google Scholar 

  29. Hawrylo, P., Bednarz, B., Wkezyk, P., Szostak, M.: Estimating defoliation of Scots pine stands using machine learning methods and vegetation indices of Sentinel-2. Eur. J. Remote Sens. 51(1), 194–204 (2018)

    Google Scholar 

  30. Warner, T.A., Nerry, F.: Does single broadband or multispectral thermal data add information for classification of visible, near-and shortwave infrared imagery of urban areas? Int. J. Remote Sens. 30(9), 2155–2171 (2009)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff of KIAAR and GBL, Sameerwadi, Karnataka, India, for their support and efforts in collecting ground truth data of crop plots used as the training set in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamal Virnodkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Virnodkar, S., Pachghare, V.K., Patil, V.C., Jha, S.K. (2021). Performance Evaluation of RF and SVM for Sugarcane Classification Using Sentinel-2 NDVI Time-Series. In: Panigrahi, C.R., Pati, B., Mohapatra, P., Buyya, R., Li, KC. (eds) Progress in Advanced Computing and Intelligent Engineering. Advances in Intelligent Systems and Computing, vol 1199. Springer, Singapore. https://doi.org/10.1007/978-981-15-6353-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6353-9_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6352-2

  • Online ISBN: 978-981-15-6353-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics