Skip to main content

Agricultural, Economic and Societal Importance of Brassicaceae Plants

  • Chapter
  • First Online:
The Plant Family Brassicaceae

Abstract

This chapter reviews the importance of Brassicaceae (Cruciferae) or mustard family and summarizes the role of some representative plant species of Brassicaceae in agriculture, economy and society. The family Brassicaceae is one of the largest dicot families with more than 360 genera and 4000 species. It is grown and highly diversified almost all over the world for its edible roots, leaves, stems, buds, flowers and oilseed. The wild germplasm of this family could be used to develop cytoplasmic male sterility for the production of hybrid seeds and some weedy member provides an experimental platform for the progression of modern biology. The morphology, biogeography and ecology of current crops of Brassicaceae are reviewed. Some physiological traits like tolerance to biotic and abiotic stresses and resistance to different diseases or pests by providing nuclear genes are also discussed with the oil content and fatty acid profile. The purpose of this review is to highlight the potential values of Brassicaceae plants under any circumstances and their uses in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramovič H, Abram V (2005) Physico-chemical properties, composition and oxidative stability of Camelina sativa oil. Food Technol Biotechnol 43:63–70

    Google Scholar 

  • Afrin KS, Rahim MA, Jong-In P, Natarajan S, Rubel M, Kim H, Nou, Ill-Sup (2018) Screening of cabbage (Brassica oleracea L.) germplasm for resistance to black rot. Plant Breed Biotech 6(1):30–43

    Google Scholar 

  • Agneta R, Möllers C, Rivelli AR (2013) Horseradish (Armoracia rusticana), a neglected medical and condiment species with a relevant glucosinolate profile: a review. Genet Resour Crop Evol 60(7)

    Google Scholar 

  • Ahmed MF, Rao AS, Ahemad SR, Ibrahim M (2012) Phytochemical studies and antioxidant activities of Brassica oleracea L. Var. Capitata. Int J Phar Pharmaceut Sci 4:374–378

    CAS  Google Scholar 

  • Ahuja, KL, Singh H, Raheja RK, Labana KS (1987) The oil content and fatty acid composition of various genotypes of cauliflower, turnip and radish. Plant Food Hum Nutr 37:33–40

    Google Scholar 

  • Alam M, Ahmad H, Quazi MH, Khawaja HIT (1992) Cross compatibility studies within the genus Brassica 1. Amphidiplpoid combinations. Sci Khyber 5:89–92

    Google Scholar 

  • Almond JA, Dawkins TCK, Askew MF (1986) Aspects of crop husbandry. In: Scarisbrick DH, RW Daniels (eds) Oilseed rape. Collins, London, pp 127–175

    Google Scholar 

  • Al-Qudah MA, Abu Zarga MH (2010) Chemical constituents of Sisymbrium irio L. from Jordan. Natu Prod Res 24(5):448–456

    Google Scholar 

  • Al-Shehbaz IA (2012) A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon 61(5):931–954

    Google Scholar 

  • Amri E (2014) The role of selected plant families with dietary Ethnomedicinal species used as anticancer. J Med Plants Stud 2(1):28–39

    Google Scholar 

  • Anand IJ, Downey RK (1981) A study of erucic acid alleles in digenomic rapeseed (Brassica napus L.). Can J Plant Sci 61:199–203

    CAS  Google Scholar 

  • Anand IJ, Mishra PK, Rawat DS (1985) Mechanism of male sterility in Brassica juncea. I. Manifestation of sterility and fertility restoration. Cruciferae Newslett 10:44–46

    Google Scholar 

  • Anonymous (1993) Sweet potato plants vs. weeds. HortIdeas. January p 8

    Google Scholar 

  • Apel P, Bauwe H, Ohle H (1984) Hybrids between Brassica alboglabra and Moricandia arvensis and their photosynthetic properties. Biochem Physiol Pflanz 179:793–797

    CAS  Google Scholar 

  • Atri C, Kaur B, Sharma S, Gandhi N, Verma H, Goyal A et al (2016) Substituting nuclear genome of Brassica juncea (L.) Czern & Coss. In cytoplasmic background of Brassica fruticulosa results in cytoplasmic male sterility. Euphytica 209:31–40

    CAS  Google Scholar 

  • Attia T, Busso C, Röbbelen G (1987) Digenomic triploids for an assessment of chromosome relationships in the cultivated diploid Brassica species. Genome 29:326–330

    Google Scholar 

  • Bajaj YPS (1990) Wide hybridization in legumes and oilseed crops through embryo, ovule and ovary culture. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 10. Legumes and oilseed crops I. Springer, Berlin, pp 3–37

    Google Scholar 

  • Bajaj YPS, Mahajan SK, Labana KS (1986) Interspecific hybridization of Brassica napus and B. juncea through ovary, ovule and embryo culture. Euphytica 35(103–109)

    Google Scholar 

  • Bang SW, Kaneko Y, Matsuzawa Y (1996) Production of intergeneric hybrids between Raphanus and Sinapis and the cytogenetics of their progenies. Breed Sci 46:45–51

    Google Scholar 

  • Banga SS, Labana KS (1991) Cytoplasmic-genetic relationship between Brassica nigra and Sinapis allioni. Cruciferae Newslett 14(15):12–13

    Google Scholar 

  • Banga S, Kaur G, Grewal N, Salisbury PA, Banga SS (2011) Transfer of resistance to seed shattering from Brassica carinata to Brassica napus. In: Proceedings of the 13th international rapeseed congress, Prague, Czech Republic, pp 863–866

    Google Scholar 

  • Bansal S, Durrett TP (2016) Camelina sativa: an ideal platform for the metabolic engineering and field production of industrial lipids. Biochimie 120:9–16

    CAS  PubMed  Google Scholar 

  • Barcikowska B, Balicka M, Zwierzykowska E (1983) On the way to yellow seeded Brassica napus. I. Crossings between Brassica oleracea and B. carinata. Cruciferae Newslett l8:20

    Google Scholar 

  • Barlas NT, Irget ME, Tepecik M (2011) Mineral content of the rocket plant (Eruca sativa). African J Biotechnol 10(64):14080–14082

    CAS  Google Scholar 

  • Barnum K, Franks SJ (2013) Seed extracts impede germination in Brassica rapa plants. Int J Plant Biol 4(1):e2

    Google Scholar 

  • Barro F, Martín A (1999) Response of different genotypes of Brassica carinata to microspore culture. Plant Breed 118(1):79–81

    Google Scholar 

  • Barton WH (1977) Wildflowers of the Davis Mountains and the Marathon Basin, Texas, p 111

    Google Scholar 

  • Bauer-Weston B, Keller W, Webb J, Gleddie S (1993) Production and characterization of asymmetric somatic hybrids between Arabidopsis thaliana and Brassica napu. Theo Appl Genet 86(2–3):150–158

    CAS  Google Scholar 

  • Beckie HJ, Warwick SI, Nair H, Seguin-Swartz G (2003) Gene flow in commercial fields of herbicide-resistant canola (Brassica napus L.). Ecol Appl 13:1276–1294

    Google Scholar 

  • Beilstein MA, Al-Shehbaz IA, Kellogg EA (2006) Brassicaceae phylogeny and trichome evolution. Am J Bot 93:607–619

    CAS  PubMed  Google Scholar 

  • Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA (2008) Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. Am J Bot 95:1307–1327

    CAS  PubMed  Google Scholar 

  • Beltagy AM (2014) Investigation of new antimicrobial and antioxidant activities of Brassica rapa L. Int J Pharm Pharmaceut Sci 6:84–88

    Google Scholar 

  • Bennett BC (2011) Twenty-five economically important plant families. Encyclopedia of life support systems. http://www.eolss.net/Sample-Chapters/C09/E6–118-03.pdf

  • Bennett RA, Thiagarajah MR, King JR, Rahman MH (2008) Interspecific cross of Brassica oleracea var. alboglabra and B. napus: effects of growth condition and silique age on the efficiency of hybrid production and inheritance of erucic acid in the self-pollinated backcross generation. Euphytica 164:593–601

    CAS  Google Scholar 

  • Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ (1994) RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265(5180):1856–1860

    CAS  PubMed  Google Scholar 

  • Beránek M, Bechyne M, Klíma M (2007) Protoplast isolation and fusion between Brassica carinata A. Braun. and Brassica rapa L. Agricultura Tropica et Subtropica 40(1):1–6

    Google Scholar 

  • Beversdorf WD, Weiss-Lerman J, Erickson LR, Machado VS (1980) Transfer of cytoplasmically-inherited triazine resistance from bird’s rape to cultivated oilseed rape (Brassica campestris and B. napus). Can J Genet Cytol 22:167–172

    CAS  Google Scholar 

  • Bhatnagar A, Bhushan B, Malik M (2016) Traditional medicinal plants of district Bijnor, U.P., India. Int J Recent Sci Res 7(4):10670–10677

    Google Scholar 

  • Bijral JS, Sharma TR (1995) A sexual hybrid between Brassica juncea and Diplotaxis muralis. Indian J Genet Plant Breed 55:170–172

    Google Scholar 

  • Bijral JS, Sharma TR (1996) Intergeneric hybridization between Brassica napus and Diplotaxis muralis. Cruciferae Newslett 18:10–11

    Google Scholar 

  • Bijral JS, Kanwal KS, Sharma TR (1994) Brassica cossoneana x Brassica carinata hybrids. Cruciferae Newslett 16(22)

    Google Scholar 

  • Bing DJ, Downey RK, Rakow GFW (1991) Potential of gene transfer among oilseed Brassica and their weedy relatives. In: GCIRC 1991 congress, pp 1022–1027

    Google Scholar 

  • Bing DJ, Downey RK, Rakow GFW (1995) An evaluation of the potential of intergeneric gene transfer between Brassica napus and Sinapis arvensis. Plant Breed 114:481–484

    Google Scholar 

  • Bing DJ, Downey RK, Rakow GFW (1996a) Assessment of transgene escape from Brassica rapa (B. campestris) into B. nigra or Sinapis arvensis. Plant Breed 115:1–4

    Google Scholar 

  • Bing DJ, Downey RK, Rakow GFW (1996b) Hybridizations among Brassica napus, B. rapa and B. juncea and their two weedy relatives B. nigra and Sinapis arvensis under open pollination conditions in the field. Plant Breed 115:470–473

    Google Scholar 

  • Bioresearch Online (2000) Plants that glow in the dark. Bioresearch Online

    Google Scholar 

  • Bladh KW, Olsson KM (2011) Introduction and use of horseradish (Armoracia rusticana) as food and medicine from antiquity to the present: emphasis on the Nordic countries. J Herbs Spices Med Plants 17(3):197–213

    CAS  Google Scholar 

  • Boscaro V, Boffa L, Binello A, Amisano G, Fornasero S, Cravotto G, Gallicchio M (2018) Antiproliferative, proapoptotic, antioxidant and antimicrobial effects of Sinapis nigra L. and Sinapis alba L. extracts. Molecules 23(11):3004

    Google Scholar 

  • Bradley FM, Ellis B W, Martin DL (eds) (2009) The organic gardener’s handbook of natural pest and disease control. Rodale, Inc. ISBN 978-1-60529-677-7

    Google Scholar 

  • Brown J, Brown AP (1996) Gene transfer between canola (Brassica napus L. and B. campestris L.) and related weed species. Ann Appl Biol 129:513–522

    Google Scholar 

  • Browne LM, Conn KL, Ayer WA, Tewari JP (1991) The camalexins: new phytoalexins produced in the leaves of Camelina sativa (Cruciferae). Tetrahedron 47:3909–3914

    CAS  Google Scholar 

  • Bundy JG, Davey MP, Viant MR (2009) Environmental metabolomics: a critical review and future perspectives. Metabolomics 5(3–21):3–21

    CAS  Google Scholar 

  • Busso C, Attia T, Röbbelen G (1987) Trigenomic combinations for the analysis of meiotic control in the cultivated Brassica species. Genome 29:331–333

    Google Scholar 

  • CABI (2016) Centre for Agriculture and Bioscience International. Invasive species compendium. www.cabi.org/isc

  • Calabrone L, Larocca M, Marzocco S, Martelli G, Rossano R (2015) Total phenols and flavonoids content, antioxidant capacity and lipase inhibition of root and leaf horseradish (Armoracia rusticana) extracts. Food Nutr Sci 6(2015):64–74

    CAS  Google Scholar 

  • Cal-IPC (2004) Cal-IPC plant assessment form for Brassica nigra. California Invasive Plant Council, Berkeley, California, USA. http://www.cal-ipc.org/paf/site/paf/500

  • Callihan B, Brennan J, Miller T, Brown J, Moore M (2000) Mustards in mustards: guide to identification of canola, mustard, rapeseed and related weeds. University of Idaho

    Google Scholar 

  • Campos D, Chirinos R, Barreto O, Noratto G, Pedreschi R (2013) Optimized methodology for the simultaneous extraction ofglucosinolates, phenolic compounds and antioxidant capacity from maca (Lepidium meyenii). Indus Crops Prod 49:747–754

    CAS  Google Scholar 

  • Canola Council of Canada (2014d) What is Canola? http://www.canolacouncil.org/oil-and-meal/what-is-canola/

  • Cárcamo H, Olfert O, Dosdall L, Herle C, Beres B, Soroka J (2007) Resistance to cabbage seedpod weevil among selected Brassicaceae germplasm. The Can Entomol 139:658–669

    Google Scholar 

  • Cardone M, Mazzoncini M, Menini S, Rocco V, Senatore A, Seggiani M, Vitolo S (2003) Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: agronomic evaluation, fuel production by transesterification and characterization. Biom Bioener 25(6):623–636

    CAS  Google Scholar 

  • Cartea M, Francisco M, Lema M, Soengas P, Velasco P (2010) Resistance of Cabbage (Brassica oleracea capitata Group) Crops to Mamestra brassicae. J Eco Entomol 103:1866–1874

    CAS  Google Scholar 

  • Cartea E, De Haro-Bailón A, Padilla G, Obregón-Cano S, Del Rio-Celestino M, Ordás A (2019) Seed Oil Quality of Brassica napus and Brassica rapa Germplasm from Northwestern Spain. Foods 8(8):292

    CAS  PubMed Central  Google Scholar 

  • Cavigelli MA, Martin TE, Mutch DR (2014) Oilseed radish. Michigan State University

    Google Scholar 

  • Center for New Crops & Plant Products (2013) CropINDEX. West Lafayette, Indiana, USA: Center for New Crops & Plant Products, Purdue University. http://www.hort.purdue.edu/newcrop/Indices/index_ab.html

  • CFIA (2012) Canadian food inspection Agency.https://www.inspection.gc.ca/plants/plants-with-novel-traits/applicants/directive-94-08/biology-documents/brassica-juncea/eng/1330727837568/1330727899677

  • CFIA (2014) Canadian food inspection agency. https://inspection.gc.ca/plants/plants-with-novel-traits/applicants/directive-94-08/biology-documents/brassica-rapa-l-/eng/1330965093062/1330987674945

  • CFIA (2017) Canadian food inspection agency. https://inspection.gc.ca/plants/plants-with-novel-traits/applicants/directive-94-08/biology-documents/brassica-carinata/eng/1501087371874/1501087468251

  • Chadoeuf R, Darmency H, Maillet J (1998) Survival of buried seeds of interspecific hybrids between oilseed rape, hoary mustard and wild radish. Field Crops Res 58(3):197–204

    Google Scholar 

  • Chang C, Meyerowitz EM (1986) Molecular cloning and DNA sequence of the Arabidopsi thaliana alcohol dehydrogenase gene. Proc Natl Acad Sci USA 83(5):1408–1412

    CAS  PubMed  Google Scholar 

  • Chang CT, Uesugi R, Hondo K, Kakihara F, Kato M (2007) The effect of the cytoplasms of Brassica napus and B. juncea on some characteristics of B. carinata, including flower morphology. Euphytica 158(1–2):261–270

    Google Scholar 

  • Chang C, Kakihara F, Hondo K, Kato M (2011) The cytoplasm effect comparison between Brassica napus and Brassica carinata on floral characteristics of Brassica oleracea. Plant Breed 120(1):73–79

    Google Scholar 

  • Chatterjee D, Banga S, Gupta M, Bharti S, Salisbury PA, Banga SS (2016) Resynthesis of Brassica napus through hybridization between B. juncea and B. carinata. Theor Appl Genet 1–14

    Google Scholar 

  • Chaudhary A, Choudhary S, Sharma U, Vig AP, Arora S (2016) In vitro evaluation of Brassica sprouts for its antioxidant and Antiproliferative potential. Ind J Pharmaceut Sci 78:615–623

    CAS  Google Scholar 

  • Chauhan ES, Tiwari A, Singh A (2016) Phytochemical screening of red cabbage (Brassica oleracea) powder and juice-a comparative study. J Med Plants 4:196–199

    Google Scholar 

  • Chavan V, Kamble A (2014) Induction of total phenolics and defence-related enzymes during beta-aminobutyric acid-induced resistance in Brassica carinata against Alternaria blight. Archives Phytopathol Plant Protect 47:2200–2212

    CAS  Google Scholar 

  • Cheam AH, Code GR (1995) The biology of Australian weeds. 24. Raphanus raphanistrum L. Plant Prot Quart 10(1):2–13

    Google Scholar 

  • Chen BY, Heneen WK (1992) Inheritance of seed colour in Brassica campestris L. and breeding for yellow-seeded B. napus L. Euphytica 59:157–163

    Google Scholar 

  • Chen HG, Wu JS (2008) Characterization of fertile amphidiploid between Raphanus sativus and Brassica alboglabra and the crossability with Brassica species. Genet Resour Crop Evol 55:143–150

    CAS  Google Scholar 

  • Chen LP, Zhang MF, Li CS, Hirata Y (2005) Production of interspecific somatic hybrids between tuber mustard (Brassica juncea) and red cabbage (Brassica oleracea). Plant Cell Tissue Organ Cult 80:305–311

    Google Scholar 

  • Chen H-F, Wang H, Li Z-Y (2007) Production and genetic analysis of partial hybrids in intertribal crosses between Brassica species (B. rapa, B. napus) and Capsella bursa-pastoris. Plant Cell Rep 26:1791–1800

    CAS  PubMed  Google Scholar 

  • Chen JP, Ge XH, Yao XC, Li ZY (2012) Genome affinity and meiotic behavior in trigenomic hybrids and their doubled allohexaploids between three cultivated Brassica allotetraploids and Brassica fruticulosa. Genome 55:164–171

    CAS  PubMed  Google Scholar 

  • Cheng BF, Chen BY, Heneen WK (1994) Addition of Brassica alboglabra Bailey chromosomes to B. campestris L. with special emphasis on seed colour. Heredity 73:185–189

    Google Scholar 

  • Cheung KW, Razeq FM, Sauder CA, James T, Martin SL (2015) Bidirectional but asymmetrical sexual hybridization between Brassica carinata and Sinapis arvensis (Brassicaceae). J Plant Res 128(2):1–12

    Google Scholar 

  • Chevre AM, Eber F, Marbale E, Kerlan MC, Primad C, Vedel F, Delseny M, Pelletier G (1994) Comparison of somatic and sexual Brassica napus - Sinapis alba hybrids and their progeny by cytogenetic studies and molecular characterization. Genome 37:367–374

    CAS  PubMed  Google Scholar 

  • Chevre AM, Eber F, Baranger A, Kerlan MC, Barret P, Festoc G, Vallee P, Renard M (1996) Interspecific gene flow as a component of risk assessment for transgenic Brassicas. Acta Hort 407:169–179

    CAS  Google Scholar 

  • Chèvre AM, Eber F, Baranger A, Hureau G, Barret P, Picault H, Renard M (1998) Characterization of backcross generations obtained under field conditions from oilseed rape-wild radish F1 interspecific hybrids: an assessment of transgene dispersal. Theor Appl Genet 97:90–98

    Google Scholar 

  • Chèvre AM, Eber F, Darmency H, Fleury A, Picault H, Letanneur JC, Renard M (2000) Assessment of interspecific hybridization between transgenic oilseed rape and wild radish under normal agronomic conditions. Theor App Genet 100(8):1233–1239

    Google Scholar 

  • Chèvre AM, Ammitzbøll H, Breckling B, Dietz-Pfeilstetter A, Eber F et al (2004) A review on interspecific gene flow from oilseed rape to wild relatives. In: den Nijs HCM, Bartsch D, Sweet J (eds) Introgression from genetically modified plants into wild relatives. CABI, Wallingford, pp 235–251

    Google Scholar 

  • Chiang MS, Chiang BY, Grant WF (1977) Transfer of resistance to race 2 of Plasmodiophora brassicae from Brassica napus to cabbage (B. oleracea var. capitata). I. Interspecific hybridization between B. napus and B. oleracea var. capitate. Euphytica 26(2):319–336

    Google Scholar 

  • Choudhary BR, Joshi P (1999) Interspecific hybridization in Brassica. In: Proceedings of the 10th international rapeseed congress, Australia. Contribution No 510

    Google Scholar 

  • Choudhary BR, Joshi P (2000) Cytomorphology of intergeneric hybrid Sinapis alba · Brassica nigra. J Genet Breed 54:157–160

    Google Scholar 

  • Choudhary BR, Joshi P (2001) Genetic diversity in advanced derivatives of Brassica interspecific hybrids. Euphytica 121:1–7

    Google Scholar 

  • Choudhary BR, Joshi P (2012) Crossability of Brassica carinata and B. tournefortii, and cytomorphology of their F1 hybrid. Cytologia 77(4):453–458

    Google Scholar 

  • Choudhary BR, Joshi P, Ramarao S (2000) Interspecific hybridization between Brassica carinata and Brassica rapa. Plant Breed 119:417–420

    Google Scholar 

  • Choudhary BR, Joshi P, Rama Rao S (2002) Cytogenetics of Brassica juncea X Brassica rapa hybrids and patterns of variation in the hybrid derivatives. Plant Breed 121:292–296

    Google Scholar 

  • Chrungu B, Verma N, Mohanty A, Pradhan A, Shivanna KR (1999) Production and characterization of interspecific hybrids between Brassica maurorum and crop brassicas. Theor Appl Genet 98:608–613

    Google Scholar 

  • Cipollini D, Cipollini K (2016) A review of garlic mustard (Alliaria petiolata, Brassicaceae) as an allelopathic plant. J Torrey Bot Soci 143(4):339–348

    Google Scholar 

  • Clark A (2007) Managing cover crops profitably, 3rd ed. National SARE Outreach Handbook Series Book 9. Nat Agric Lab Beltsville MD

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant J 16(6):735–743

    CAS  PubMed  Google Scholar 

  • Conn KL, Tewari JP, Dahiya JS (1988) Resistance to Alternaria brassicae and phytoalexin-elicitation in rapeseed and other crucifers. Plant Sci 56:21–25

    CAS  Google Scholar 

  • Damgaar C, Kjellsson G (2005) Gene flow of oilseed rape (Brassica napus) according to isolation distance and buffer zone. Agri Eco Environ 108:291–301

    Google Scholar 

  • Daniels R, Boffey C, Mogg R, Bond J, Clarke R (2005) The potential for dispersal of herbicide tolerance genes from genetically-modified, herbicide-tolerant oilseed rape crops to wild relatives. Report to the Department for the Environment, Food and Rural Affairs (DEFRA) No. EPG 1/5/ 151. http://www.defra.gov.uk/environment/gm/research/pdf/epg_1–5–151.pdf

  • Danlami U, Orishadipe AT, Lawal DR (2016) Phytochemical, nutritional and antimicrobial evaluations of the aqueous extract of Brassica Nigra (Brassicaceae) seeds. Am J Appl Chem 4:161–163

    CAS  Google Scholar 

  • Darmency H, Fleury A (2000) Mating system in Hirschfeldia incana and hybridization to oilseed rape. Weed Res 40(2):231–238

    Google Scholar 

  • David M (2014) Nature’s restaurant: fields, forests & wetlands foods of Eastern North America—a complete wild food guide

    Google Scholar 

  • Davis AR, Pylatuik JD, Paradis JC et al (1998) Nectar-carbohydrate production and composition vary in relation to nectary anatomy and location within individual flowers of several species of Brassicaceae. Planta 205:305–318

    CAS  PubMed  Google Scholar 

  • de Melo PE, de Giordano LB (1994) Effect of Ogura male-sterile cytoplasm on theperformance of cabbage hybrid variety. II. Commercial characteristics. Euphytica 78:149–154

    Google Scholar 

  • Debby K (2015) Introduced species summary project garlic mustard (Alliaria petiolata)

    Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266(5188):1247–1250

    CAS  PubMed  Google Scholar 

  • Diederichsen E, Sacristan MD (1988) Interspecific hybridizations in the genus Brassica followed by in ovule embryo culture. Cruciferae Newslett 13:20–21

    Google Scholar 

  • DiTomaso JM, Healy EA (2007) Weeds of California and other western states. UC ANR Publ 3488. Univ California Div of Agric. and Nat. Resources, Davis

    Google Scholar 

  • Duke JA (1983) Brassica rapa L. In: Handbook of energy crops. Center for New Crops & Plant Products, Purdue Univ. www.hort.purdue.edu/ newcrop/duke_energy/Brassica_rapa.html

  • Duke JA (2013) Nasturtium officinale (Brassicaceae). Dr. Duke’s phytochemical and ethnobotanical databases: ethnobotanical uses

    Google Scholar 

  • Eastham K, Sweet J (2002) Genetically modified organisms (GMOs): the significance of gene flow through pollen transfer. Environ Issue Report, No. 28, Europe Environ Agency Copenhagen

    Google Scholar 

  • Eduardo VS, Lorrane SV, Carlos FSC, Luciano ML, Francisco FGN, Pedro SMO (2017) Chromatographic characterization of the crambe (Crambe abyssinica Hochst) oil and modeling of some parameters for its conversion in biodiesel. Indus Crops Prod 97:545–551

    Google Scholar 

  • Edwards M (1976) Dormancy in seeds of Charlock (Sinapis arvensis L.). Plant Physiol 58(5):626–630

    Google Scholar 

  • Eenink AH (1974) Matromorphy in Brassica oleracea L. III. The influence of temperature, delayed prickle pollination and growth regulators on the number of matromorphic seeds formed. Euphytica 23:711–718

    Google Scholar 

  • Efraima L (2003) “Sisymbrium irio” Medicinal substances in Jerusalem from early times to the present day. Archaeopress, Oxford, UK, p 62. 978-1-84171-490-5

    Google Scholar 

  • Ehrensing DT, Guy SO (2008) Camelina. EM 8953-E. Oregon State University Extension Service, Corvallis, OR, USA. http://extension.oregonstate.edu/catalog/pdf/em/em8953-e.pdf

  • El Bassam N (2010) Handbook of bioenergy crops. A complete reference to species, development and applications. Earthscan LLC, Washington, DC, USA

    Google Scholar 

  • Ellerstrom s (1978) Species crosses and sterility in Brassica and Raphanus. Cruciferae Newslett 3:16–17

    Google Scholar 

  • Fahleson J, Rahlen L, Glimelius K (1988) Analysis of plants regenerated from protoplast fusions between Brassica napus and Eruca sativa. Theor Appl Genet 76:507–512

    CAS  PubMed  Google Scholar 

  • Fahleson J, Eriksson I, Glimelius K (1994a) Intertribal somatic hybrids between Brassica napus and Barbarea vulgaris—production of in vitro plantlets. Plant Cell Rep 13:411–416

    CAS  PubMed  Google Scholar 

  • Fahleson J, Eriksson I, Landgren M, Stymne S, Giimelius K (1994b) Intertribal somatic hybrids between Brassica napus and Thlaspi perfoliatum with high content of the T. perfoliatum-specific nervonic acid. Theor Appl Genet 87:795–804

    CAS  PubMed  Google Scholar 

  • Falasca SL, Flores N, Lamas MC, Carballo SM, Anschau A (2010) Crambe abyssinica: an almost unknown crop with a promissory future to produce biodiesel in Argentina. Int J Hydrogen Ener 35(11):5808–5812

    CAS  Google Scholar 

  • Falk KC (1991) Heterosis in summer turnip rape (Brassica campestris L.) and cytoplasmic substitution in the genus Brassica. PhD thesis, Dept. of Crop Science and Plant Ecology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

    Google Scholar 

  • Fan Z, Tai W, Stefansson BR (1985) Male sterility in Brassica napus L. associated with an extra chromosome. Can J Genet Cytol 27:467–471

    Google Scholar 

  • Fan Z, Stefansson BR, Sernyk JL (1986) Maintainers and restorers for three male sterility-inducing cytoplasms in rape (Brassica napus L.). Can J Plant Sci C66:229–234

    Google Scholar 

  • Fang ZX, Hu YX, Liu DH, Chen JC, Ye XQ (2008) Changes of phenolic acids and antioxidant activities during potherb mustard (Brassica juncea, Coss.) pickling. Food Chem 108:811–817

    CAS  PubMed  Google Scholar 

  • FAO (2019) The state of the world’s biodiversity for food and agriculture. In: Bélanger J, Pilling D (eds) FAO commission on genetic resources for food and agriculture assessments, Rome, 572 pp. http://www.fao.org/3/CA3129EN/CA3129EN.pdf

  • FAOSTAT (2013) FAO Statistics online database, Production/Crops–rapeseed. http://faostat3.fao.org/home/E

  • Felter HW, Lloyd JU (1898) King’s American Dispensatory. http://www.henriettes-herb.com

  • Fernandes F, Valentão P, Sousa C, Pereira JA, Seabra RM, Andrade PB (2007) Chemical and antioxidative assessment of dietary turnip (Brassica rapa var. rapa L.). Food Chem 105:1003–1010

    CAS  Google Scholar 

  • Fernandez-Escobar J, Dominguez J, Martin A, Fernandez-Martinez JM (1988) Genetics of the erucic acid content in interspecific hybrids of Ethiopian mustard (Brassica carinata Braun) and rapeseed (B. napus L.). Plant Breed 100:310–315

    CAS  Google Scholar 

  • FitzJohn RG, Armstrong TT, Newstrom-Lloyd LE, Wilton DA, Cochrane M (2007) Hybridisation within Brassica and allied genera: evaluation of potential for transgene Escape. Euphyt 158:209–230

    Google Scholar 

  • Forsberg J, Landgren M, Glimelius K (1994) Fertile somatic hybrids between Brassica napus and Arabidopsis thaliana. Plant Sci 95:213–223

    Google Scholar 

  • Francis A, Warwick SI (2009) The Biology of Canadian Weeds. 142. Camelina alyssum (Mill.) Thell; C. microcarpa Andrz. ex DC; C. sativa (L.) Crantz. Can J Plant Sci 89:791–810

    Google Scholar 

  • Frello S, Hansen KR, Jensen J, Jørgensen RB (1995) Inheritance of rapeseed (Brassica napus)-specific RAPD markers and a transgene in the cross B. juncea × (B. juncea × B. napus). Theor Appl Genet 91:236–241

    CAS  PubMed  Google Scholar 

  • Fu TD, Yang GS, Yang XN, Ma CZ (1995a) Discovery, study and utilization of polima cytoplasmic male sterility in Brassica napus L. Prog Natl Sci 5:169–177

    Google Scholar 

  • Fu TD, Yang GS, Yang XN, Ma CZ (1995b) Discovery, study and utilization of polima cytoplasmic male sterility in Brassica napus L. Prog Nat Sci 5:169–177

    Google Scholar 

  • Fulgione A, Hancock AM (2018) Archaic lineages broaden our view on the history of Arabidopsis thaliana. The New Phytol 219(4):1194–1198

    PubMed  Google Scholar 

  • Gerdemann-Knorck M, Sacristan MD, Braatz C, Schieder O (1994) Utilization of asymmetric somatic hybridization for the transfer of disease resistance from Brassica nigra to Brassica napus. Plant Breed 113:106–113

    Google Scholar 

  • Gerdemann-Knorck M, Nielen S, Tzscheetzsch C, Iglisch J, Schieder O (1995) Transfer of disease resistance within the genus Brassica through asymmetric somatic hybridization. Euphytica 85:247–253

    Google Scholar 

  • Getinet A, Rakow G, Raney JP, Downey RK (1994) Development of zero erucic acid Ethiopian mustard through an interspecific cross with zero erucic acid Oriental mustard. Can J Plant Sci 74(4):793–795

    CAS  Google Scholar 

  • Getinet A, Rakow G, Raney JP, Downey RK (1997) Glucosinolate content in interspecific crosses of Brassica carinata with B. juncea and B. napus. Plant Breed 116:39–46

    CAS  Google Scholar 

  • Ghosh Dastidar N, Varma NS (1999) A study on intercrossing between transgenic B. juncea and other related species. In: Proceedigs of the 10th international rapeseed congress, Australia. Contribution No. 244

    Google Scholar 

  • Gleba YY, Hoffmann F (1980) Arabidobrassica: a novel plant obtained by protoplast fusion. Planta 149:112–117

    CAS  PubMed  Google Scholar 

  • Gokavi SS, Malleshi NG, Guo M (2004) Chemical composition of garden cress (Lepidium sativum) seeds and its fractions and use of bran as a functional ingredient. Plant Foods for Human Nutr 59(3):105–111

    CAS  Google Scholar 

  • Goswami R, Devi J (2002) Intergeneric hybridization of Indian mustard (Brassica juncea) with taramira (Eruca sativa). Indian J Agric Sci 72:436–438

    Google Scholar 

  • Gowers S (1982) The transfer of characters from Brassica campestris L. to Brassica napus L.: production of clubroot-resistant oil-seed rape (B. napus ssp. oleifera). Euphytica 31:971–976

    Google Scholar 

  • Goyal RK, Chowdhury JB, Jain RK (1997) Development of fertile Brassica juncea x B. tournefortii hybrids through embryo rescue. Cruciferae Newslett Eucarpia 19:19–20

    Google Scholar 

  • Grønbæk M (2014) Effects of cultivation strategies on phytochemicals and sensory properties of cabbage (Brassica oleracea L. var. capitata L.) and curly kale (Brassica oleracea L. var. sabellica L.). Aarhus Uni Dep Food Sci

    Google Scholar 

  • Grubben GJH, Denton OA (ed) (2004) Vegetables. Plant Resour Trop Africa 2:295

    Google Scholar 

  • Gruber S, Husken A, Dietz-Pfeilstetter A, Mollers C, Weber EA, Stockmann F, Thole H, Gruver J, Weil R, White C, Lawley Y (2012) Radishes—a new cover crop for organic farming systems. e-Organic. Michigan State University

    Google Scholar 

  • Gualberto JM, Mileshina D, Wallet C, Niazi AK, Weber-Lotfi F, Dietrich A (2014) The plant mitochondrial genome: dynamics and maintenance. Biochimie 100:107–120

    CAS  PubMed  Google Scholar 

  • Guarrera PM, Salerna G, Caneva G (2005) Folk phytotherapeutical plans from Maratea area (Basilicata, Italy). J Ethnopharmacol 99(3):367–378

    PubMed  Google Scholar 

  • Guerena (2006) Cole crops and other Brassicas: Organic production. NCAT Agriculture Specialist. www.attra.ncat.org

  • Guéritaine G, Bazot S, Darmency H (2003) Emergence and growth of hybrids between Brassica napus and Raphanus raphanistrum. New Phytol 158(3):561–567

    Google Scholar 

  • Gugel RK, Falk KC (2006) Agronomic and seed quality evaluation of Camelina sativa in eastern Canada. Can J Plant Sci 86:1047–1058

    Google Scholar 

  • Gulati SC, Varma NS, Mani N et al (1991) Resistance to white rust (Albugo candida) in Indian mustard. In: Proceedings of the GCIRC 8th international rapeseed congress, pp 256–261

    Google Scholar 

  • Gulden RH, Warwick SI, Thomas AG (2008) The biology of Canadian weeds. 137. Brassica napus L. and B. rapa L. Can J Plant Sci 88:951–996

    Google Scholar 

  • Gulshan AB, Dasti AA, Sabir H, Atta MI, Aminud-din M (2012) Indigenous uses of medicinal plants in rural areas of Dera Ghazi Khan, Punjab, Pakistan. ARPN J Agric Biol Sci 7(9):750–762

    Google Scholar 

  • Gundimeda HR, Prakash S, Shivanna KR (1992) Intergeneric hybrids between Enarthrocarpus lyratus, a wild species, and crop brassicas. Theor Appl Genet 83:655–662

    CAS  PubMed  Google Scholar 

  • Gupta SK (1997) Production of interpsecific and intergenric hybrids in Brassica and Raphanus. Cruciferae Newslett 19:21–22

    Google Scholar 

  • Halfhill MD, Richards HA, Mabon SA, Stewart CN (2001) Expression of GFP and Bt transgenes in Brassica napus and hybridization with Brassica rapa. Theor Appl Genet 103:659–667

    CAS  Google Scholar 

  • Halfhill MD, Millwood RJ, Raymer PL, Stewart CN Jr (2002) Bt-transgenic oilseed rape hybridization with its weedy relative, Brassica rapa. Environ Biosaf 1:19–28

    Google Scholar 

  • Halfhill MD, Zhu B, Warwick SI, Raymer PL, Millwood RJ, Weissinger AK, Stewart CN (2004) Hybridization and backcrossing between transgenic oilseed rape and two weed species under field conditions. Environ Biosaf Res 3:73–81

    Google Scholar 

  • Hall L, Topinka K, Huffman J, Davis L, Good A (2000) Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Sci 48(6):688–694

    Google Scholar 

  • Hani M, Lebazda R, Fenni M (2017) Studies of morphological characteristics and production of seeds weeds of species of family Brassicaceae (Cruciferous) in Setifian High Plateau, Algeria. ARRB 12(5):1–9

    Google Scholar 

  • Hannaway DB, Larson C (2004) Forage fact sheet: field mustard (Brassica rapa L. var. rapa). Oregon State Univ., Corvallis. http://forages.oregonstate.edu/php/fact_sheet_print_ffor.php?SpecID=152&use=Forage

  • Hansen LN (1998) Intertribal somatic hybridization between rapid cycling Brassica oleracea L. and Camelina sativa (L.) Crantz. Euphytica 104:173–179

    Google Scholar 

  • Hansen LB, Siegismund HR, Jørgensen RB (2001) Introgression between oilseed rape (Brassica napus L.) and its weedy relative B. rapa L. in a natural population. Gen Resour Crop Evol 48:621–627

    Google Scholar 

  • Harberd DJ, McArthur ED (1980) Meiotic analysis of some species and genus hybrids in the Brassiceae. In: Tsunoda S, Hinata K, Gómez-Campo C (eds) Brassica crops and wild allies. Jap Sci Soc Press, Tokyo, pp 65–87

    Google Scholar 

  • Hartwig B, Detlef K, Peter L, Gerhard F (2005) Feeding value of crambe press cake and extracted meal as well as production responses of growing-finishing pigs and dairy cows fed these by-products. Arch Animal Nutr 59(2):111–122

    Google Scholar 

  • Hasegawa J, Sakamoto Y, Nakagami S, Aida M, Sawa S, Matsunaga S (2016) Three dimensional imaging of plant organs using a simple and rapid transparency technique. Plant Cell Phyiol 57(3):462–472

    CAS  Google Scholar 

  • Haser-Krause J (1989) Comparison of the suitability of sources of cytoplasmic male sterility (CMS) and self-incompatibility for breeding F1 hybrids of cauliflower. Biuletyn Warzywniczy 29–34

    Google Scholar 

  • Hauser TP, Jørgensen RB, Østergård H (1997) Preferential exclusion of hybrids in mixedpollinations between oilseed rape (Brassica napus) and weedy B. campestris (Brassicaceae). Am J Bot 84:756–762

    CAS  PubMed  Google Scholar 

  • Hauser TP, Shaw RG, Østergård H (1998) Fitness of F1 hybrids between weedy Brassica rapa and oilseed rape (B. napus). Heredity 81:429–435

    Google Scholar 

  • Hedges LJ, Lister CE (2006) Nutritional attributes of Brassica vegetables. Crop Food Res Confid Rep

    Google Scholar 

  • Hoffmann MH (2002) Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae). J Biogeol 29:125–134

    Google Scholar 

  • Holm L, Doll J, Holm E, Pancho J, Herberger J (1997) World weeds. Natural histories and distribution. Wiley, NY USA

    Google Scholar 

  • Hoyle M, Hayter K, Cresswell JE (2007) Effect of pollinator abundance on self-fertilization and gene flow: application to GM canola. Ecol Appl 17(7):2123–2135

    PubMed  Google Scholar 

  • Hu B, Chen F, Li Q (1997) Sterility and variation resulting from the transfer of polimacytoplasmic male sterility from Brassica napus into Brassica chinensis. J Agric Sci 128:299–301

    Google Scholar 

  • Hu Q, Andersen SB, Dixelius C, Hansen LN (2002) Production of fertile intergeneric somatic hybrids between Brassica napus and Sinapis arvensis for the enrichment of the rapeseed gene pool. Plant Cell Rep 21:147–152

    CAS  Google Scholar 

  • Huang B, Liu Y, Wu W, Xue X (2002) Production and cytogenetics of intergeneric hybrids between Ogura CMS Brassica napus and Raphanus sativus. Cruciferae Newslett 24:25–27

    CAS  Google Scholar 

  • Huang CH, Sun R, Hu Y, Zeng L, Zhang N, Cai L, Zhang Q, Koch MA, Al-Shehbaz IA, Edger PP, Pires JC, Tan DY, Zhong Y, Ma H (2015) Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol Biol Evol 33(2):394–412

    PubMed  PubMed Central  Google Scholar 

  • Hüsken A, Dietz-Pfeilstetter A (2007) Pollen-mediated intraspecific gene flow from herbicide resistant oilseed rape (Brassica napus L.). Transgenic Res 16:557–569

    PubMed  Google Scholar 

  • IENICA (2012) Interactive European Network for Industrial Crops and their Applications (IENICA). http://www.ienica.net/crops/crambe.pdf

  • Ignatov A, Kuginuki Y, Hida K (1999) Disease reaction to Xanthomonas campestris pv. Campestris races 1, 4 and 5 in weedy and cultivated Brassica rapa L. Cruciferae Newsl Eucarpia 21:123–124

    Google Scholar 

  • Inomata N (1988) Intergeneric hybridization between Brassica napus and Sinapis arvensis and their crossability. Cruciferae Newslett 13:22–23

    Google Scholar 

  • Inomata N (2001) Intergeneric hybridization between Brassica juncea and Erucastrum virgatum and the meiotic behavior of F1 hybrids. Cruciferae Newslett Eucarpia 23:17–18

    Google Scholar 

  • Inomata N (2002) A cytogenetic study of the progenies of hybrids between Brassica napus and Brassica oleracea, Brassica bourgeaui, Brassica cretica and Brassica montana. Plant Breed 121:174–176

    Google Scholar 

  • Inomata N (2003) Production of intergeneric hybrids between Brassica juncea and Diplotaxis virgata through ovary culture, and the cytology and crossability of their progenies. Euphytica 133:57–64

    CAS  Google Scholar 

  • Inomata N (2005) Intergeneric hybrid between Brassica napus and Diplotaxis harra through ovary culture and the cytogenetic analysis of their progenies. Euphytica 145:87–93

    Google Scholar 

  • Iqbal S, Younas U, Chan KW, Saeed Z, Shaheen MA, Akhtar N, Majeed A (2013) Growth and antioxidant response of Brassica rapa var. rapa L. (turnip) irrigated with different compositions of paper and board mill (PBM) effluent. Chemosphere 91:1196–1202

    CAS  PubMed  Google Scholar 

  • Jaiswal AK, Abu-Ghannam N, Gupta S (2012) A comparative study on the polyphenolic content, antibacterial activity and antioxidant capacity of different solvent extracts of Brassica oleracea vegetables. Int J Food Sci Technol 47:223–231

    CAS  Google Scholar 

  • Jenkins TE, Frampton CM, Conner AJ (2005) Population variability in wild turnip (Brassica rapa var. oleifera) for interspecific hybridisation with herbicideresistant rape (Brassica napus) pollen. New Zealand J Crop Hort Sci 33:9–16

    Google Scholar 

  • Jiang Y, Tian E, Li R, Chen L, Meng J (2007) Genetic diversity of Brassica carinata with emphasis on the interspecific crossability with B. rapa. Plant Breed 126(5):487–491

    Google Scholar 

  • Jiang JJ, Zhao XX, Tian W, Li TB, Wang YP (2009) Intertribal somatic hybrids between Brassica napus and Camelina sativa with high linolenic acid content. Plant Cell Tiss Organ Cult 99:91–95

    Google Scholar 

  • Jiang Y, Caldwell CD, Falk KC (2014) Camelina seed quality in response to applied nitrogen, genotype and environment. Can J Plant Sci 94:971–980

    CAS  Google Scholar 

  • Johnson EN, Beckie HJ, Warwick S, Shirtliffe SJ, Gulden RH, Séguin-Swartz G, Légère A, Simard MJ, Harker KN, Thomas G (2004) Ecology and management of volunteer canola. http://ws373847.websoon.com/uploads/managing_vol_canola.pdf

  • Johnson E, Vera C, Klein-Gebbinck H, Gan Y, Falk K, Bauche C (2007) Agronomy of Camelina sativa. Western Applied Research Corporation

    Google Scholar 

  • Johnson EN, Falk K, Klein-Gebbinck H, Lewis L, Vera C, Malhi S, Shirtliffe S, Gan Y, Hall L, Topinka K, Nybo B, Sluth D, Bauche C, Phelps S (2008) Agronomy of Camelina sativa and Brassica carinata. Annual report. Western Applied Research Corporation

    Google Scholar 

  • Johnson EN, Falk K, Klein-Gebbinck H, Lewis L, Malhi S, Leach D, Shirtliffe S, Holm F A, Sapsford K, Hall L, Topinka K, May W, Nybo B, Sluth D, Gan Y, Phelps S (2011) Agronomy of Camelina sativa and Brassica carinata. Final Report

    Google Scholar 

  • Johnston TD (1974) Transfer of disease resistance from Brassica campestris L. to rape (B. napus L.). Euphytica 23:681–683

    Google Scholar 

  • Jovičić D, Jovica V, Zorica N, Gordana P, Gordana T, Maja I, Dragana M (2017) Antioxidant capacity of oilseed rape (Brassica napus) in different soil types. Turk J Agric 41:463–471

    Google Scholar 

  • Julié-Galau S, Bellec Y, Faure J-D, Tepfer M (2014) Evaluation of the potential for interspecific hybridization between Camelina sativa and related wild Brassicaceae in anticipation of field trials of GM Camelina. Transgenic Res 23:67–74

    PubMed  Google Scholar 

  • Kamala T (1976) Interspecific hybrids in Brassica. Cytologia 41:407–415

    Google Scholar 

  • Kamala T (1983) A study on the cytogenetic homeologies between Raphanus and Brassica genomes. Ind J Bot 6:131–140

    Google Scholar 

  • Kasim A, Kumar S, Dhaliwal HS (2017) Biodiesel production from Abyssinian Mustard (Brassica carinata). Int J Eng Tech Manag Appl Sci 5(6):710–722

    Google Scholar 

  • Katche E, Quezada-Martinez D, Ihien Katche E, Vasquez-Teuber P, Mason AS (2019) Interspecific hybridization for Brassica crop improvement. Crop Breed Genet Genom 1:e190007. https://doi.org/10.20900/cbgg20190007

  • Katiyar RK, Chamola R (1995) Useful end products from Brassica juncea x B. carinata and Brassica juncea x B. campestris crosses. Cruciferae Newslett 17:20–21

    Google Scholar 

  • Kerlan MC, Chèvre AM, Eber F, Baranger A, Renard M (1992) Risk assessment of outcrossing of transgenic rapeseed to related species: I. Interspecific hybrid production under optimal conditions with emphasis on pollination and fertilization. Euphytica 62:145–153

    Google Scholar 

  • Khan RU, Mehmood S, Khan SU, Khan A, Shah IA, Bokhari TZ (2013) Medicinal value of indigenous flora in the vicinity of district bannu, Khyber Pakhtunkhwa, Pakistan. Adv Pharm Ethnomed 1 (1):7–14

    Google Scholar 

  • Kim N, Li Y, Sun S (2015) Epoxidation of Camelina sativa oil and peel adhesion properties. Ind Crops Products 64

    Google Scholar 

  • Kirkhus B, Lundon AR, Hauge n JE, Vogt G, Borge GI, Henriksen BI (2013) Effects of environmental factors on edible oil quality of organically grown Camelina sativa. J. Ag ic Food Chem. 61:3179–3185

    Google Scholar 

  • Kirti P, Banga S, Prakash S, Chopra V (1995) Transfer of Ogu cytoplasmic male sterility to Brassica juncea and improvement of the male sterile line through somatic cell fusion. Theor Appl Genet 91(3):517–521

    CAS  PubMed  Google Scholar 

  • Klein M, Eckert-Ossenkopp U, Schmiedeberg I, Brandt P, Unseld M, Brennicke A, Schuster W (1994) Physical mapping of the mitochondrial genome of Arabidopsis thaliana by cosmid and YAC clones. Plant J 6(3):447–455

    CAS  PubMed  Google Scholar 

  • Klíma M, Abraha E, Vyvadilová M, Bechyn M (2009) Protoplast culture and fusion between brassica carinata and brassica napus. Agric Tropica et Subtropica 42(1)

    Google Scholar 

  • Knispel AL, McLachlan M, Van Acker RC, Friesen LF (2008) Gene flow and multiple herbicide resistance in escaped canola populations. Weed Sci 56:72–80

    CAS  Google Scholar 

  • Koch MA, Kiefer M (2005) Genome evolution among cruciferous plants: a lecture from the comparison of the genetic maps of three diploid species—Capsella rubella, Arabidopsis lyrata subsp. petraea, and A. thaliana. Am J Bot 92:761–767

    PubMed  Google Scholar 

  • Kolte SJ, Bordoloi DK, Awasthi RP (1991) The search for resistance to major diseases of rapeseed and mustard in India. In: Proceedings of the GCIRC 8th International Rapeseed Congress, pp 219–225

    Google Scholar 

  • Korkmaz S (2018) Antioxidants in Maca (Lepidium meyenii) as a supplement in nutrition. Antioxidants Foods Appl. https://doi.org/10.5772/intechopen.75582

    Article  Google Scholar 

  • Koubaa M, Driss D, Bouaziz F, Ghorbel RE, Chaabouni SE (2015) Antioxidant and antimicrobial activities of solvent extract obtained from rocket (Eruca sativa L.) flowers. Free Radicals Antioxidants 5(1):20–22

    Google Scholar 

  • Kuang P, Song D, Yuan Q, Yi R, Lv X, Liang H (2013) Separation and purification of sulforaphene from radish seeds using macroporous resin and preparative high performance liquid chromatography. Food Chem 136:342–347

    CAS  PubMed  Google Scholar 

  • Kumari N, Avtar R, Thakral BSN (2016) Antioxidant potential in seed meal of different Indian mustard genotypes. J Oilseed Brassica 1:63–67

    Google Scholar 

  • La Mura M, Norris C, Sporle S, Jayaweera D, Greenland A, Lee D (2010) Development of genome-specific 5S rDNA markers in Brassica and related species for hybrid testing. Genome 53(8):643–649

    PubMed  Google Scholar 

  • Lake JA, Field KJ, Davey MP, Beerling DJ, Lomax BH (2009) Metabolomic and physiological responses reveal multi-phasic acclimation of Arabidopsis thaliana to chronic UV radiation. Plant Cell Environ 32(32):1377–1389

    CAS  PubMed  Google Scholar 

  • Lalas S, Gortzi O, Athanasiadis V, Dourtoglou T, Dourtoglou V (2012) Full characterisation of Crambe abyssinica Hochst. Seed Oil. J Am Oil Chem Soc 89(12): 2253–2258

    Google Scholar 

  • Lankau RA (2007) Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytol 175:176–184

    PubMed  Google Scholar 

  • Lankau RA, Wheeler E, Bennett AE, Strauss SY (2011) Plant-soil feedbacks contribute to an intransitive competitive network that promotes both genetic and species diversity. J Ecol (Oxford) 99(1):176–185

    Google Scholar 

  • Lawton K, Friedrich L, Hunt M (1996) Benzothiadizaole induces disease resistance by a citation of the systemic acquired resistance signal transduction pathway. The Plant J 10:71–82

    CAS  PubMed  Google Scholar 

  • Lefol E, Danielou V, Darmency H (1996) Predicting hybridization between transgenic oilseed rape and wild mustard. Field Crops Res 45:153–161

    Google Scholar 

  • Lefol E, Séguin-Swartz G, Downey RK (1997) Sexual hybridization in crosses of cultivated Brassica species with the crucifers Erucastrum gallicum and Raphanus raphanistrum: potential for gene introduction. Euphytica 95:127–139

    Google Scholar 

  • Lelivelt CLC, Lange W, Dolstra O (1993a) Intergeneric crosses for the transfer of resistance to the beet cyst nematode from Raphanus sativus to Brassica napus. Euphytica 68:111–120

    Google Scholar 

  • Lelivelt CLC, Leunissen EHM, Frederiks HJ, Helsper JPFG, Krens FA (1993b) Transfer of resistance to the beet cyst nematode (Heterodera schachtii Schm.) from Sinapis alba L. (white mustard) to the Brassica napus L. gene pool by means of sexual and somatic hybridization. Theor Appl Genet 85:688–696

    CAS  PubMed  Google Scholar 

  • Leung H, Williams PH (1983) Cytoplasmic sterile Brassica campestris breeding lines with resistance to club root, turnip mosaic and downy mildew. Hort Sci 18:774–775

    Google Scholar 

  • Lewis LJ, Woods DL, Cheng BF (2001) Introgression of long pod genotype from spring rape (Brassica napus L.) into summer turnip rape (Brassica rapa L.). Can J Plant Sci 81:59–60

    Google Scholar 

  • Li Z, Heneen WK (1999) Production and cytogenetics of intergeneric hybrids between the three cultivated Brassica diploids and Orychophragmus violaceus. Theor Appl Genet 99:694–704

    CAS  PubMed  Google Scholar 

  • Li Z, Wu JG, Liu Y, Liu HL, Heneen WK (1998) Production and cytgenetics of intergenric hybrids Brassica juncea x Orychopharagmus violaceus and B. carinata x O. violaceus. Theor Appl Genet 96:251–265

    Google Scholar 

  • Li Z, Ceccarelli M, Minelli S, Contento A, Liu Y, Cionini PG (2003) High efficiency production and genomic in situ hybridization analysis of Brassica aneuploids and homozygous plants. Sci China Ser C: Life Sci 46(1):104–112

    CAS  Google Scholar 

  • Li H, Barbetti MJ, Sivasithamparam K (2005) Hazard from reliance on cruciferous hosts as sources of major gene-based resistance for managing blackleg (Leptosphaeria maculans) disease. Field Crops Res 91:185–198

    Google Scholar 

  • Lian Y, Lin G, Zhao X, Lim H (2011) Production and genetic characterization of somatic hybrids between leaf mustard (Brassica juncea) and broccoli (Brassica oleracea). Vitro Cell Dev Plant 47:289–296

    Google Scholar 

  • Ligen Z, Yuanfeng W, Yuke S, Lei Z, Mupunga J, Jianwei M, Shiwang L (2017) Broccoli seed extracts but not sulforaphane have strong free radical scavenging activities. Int J Food Sci Technol 52:2374–2381

    Google Scholar 

  • Liu Clarke JH, Chèvre AM, Landgren M, Glimelius K (1999) Characterization of sexual progenies of male-sterile somatic cybrids between Brassica napus and Brassica tournefortii. Theor Appl Genet 99:605–610

    Google Scholar 

  • Liu R, Qian W, Meng J (2002) Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape (Brassica napus × B. campestris). Theor Appl Genet 105:1050–1057

    CAS  PubMed  Google Scholar 

  • Liu J, Wang H, Yu L, Li D, Li M (2009) Morphology and cytology of flower chimeras in hybrids of Brassica carinata x Brassica rapa. Afric J Biotech 8(5):801–806

    Google Scholar 

  • Ljungberg A, Cheng B, Heneen WK (1993) Investigation of hybrids between Brassica tournefortii Gouan and B. alboglabra Bailey. Sver Utsa¨desfo¨ren Tidsk 103:191–197

    Google Scholar 

  • Lloyd AM, Barnason AR, Rogers SG, Byrne MC, Fraley RT, Horsch RB (1986) Transformation of Arabidopsis thaliana with Agrobacterium tumefaciens. Science 234(4775):464–66

    Google Scholar 

  • Lokanadha RD, Sarla N (1994) Hybridization of Brassica tournefortii and cultivated Brassicas. Cruciferae Newslett Eucarpia 16:32–33

    Google Scholar 

  • López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant-Microbe Inter 20(2):207–217

    Google Scholar 

  • Lossinsky AS, Shivers RR (2004) Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions. Rev Histol Histopathol 19(2):535–564

    CAS  Google Scholar 

  • Lou P, Lan ZQ, Deng J, Wang ZQ (2000) Application of in vitro organ culture in wide–cross breeding of rapeseed. Euphytica 114:217–221

    Google Scholar 

  • Lovett JV, Jackson HF (1980) Allelopathic activity of Camelina sativa (L.) Crantz in relation to its phyllosphere bacteria. New Phytol 86:273–277

    Google Scholar 

  • Lukens LN, Quijada PA, Udall J, Pires JC, Schranz ME, Osborn TC (2004) Genome redundancy and plasticity within ancient and recent Brassica crop species. Biol J Linn Soc 82:654–665

    Google Scholar 

  • Mackay GR (1977) The introgression of S alleles into forage rape, Brassica napus L. from turnip, Brassica campestris L. ssp. rapifera. Euphytica 26:511–519

    Google Scholar 

  • Mali RG, Mahajan SG, Mehta AA (2007) Lepidium sativum (garden cress) a review of contemporary literature and medicinal properties. Oriental Pharm Exp Med 7(4):331–335

    Google Scholar 

  • Malik M, Vyas PO, Rangaswamy NS, Shivanna KR (1999) Development of two new cytoplasmic male-sterile lines in Brassica juncea through wide hybridization. Plant Breed 118:75–78

    Google Scholar 

  • Marillia EF, Francis T, Falk KC, Smith M, Taylor DC (2014) Palliser’s promise: Brassica carinata, an emerging western Canadian crop for delivery of new bio-industrial oil feedstocks. Biocatal Agric Biotech 3(1):65–74

    Google Scholar 

  • Marthe F, Richter K, Schrader O (2004) Cabbage (Brassica oleracea ) with new resistance to black rot (Xanthomonas campestris pv. campestris) from black mustard (Brassica nigra). Brassica 2004, 4th ISHS Symposium Brassicas/Proc 14th Crucifer Genet Workshop, p 175

    Google Scholar 

  • Martin SL, Sauder CA, James T, Cheung KW, Razeq FM, Kron P, Hall L (2015) Sexual hybridization between Capsella bursa-pastoris (L.) Medik and Camelina sativa (L.) Crantz (Brassicaceae). Plant Breed 134:212–220

    CAS  Google Scholar 

  • Martínez-Valdivieso D, Font R, Del Río-Celestino M (2019) Prediction of agro-morphological and nutritional traits in Ethiopian Mustard Leaves (Brassica Carinata A. Braun) by visible-near-infrared spectroscopy. Foods 8:6

    Google Scholar 

  • Mason-Sedun W, Jesspo RS, Lovett JV (1986) Differential phytotoxicity among species and cultivars of the genus Brassica to wheat. I. Laboratory and field screening of species. Plant Soil 93(1):3–16

    Google Scholar 

  • Matsushima K, Nemoto K, Nakashima N, Dema D, Thapa L, Watanabe A, Maegawa F, Baba T, Matsushita G (2006) Report of investigation for wild edible plants and their traditional knowledge in Bhutan. J Facul Agri Shinshu Uni 42(1/2):37–46

    Google Scholar 

  • Matsuzawa Y, Funayama T, Kamibayashi M, Konnai M, Bang SW, Kaneko Y (2000) Synthetic Brassica rapa-Raphanus sativus amphidiploid lines developed by reciprocal hybridization. Plant Breed 119:357–359

    Google Scholar 

  • Mattsson B (1988) Interspecific crosses within the genus Brassica and some related genera. Sveriges Utsadesforenings Tidskrift 98:187–212

    Google Scholar 

  • McCann J (2004) The horseradish plant. www.globalgourmet.com/food/egg/egg1296/horsplnt.html

  • McCollum GD (1979) Sterility in successive backcrosses of Raphanobrassica (2n = 4x = 36) with recurrent Brassica oleracea (2n = 2x = 18). Can J Genet Cytol 21:479–485

    Google Scholar 

  • McNaughton IH (1973) Brassica napocampestris L. (2n = 58). 1. Synthesis, cytology, fertility and general considerations. Euphytica 22:301–309

    Google Scholar 

  • McVay KA, Lamb PF (2007) Camelina production in Montana. Field Crops No. D-16. Montana State Uni Ext, Bozeman, MT, USA

    Google Scholar 

  • Melnikovova I, Fait T, Kolarova M, Fernandez EC, Milella L (2015) Effect of Lepidium meyenii Walp. On semen parameters and serum hormone levels in healthy adult men: A doubleblind, randomized, placebocontrolled pilot study. Evidence-based Complementary and Alternative Medicine. https://doi.org/10.1155/2015/324369

  • Meng J, Shi S, Gan L, Li Z, Qu X (1998) The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica 103(3):329–333

    Google Scholar 

  • Metz PLJ, Nap JP, Stiekema WJ (1995) Hybridization of radish (Raphanus sativus L.) and oilseed rape (Brassica napus L.) through a flower-culture method. Euphytica 83:159–168

    CAS  Google Scholar 

  • Metz PLJ, Jacobsen E, Nap JP, Pereira A, Stiekema WJ (1997) The impact on biosafety of the phosphinothricin-tolerance transgene in inter-specific B. rapa × B. napus hybrids and their successive backcrosses. Theor Appl Genet 95:442–450

    CAS  Google Scholar 

  • Metzger J (1833) Systematische Beschreibung der Kultivirten Kohlarten. Heidelberg 2:1–68

    Google Scholar 

  • Mikkelsen TR, Jensen J, Jørgensen RB (1996) Inheritance of oilseed rape (Brassica napus) RAPD markers in a backcross progeny with Brassica campestris. Theor Appl Genet 92:492–497

    CAS  PubMed  Google Scholar 

  • Miraj S (2016) Broccoli (Brassica oleracea var. Italica): potential candidate in the health management. Der Pharmacia Lettre 8:61–65

    CAS  Google Scholar 

  • Mizushima U (1950) Karyogenetic studies of species and genus hybrids in the tribe Brassiceae of Cruciferae. Tohoku J Agric Res 1:1–14

    Google Scholar 

  • Mnzava NA, Schippers RR (2004) Brassica carinata A. Braun. In: Grubben GJH, Denton OA (eds) Plant resources of Tropical Africa 2: vegetables. PROTA Foundation, Wageningen, Netherlands/Backhuys Publishers, Leiden, Netherlands/CTA, Wageningen, Netherlands, pp 119–123

    Google Scholar 

  • Mnzava, NA, Schippers, RR (2007) Brassica carinata A. Braun. In: van der Vossen HAM, Mkamilo GS (eds) Plant resources of Tropical Africa 14: Vegetable oils/Oléagineux. PROTA, Wageningen, Netherlands. http://database.prota.org/PROTAhtml/Brassica%20carinata_En.htm

  • Mohapatra D, Bajaj YPS (1987) Interspecific hybridization in Brassica junceaBrassica hirta using embryo rescue. Euphytic 36(1):321–326

    Google Scholar 

  • Momotaz A, Kato M, Kakihara F (1998) Production of intergeneric hybrids between Brassica and Sinapis species by means of embryo rescue techniques. Euphytica 103(1):123–130

    Google Scholar 

  • Morinaga T (1933) Interspecific hybridization in Brassica. V. The cytology of F1 hybrids of B. carinata and B. alboglabra. Jap J Bot 6:467–475

    Google Scholar 

  • Moser BR (2010) Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope. Lipid Tech 22(120):270–273

    Google Scholar 

  • Moyes CL, Cole SG, Casais CA, Dale PJ (1999) Sexual compatibility between oilseed rape and Sinapis arvensis. In: Proceedings of the 10th international rapeseed congress, Canberra, Australia, Contrib No. 529

    Google Scholar 

  • Moyes CL, Lilley JM, Casais CA, Cole SG, Haeger PD, Dale PJ (2002) Barriers to gene flow from oilseed rape (Brassica napus) into populations of Sinapis arvensis. Mol Ecol 11:103–112

    CAS  PubMed  Google Scholar 

  • Müller J, Sonntag K (2000) Electrofusion of protoplasts in Brassicaceae. Eucarpia Cruciferae Newslett 22:25–26

    Google Scholar 

  • Munthali DC (2009) Evaluation of cabbage varieties for resistance to the cabbage aphid. Afr Entomol 17(1):1–7

    Google Scholar 

  • Mustard S (2013) Saskatchewan Mustard Development Commission. Carinata production: a guide to best management practices. http://www.saskmustard.ca/grower/growing/pdfs/Carinata_Production_Manual_080213.pdf

  • Namai H (1980) Effect of flower bud age at bud pollination on cross fertility in reciprocal intergeneric crosses, Raphanus sativus · Brassica oleracea and B. campestris. Cruciferae Newslett 5:26–27

    Google Scholar 

  • Narain A, Prakash S (1972) Investigations on the artificial synthesis of amphidiploids of Brassica tournefortii Gouan with the other elementary species of Brassica. I. Genomic relationships. Genetica 43:90–97

    Google Scholar 

  • Narasimhulu SB, Kirti PB, Bhatt SR, Prakash S, Chopra VL (1994) Intergeneric protoplast fusion between Brassica carinata and Camelina sativa. Plant Cell Rep 13(11):657–660

    CAS  PubMed  Google Scholar 

  • Naresh M (2014) Epidemiology and forecasting for the management of rapeseed-mustard diseases. J Mycol Plant Pathol 44:131–147

    Google Scholar 

  • Navabi ZK, Strelkov SE, Good AG, Thiagarajah MR, Rahman MH (2010) Brassica B-genome resistance to stem rot (Sclerotinia sclerotiorum) in a doubled haploid population of Brassica napus × Brassica carinata. Can J Plant Pathol 32(2):237–246

    CAS  Google Scholar 

  • Nawaz H, Shad MA, Rauf A (2018a) Optimization of extraction yield and antioxidant properties of Brassica oleracea Convar Capitata Var L. leaf extracts. Food Chem 242:182–187

    CAS  PubMed  Google Scholar 

  • Nawaz H, Shad MA, Muzaffar S (2018b) Phytochemical composition and antioxidant potential of Brassica. https://doi.org/10.5772/intechopen.76120

    Article  Google Scholar 

  • Ní Eidhin D, O’Beirne D (2010) Oxidative stability and acceptability of Camelina oil blended with selected fish oils. Eur J Lipid Technol 112:878–886

    Google Scholar 

  • Nicoletto C, Santagata S, Pino S, Sambo P (2016) Antioxidant characterization of different Italian broccoli landraces. Horti Brasileira 34:74–79

    Google Scholar 

  • Niemann J, Kotlarski S, Wojciechowski A (2014) The evaluation of self-incompatibility and crossability in chosen Brassica species based on the observation of pollen tubes growth and seed set. Acta Scientiarum Polonorum Agric 13(1)

    Google Scholar 

  • Nikolov LA, Shushkov P, Nevado B, Gan X, Al-Shehbaz IA, Filatov D, Bailey CD, Tsiantis M (2019) Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytol 222:1638–1651

    PubMed  Google Scholar 

  • Nitovskaya IO, Shakhovskyi AM (1998) Obtaining of asymmetrical somatic hybrids between Brassica oleracea L. and Arabidopsis thaliana L. (in Russian, English abstr.). Tsitol Genet 32:72–81

    Google Scholar 

  • Nitovskaya IO, Shakhovskyi AM, Komarnyts’kyi IK, Kuchuk MV (2006a) Production of brassica oleracea (+Arabidopsis thaliana) and brassica napus cell lines resistant to spectinomycin/streptomycin as a result of plastome genetic transformation. Tsitol Genet 40:3–10

    Google Scholar 

  • Nwankiti O (1970) Cytogenetic and breeding studies with Brassica I. Cytogenetic experiments with Brassica napocampestris. Hereditas 66:109–126

    Google Scholar 

  • Obi RK, Nwanebu FC, Ndubuisi UU, Orji NM (2009) Antibacterial qualities and phytochemical screening of the oils of Curcubita pepo and Brassica nigra. J Med Plants Res 3(5):429–432

    Google Scholar 

  • Obour AK, Obeng E, Mohammed YA, Campitti I, Durrett TP, Aznar-Moreno JA, Chen C (2017) Camelina seed yield and fatty acids as influenced by genotype and environment. Agro J 109

    Google Scholar 

  • OECD (2012) Organisation for Economic Co-operation and Development. Consensus document on the biology of the brassica crops (Brassica spp.). In: Series on Harmonisation of regulatory oversight of biotechnology, vol 54, p 142

    Google Scholar 

  • OECD (2016) Brassica crops (Brassica species). In: Safety assessment of transgenic organisms in the environment, Volume 5: OECD consensus documents. OECD Publishing, Paris. https://doi.org/10.1787/9789264253018-6-en

    Article  Google Scholar 

  • Ogbede S, Saidu A, Kabiru A (2014) Phytochemical compositions, Antihyperlipidemic and Hepatoprotective effects of Brassica oleracea Var. Capitata L. leaf extracts on tritoninduced Hyperlipidemic rats. Int J Med Sci Clinic Inven 1:345–351

    Google Scholar 

  • OGTR (2008) The biology of brassica napus L. Version 2. Department of Health and Ageing. Australian Government Office of the Gene Technology Regulator. http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/content/canola3/$FILE/biologycanola08_2.pdf

  • Ogura H (1968) Studies on the new male-sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Mem Fac Agric Kagoshina Univ 6:39–78

    Google Scholar 

  • Oilseeds WA (2006) Growing western Canola: an overview of canola production in western Australia. In: Duff J, Sermon D, Walton G, Mangano P, Newman C, Walden K, Barbetti M, Addison B, Eksteen D, Pol E, Leach B (eds). Oil Seeds Industry Association of Western Australia

    Google Scholar 

  • Olgun Ç, Özkan OE, Güney B, Pattabanoglu ES, Güney K, Gür M (2017) Chemical composition and antimicrobial activity in cold press oil of fennel, Anise, white and black mustard seeds. Ind J Pharm Edu Res 51:S200–S204

    CAS  Google Scholar 

  • Olsson G (1960) Species crosses within the genus Brassica. II. Artificial Brassica juncea Coss. Hereditas 46:171–222

    Google Scholar 

  • Opena RT, Lo SH (1978) Derivation of matroclinal diploids in Chinese cabbage and evaluation of their significance in breeding. J Am Soc Hort Sci 103:820–823

    Google Scholar 

  • Orrock JL, Witter MS, Reichman OJ (2008) Apparent competition with an exotic plant reduces native plant establishment. Ecology 89(4):1168–1174

    Google Scholar 

  • Ovcharenko OO, Komarnyts’kyi IK,Cherep MM, Hleba II, Kuchuk MV (2004) Obtaining of intertribal brassica juncea + Arabidopsis thaliana somatic hybrids and study of transgenic trait behavior. Tsitol Genet 38:3–8

    Google Scholar 

  • Palmer TP (1962) Population structure, breeding system, inter-specific hybridisation and allopolyploidy. Heredity 17:278–293

    Google Scholar 

  • Palmer JD, Shields CR, Cohen DB, Orton TJ (1983) Chloroplast DNA evolution and the origin of amphiploid Brassica species. Theor App Genet 65(3):181–189

    CAS  Google Scholar 

  • Palmer CE, Warwick SI, Keller W (2001) Brassicaceae (Cruciferae) family, plant biotechnology and phytoremediation. Int J Phytoremediat 3:245–287

    CAS  Google Scholar 

  • Parikh H, Khanna A (2014) Pharmacognosy and phytochemical analysis of Brassica juncea seeds. Pharmacog J 6

    Google Scholar 

  • Park J, Ahmed NU, Kim H, Nou I (2012) Advances in in vitro culture of the Brassicaceae crop plants. J Plant Biotechnol 39:13–22

    Google Scholar 

  • Parkin IA, Gulden SM, Sharpe AG Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Google Scholar 

  • Parvaiz M, Bhatti KH, Nawaz K, Hussain Z, Khan RMW, Hussian A (2013) Ethno-botanical studies of medicinal plants of Dinga. District Gujarat, Punjab, Pakistan 26(6):826–833

    Google Scholar 

  • Pavlista AD, Baltensperger DD, IsbellTA Hergert GW (2012) Comparative growth of spring-planted canola, brown mustard and camelina. Ind Crops Prod 36:9–13

    Google Scholar 

  • Pellan-Delourme R, Renard M (1987) Identification of maintainer genes in Brassica napus L. for the male-sterility-inducing cytoplasm of Diplotaxis muralis L. Plant Breed 99:89–97

    Google Scholar 

  • Peng G, Falk KC, Gugel RK, Franke C, Yu F, James B, Strelkov SE, Hwang S-F, McGregor L (2013) Sources of resistance to Plasmodiophora brassicae (clubroot) pathotypes virulent on canola. Can J Plant Pathol 36:89–99

    Google Scholar 

  • Pieroni A, Quave CL (2005) Traditional pharmacopoeias and medicines among Albanians and Italians in southern Italy: a comparison. J Ethnopharmacol 101:258–270

    PubMed  Google Scholar 

  • Pieroni A, Quavec CL, Santorod RF (2004) Folk pharmaceutical knowledge in the territory of the Dolomiti Lucane, inland southern Italy. J Ethnopharmacol 95:373–384

    PubMed  Google Scholar 

  • Pitrat M (2012) Vegetable crops in the Mediterranean Basin with an overview of virus resistance. Adv Virus Res 84:1–29

    PubMed  Google Scholar 

  • Plessers AG, McGregor WG, Carson RB, Nakoneshny W (1962) Species trials with oilseed plants. II. Camelina. Can J Plant Sci 42:452–459

    Google Scholar 

  • Popova IE, Morra MJ (2014) Simultaneous quantification of sinigrin, sinalbin, and anionic glucosinolate hydrolysis products in Brassica juncea and Sinapis alba seed extracts using ion chromatography. J Agric Food Chem 62(44):10687–10693

    CAS  PubMed  Google Scholar 

  • Pradhan AK, Mukhopadhyay A, Pental D (1991) Identification of the putative cytoplasmic donor of a CMS system in Brassica juncea. Plant Breed 106:204–208

    Google Scholar 

  • Prakash S, Chopra VL (1990) Reconstruction of allopolyploid Brassicas through nonhomologous recombination: introgression of resistance to pod shatter in Brassica napus. Gen Res 56:1–2

    Google Scholar 

  • Prakash S, Gupta SK, Raut RN, Kalra AK (1984) Synthetic Brassica carinata – a preliminary report. Cruciferae Newslett 9:36

    Google Scholar 

  • Prakash S, Kirti PB, Bhat SR, Gaikwad K, Kumar VD, Chopra VL (1998) A Moricandia arvensis-based cytoplasmic male sterility and fertility restoration system in Brassica juncea. Theor Appl Genet 97:488–492

    CAS  Google Scholar 

  • Prakash S, Wu X-M, Bhat SR (2012) History, evolution and domestication of Brassica crops. In: Janick J (ed) Plant breeding reviews, vol 35, pp 19–84

    Google Scholar 

  • Prasad MP (2014) Antimicrobial potential of Brassicaceae family against clinical isolates. Int J Pure Appl Biosci 2(2):158–162

    Google Scholar 

  • Pratt S (2017) Firm eager to ride the ‘canola train’ with carinata. The Western Producer

    Google Scholar 

  • Quiros CF, Kianian SF, Ochoa O, Douches D (1985) Genome evolution in Brassica: use of molecular markers and cytogenetic stocks. Cruciferae Newslett Eucarpia 10:21–23

    Google Scholar 

  • Quiros CF, Ochoa O, Douches DS (1988) Exploring the role of x = 7 species in Brassica evolution: hybridization with B. nigra and B. oleracea. J Heredity 79:351–358

    CAS  Google Scholar 

  • Raghav PP, Meena PD, Singh B, Meena HP, Ss Meena, Sharma P, Majumdar R, Singh D (2014) Development and evaluation of Alternaria blight tolerant lines in Indian mustard (Brassica juncea). J Oilseed Brassica 5:9

    Google Scholar 

  • Raghavendra RH, Akhilender NK (2011) Eugenol and n-3 rich garden cress seed oil as modulators of platelet aggregation and eicosanoids in Wistar albino rats. The Open Nutraceuticals J 4:144–150

    CAS  Google Scholar 

  • Rahman MH (2001) Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breed 120:463–472

    Google Scholar 

  • Rahman MH (2002) Fatty acid composition of resynthesized Brassica napus and trigenomic Brassica void of genes for erucic acid in their A genomes. Plant Breed 121:357–359

    CAS  Google Scholar 

  • Rahman MH (2004) Optimum age of siliques for rescue of hybrid embryos from crosses between Brassica oleracea, B. rapa and B. carinata. Can J Plant Sci 84:965–969

    Google Scholar 

  • Rahman M, Tahir M (2010) Inheritance of seed coat color of ethiopian mustard (Brassica carinata A. Braun). Can J Plant Sci 90(3):279–281

    Google Scholar 

  • Rahman M, Khatun A, Liu L, Barkla BJ (2018) Brassicaceae mustards: traditional and agronomic uses in Australia and New Zealand Mahmudur. Molec 23:1–18

    Google Scholar 

  • Rai GK, Bagati S, Rai PK, Rai SK, Singh M (2018) Fatty acid profiling in rapeseed mustard (Brassica species). Int J Curr Microbiol App Sci 7(05):148–157

    Google Scholar 

  • Rakow G (2004) Species origin and economic importance of Brassica. In: Pua EC, Douglas CJ (eds) Brassica biotechnology in agriculture and forestry. Berlin (Germany), pp 3–11

    Google Scholar 

  • Rao GU, Shivanna KR (1997) Alloplasmics of B. juncea as bridge-species for development of alloplasmics of other crop brassicas. Cruciferae Newslett Eucarpia 19:29–30

    CAS  Google Scholar 

  • Rao GU, Lakshmikumaran M, Shivanna KR (1996) Production of hybrids, amphiploids and backcross progenies between a cold-tolerant wild species, Erucastrum abyssinicum and crop brassicas. Theor Appl Genet 92:786–790

    CAS  PubMed  Google Scholar 

  • Rashid A, Rakow G, Downey RK (1994) Development of yellow seeded Brassica napus through interspecific crosses. Plant Breed 112:127–134

    Google Scholar 

  • Ravindran PN (2017) The encyclopedia of herbs & spices. CAB International.xlv+, 1,2 Wallingford, UK, 1128 pp. http://www.cabi.org/cabebooks/ebook/20173378261

  • Ren JP, Dickson MH, Earle ED (2000) Improved resistance to bacterial soft rot by protoplast fusion between Brassica rapa and B. oleracea. Theo Appl Genet 100:810–819

    Google Scholar 

  • Rhee WY, Cho YH, Paek KY (1997) Seed formation and phenotypic expression of intra- and inter-specific hybrids of Brassica and of intergeneric hybrids obtained by crossing with Raphanus. J Korean Soc Hort Sci 38:353–360

    Google Scholar 

  • Rieger MA, Potter TD, Preston C, Powles SB (2001) Hybridization between Brassica napus L. and Raphanus raphanistrum L. under agronomic field conditions. Theor Appl Genet 103:555–560

    CAS  Google Scholar 

  • Ringdahl EA, McVetty PBE, Sernyk JL (1987) Intergeneric hybridization of Diplotaxus spp. with Brassica napus: a source of new CMS systems? Can J Plant Sci 67:239–243

    Google Scholar 

  • Ripley VL, Beversdorf WD (2003) Development of self-incompatible Brassica napus: (II) Brassica oleracea S-allele expression in B. napus. Plant Breed 122:6–11

    CAS  Google Scholar 

  • Rochfort S, Jones R (2011) Glucosinolate phytochemicals from Broccoli (Brassica oleracea L. var. botrytis L.) Seeds and their potential health effects. Nuts Seeds Health Dis Prev 253–261. https://doi.org/10.1016/b978-0-12-375688-6.10030-1

  • Rode J (2002) Study of autochthon Camelina sativa (L.) Crantz in Slovenia. J Herb Spic Med Plants 9:313–318

    CAS  Google Scholar 

  • Rongzhan G, Shuhui J, Ruying X, Hongsheng Z (2007a) Studies on rapeseed germplasm enhancement by use of cruciferous weed Descurainia sophia. Gen and Breeding, Gen Germplasm, pp 261–265

    Google Scholar 

  • Rongzhan G, Shuhui J, Ruying X, Hongsheng Z (2007b) Studies on rapeseed germplasm enhancement by use of cruciferous weed Rorippa indica. Gen Breed Gen Germplasm 329–332

    Google Scholar 

  • Roy NN (1978) A study on disease variation in the populations of an interspecific cross of Brassica juncea L. × B. napus L. Euphytica 27:145–149

    Google Scholar 

  • Roy NN (1984) Interspecific transfer of brassica juncea-type high blackleg resistance to brassica napus. Euphytica 33:295–303

    Google Scholar 

  • Ryu JP, Kim DC, In M-J, Chae HJ, Lee SD (2012) Antioxidant potential of ethanol extract of Brassica rapa L. root. J Med Plants Res 6:1581–1584

    CAS  Google Scholar 

  • Sabharwal PS, Dolezel J (1993) Interspecific hybridization in Brassica: application of flow cytometry for analysis of pioidy and genome composition in hybrid plants. Biol Plant 35(2):169–177

    Google Scholar 

  • Sacristan MD, Gerdemann M (1986) Different behavior of Brassica juncea and B. carinata as sources of Phoma lingam resistance in experiments of interspecific transfer to B. napus. Plant Breed 97:304–314

    Google Scholar 

  • Saeidfirozeh H, Shafiekhani A, Cifra M, Masoudi AA (2018) Endogenous chemiluminescence from germinating Arabidopsis thaliana seeds. Sci Rep 8:16231

    PubMed  PubMed Central  Google Scholar 

  • Saeidnia S, Gohari AR (2012) Importance of Brassica napus as a medicinal food plant. J Med Plants Res 6:2700–2703

    Google Scholar 

  • Sahsrabudde MB (1962) The wealth of India, raw materials. Publication and information Directorate, CSIR, De NN, New Delhi. Curr Sci 12:23–24

    Google Scholar 

  • Salisbury PA (1991) Genetic variability in Australian wild crucifers and its potential utilization in oilseed Brassica species. PhD thesis, La Trobe University, Victoria, Australia

    Google Scholar 

  • Salisbury P (2002a) Gene flow between Brassica napus and other Brassicaceae species. Report PAS0201. Institute of Land and Food Resources. University of Melbourne, 45 pp

    Google Scholar 

  • Salma U, Khan T, Shah AJ (2018) Antihypertensive effect of the methanolic extract from Eruca sativa Mill. (Brassicaceae) in rats: muscarinic receptor-linked vasorelaxant and cardiotonic effects. J Ethano pharmacol 1–44

    Google Scholar 

  • Sandhu SK, Gupta VP (2000) Interspecific hybridization among digenomic species of Brassica. Crop Improvement 27:195–197

    Google Scholar 

  • Sarashima M, Matsuzawa Y (1979) Possibility to breed cabbage lines with the cytoplasm of radish. Cruciferae Newslett 4:32

    Google Scholar 

  • Sarla N, Raut RN (1988) Synthesis of Brassica carinata from Brassica nigra Brassica oleracea hybrids obtained by ovary culture. Theor Appl Genet 76:846–849

    CAS  PubMed  Google Scholar 

  • Sarla N, Raut RN (1991) Cytogenetical studies on Brassica nigra B. oleracea hybrids. Indian J Genet Plant Breed 51:408–413

    Google Scholar 

  • Sarla N, Raut R, Shyam P (1987) Synthesis of Brassica carinata A. Br Curr Sci 56:779–781

    Google Scholar 

  • Sarli G, De Lisi A, Agneta R, Grieco S, Ierardi G, Montemurro F, Negro D, Montesano V (2012) Collecting horseradish (Armoracia rusticana, Brassicaceae): local uses and morphological characterization in Basilicata (Southern Italy). Genet Resour Crop Evol 59(5):889–899

    Google Scholar 

  • Sarmah BK, Sarla N (1997) In vitro flowering and back crossing of Brassica intergeneric hybrids. Curr Sci (Bangalore) 72:702–704

    Google Scholar 

  • Sarmah BK, Sarla N (1998) Erucastrum abyssinicum · Brassica oleracea hybrids obtained by ovary and ovule culture. Euphytica 102:37–45

    Google Scholar 

  • Saucke H, Ackermann K (2006) Weed suppression in mixed cropped grain peas and false flax (Camelina sativa). Weed Res 46:453–461

    Google Scholar 

  • Schelfhout CJ, Wroth JM, Yan G, Cowling WA (2008) Enhancement of genetic diversity in canola-quality Brassica napus and B. juncea by interspecific hybridisation. Austral J Agric Res 59:918–925

    CAS  Google Scholar 

  • Scholze P, Krämer R, Ryschka U, Klocke E, Schumann G (2010) Somatic hybrids of vegetable brassicas as source for new resistances to fungal and virus diseases. Euphytica 176:1–14

    Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    CAS  PubMed  Google Scholar 

  • Séguin-Swartz G, Eynck C, Gugel RK, Strelkov SE, Olivier CY, Li JL, Klein-Gebbinck H, Borhan H, Caldwell CD, Falk KC (2009) Diseases of Camelina sativa (false flax). Can J Plant Pathol 31:375–386

    Google Scholar 

  • Séguin-Swartz G, Warwick SI, Gugel RK, Olivier CY, Soroka J, Strelkov SE, Klein-Gebbinck H, Falk KC (2010) Biology of Camelina sativa (L.) Crantz (false flax). Final report to the Can Food Inspec Agency

    Google Scholar 

  • Séguin-Swartz G, Nettleton JA, Sauder C, Warwick SI, Gugel RK (2013) Hybridization between Camelina sativa (L.) Crantz (false flax) and North American Camelina species. Plant Breed 132:390–396

    Google Scholar 

  • Seong G-U, Hwang I-W, Chung S-K (2016) Antioxidant capacities and polyphenolics of Chinese cabbage (Brassica rapa L. ssp. Pekinensis) leaves. Food Chem 199:612–618

    CAS  PubMed  Google Scholar 

  • Shabana MM, Fathy FI, Salama MM, Hashem MM (2013) Cytotoxic and antioxidant activities of the volatile constituents of Brassica tournefortii Gouan: growing in Egypt. Cancer Sci Res Open Access 1(1):4

    Google Scholar 

  • Shah MA, Sarker MMR, Gousuddin M (2016) Antidiabetic potential of Brassica oleracea Var. Italica in type 2 diabetic Sprague dawley (sd) rats. Int J Pharm Phytochem Res 8:462–469

    Google Scholar 

  • Shankar S, Segaran G, Sundar RDV, Settu S, Sathiavelu M (2019) Brassicaceae—a classical review on its pharmacological activities. Int J Pharm Sci Rev Res 20:107–113

    Google Scholar 

  • Sharafi Y, Majidi MM, Goli SAH, Rashidi F (2015) Oil content and fatty acids composition in Brassica species. Int J Food Prop 18(10):2145–2154

    CAS  Google Scholar 

  • Sharbel TF, Haubold B, Mitchell-Olds T (2000) Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe. Mol Ecol 9(12):2109–2118

    CAS  PubMed  Google Scholar 

  • Sharma P, Kapoor S (2015) Biopharmaceutical aspects of Brassica vegetables. J Pharm Phytochem 4

    Google Scholar 

  • Sharma TR, Singh BM (1992) Transfer of resistance to Alternaria brassicae in Brassica juncea through interspecific hybridization among Brassicas. J Genet Breed 46:373–378

    Google Scholar 

  • Sharma A, Kumar V, Kanwar MK, Thukral AK, Bhardwaj R (2017) Phytochemical profiling of the leaves of Brassica juncea L. using GC-MS. Int Food Res J:24

    Google Scholar 

  • Sharma BB, Pritam K, Dinesh S, Tilak RS (2017b) Introgression of black rot resistance from Brassica carinata to cauliflower (Brassica oleracea botrytis Group) through embryo rescue. Front Plant Sci 8:1255

    PubMed  PubMed Central  Google Scholar 

  • Shehata AM, Mulwa RMS, Babadoost M, Uchanski M, Norton MA, Skirvin R, Walters SA (2009) Horseradish: botany, horticulture, breeding, in horticultural reviews. In: Janick J (ed) vol 35. Wiley, Hoboken

    Google Scholar 

  • Sheikh FA, Banga S, Banga SS, Najeeb S, Parray GA, Rather AG (2009a) Cytogenetic studies of F1 and backcross generations of Ethiopian mustard (Brassica carinata) and Indian mustard (Brassica juncea). Cruciferae Newslett Eucarpia 28:10–11

    Google Scholar 

  • Sheikh FA, Banga S, Banga SS, Najeeb S, Rather AG (2009b) Induction of genetic variability in Ethiopian mustard (Brassica carinata) for quality traits through interspecific hybridization. Cruciferae Newslett Eucarpia 28:12–13

    Google Scholar 

  • Sheikh FA, Banga S, Banga SS (2014) Broadening the genetic base of Abyssinian mustard (Brassica carinata A. Braun) through introgession of genes from related allotetrapoloid species. Span J Agri Res 12(3):742–742

    Google Scholar 

  • Shonnard DR, Williams L, Tom NK (2010) Camelina-derived jet fuel and diesel: sustainable advanced biofuels. Environ Prog Sustain Energy 29:382–392

    CAS  Google Scholar 

  • Siemens J, Sacristan MD (1995) Production and characterization of somatic hybrids between Arabidopsis thaliana and Brassica nigra. Plant Sci 111:95–106

    CAS  Google Scholar 

  • Sigareva MA, Earle ED (1999) Camalexin induction in intertribal somatic hybrids between Camelina sativa and rapid-cycling Brassica oleracea. Theor Appl Genet 98:164–170

    CAS  Google Scholar 

  • Sikora E, Bodziarczyk I (2012) Composition and antioxidant activity of kale (Brassica oleracea L.var. acephala) raw and cooked. Acta Scientiarum Polonorum Technol Alimentaria 11:239–248

    CAS  Google Scholar 

  • Simard MJ, Légère A, Pageau D, Lajeunesse J, Warwick S (2002) The frequency and persistence of volunteer canola (Brassica napus) in Quebec. Weed Technol 16:433–439

    Google Scholar 

  • Simlai A, Chatterjee K, Roy A (2014) A comparative study on antioxidant potentials of some leafy vegetables consumed widely in India. J Food Biochem 38:365–373

    CAS  Google Scholar 

  • Simonetti G (1990). In: Schuler S (ed) Simon & Schuster’s guide to herbs and spices. Simon & Schuster, Inc. ISBN 0-671-73489-X

    Google Scholar 

  • Singh A, Fulekar MH (2012) Phytoremediation of heavy metals by Brassica juncea in aquatic and terrestrial Environment. In: Anjum N, Ahmad I, Pereira M, Duarte A, Umar S, Khan N (eds) The plant family Brassicaceae. Environ Pollut 21. https://doi.org/10.1007/978-94-007-3913-0_6

  • Singh Y, Malik CP (2017) Phenols and their antioxidant activity in Brassica juncea seedlings growing under HgCl2 stress. J Microbiol Biotech Res 1:124–130

    Google Scholar 

  • Singh CS, Paswan VK (2017) The potential of garden cress (Lepidium sativum L.) seeds for development of functional foods. Adv Seed Biol

    Google Scholar 

  • Singh B, Chaturvedi S, Walia S, Kaushik G, Thakur S (2011) Antioxidant potential of broccoli stalk: a preliminary investigation. Mediterr J Nutr Metabol 4:227–230

    Google Scholar 

  • Sintim HY, Zheljazkov VD, Obour AK, Garcia AG, Foulke TK (2016) Evaluating agronomic responses of Camelina to seeding date under rain-fed conditions. Agron J 108:349–357

    CAS  Google Scholar 

  • Snogerup S, Persson D (1983) Hybridization between Brassica insularis Moris and B. balearica. Pers Hereditas 99:187–190

    Google Scholar 

  • Soriano NU, Narani A (2012) Evaluation of biodiesel derived from Camelina sativa oil. J Am Oil Chem Soc 89(5):917–923

    CAS  Google Scholar 

  • Sosnowska D, Redzynia M, Anders B (2006) Antioxidant capacity and content of Brassica oleracea dietary antioxidants. Int J Food Sci Technol 41:49–58

    Google Scholar 

  • Sotelo T, Cartea ME, Velasco P, Soengas P (2014) Identification of antioxidant capacity-related QTLs in Brassica oleracea. PLoS ONE 9:e107290

    PubMed  PubMed Central  Google Scholar 

  • Spect CE, Diederichsen A (2001) Brassica. In: Hanelt P (ed) Mansfeld’s encyclopedia of agricultural and horticultural crops, 6 vols. Springer, Berlin, Heidelberg, New York, pp 1453–1456

    Google Scholar 

  • Sridevi O, Sarla N (1996) Reciprocal hybridization between Sinapis alba and Brassica species. Cruciferae Newslett 18:16

    Google Scholar 

  • Sridevi O, Sarla N (2005) Production of intergeneric hybrids between Sinapis alba and Brassica carinata. Genet Res Crop Evol 52(7):839–845

    Google Scholar 

  • Srinabas D, Tyagi K, Harjit Kaur H (2004) Evaluation of taramira oil-cake and reduction of its glucosinolate content by different treatments. Ind J Ani Sci 73(6):687–691

    Google Scholar 

  • Strelkov SE, Hwang SF, Manolii VP, Cao T, Feindel D (2016) Emergence of new virulence phenotypes of Plasmodiophora brassicae on canola (Brassica napus) in Alberta, Canada. Eur J Plant Pathol 1–13

    Google Scholar 

  • Struss D, Bellin U, Robbelen G (1991) Development of B-genome chromosome addition lines of B. napus using different interspecific Brassica hybrids. Plant Breed 106:209–214

    Google Scholar 

  • Struss D, Quiros CF, Röbbelen G (1992) Mapping of molecular markers on Brassica B-genome chromosomes added to Brassica napus. Plant Breed (New York) 108:320–323

    CAS  Google Scholar 

  • Sturtevant EL (1919) Sturtevant’s notes on edible plants. In: Hedrick UP (ed). JB Lyon, Albany, NY, USA

    Google Scholar 

  • Subudhi PK, Raut RN (1994) White rust resistance and its association with parental species type and leaf waxiness in Brassica juncea L Czern & Coss × Brassica napus L. crosses under the action of EDTA and gamma-ray. Euphytica 74:1–7

    Google Scholar 

  • Sullivan P (2003) Principles of sustainable weed management for croplands. ATTRA Publication #IP039

    Google Scholar 

  • Sundberg E, Glimelius K (1991) Effects of parental ploidy level and genetic divergence on chromosome elimination and chloroplast segregation in somatic hybrids within Brassicaceae. Theor Appl Genet 83:81–88

    CAS  PubMed  Google Scholar 

  • Takeshita M, Kato M, Tokumasu S (1980) Application of ovule culture to the production of intergeneric or interspecific hybrids in Brassica and Raphanus. Jap J Genet 55:373–387

    Google Scholar 

  • Talalay P, Fahey JW (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 131(11):3027S–3033S

    CAS  PubMed  Google Scholar 

  • Taylor DC, Falk KC, Palmer CD, Hammerlindl J, Babic V, Mietkiewska E, Jadhav A, Marillia EF, Francis T, Hoffman T, Giblin EM, Katavic V, Keller WA (2010) Brassica carinata—a new molecular farming platform for delivering bio-industrial oil feedstocks: Case studies of genetic modifications to improve very long-chain fatty acid and oil content in seeds. Biofuels Bioprod Biorefin 4(5):538–561

    CAS  Google Scholar 

  • Thaipratum R (2014) Evaluation of antioxidant activities of cabbage (Brassica oleracea L. var. capitata L.). World Acad Sci Eng Technol Int J Bio Biomol Agric Food Biotech Eng 8:591–593

    Google Scholar 

  • Tomar RS, Shrivastava V (2014) Efficacy evaluation of ethanolic extract of Brassica nigra as potential antimicrobial agent against selected microorganisms. Int J Pharm Sci Health Care 3:117–123

    Google Scholar 

  • Tonguç M, Griffiths PD (2004) Transfer of powdery mildew resistance from Brassica carinata to Brassica oleracea through embryo rescue. Plant Breed 123:587–589

    Google Scholar 

  • Toxopeus H, Oost EH, Reuling G (1984) Current aspects of the taxonomy of cultivated Brassica species. The use of B. rapa L. versus B. campestris L. and a proposal for a new intraspecific classification of B. rapa L. Crucifer Newslett 9:55–57

    Google Scholar 

  • Triska Dr (1975) Hamlyn encyclopaedia of plants. Hamlyn ISBN 0-600-33545-3

    Google Scholar 

  • Turk MA, Tawaha AM (2003) Allelopathic effect of black mustard (Brassica nigra L.) on germination and growth of wild oat (Avena fatua L.). Crop Prot 22(4):673–677

    Google Scholar 

  • Turner M, Gustafson P (2006) Wildflowers of the Pacific Northwest. Timber Press Inc, Portland, OR

    Google Scholar 

  • Ulmer B, Gillott C, Erlandson M (2002) Oviposition preferences of bertha armyworm Mamestra configurata Walker (Lepidoptera: Noctuidae) on different crucifer cultivars and growth stages. Environ Entomol 31:1135–1141

    Google Scholar 

  • U N, Nagamatu T, Midusima U (1937) A report on meiosis in the two hybrids, Brassica alba Rabh. (female) · B. oleracea L. (male) and Eruca sativa Lam. (female) · B. oleracea L. (male). Cytologia, Fujii Jubilee vol, pp 437–441

    Google Scholar 

  • UN (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Unal K, Susanti D, Taher M (2014) Polyphenol content and antioxidant capacity in organically and conventionally grown vegetables. J Coast Life Med 2:864–871

    CAS  Google Scholar 

  • USDA ARS (2011) National genetic resources program. Germplasm resources information network (GRIN). National Germplasm Resources Laboratory, Beltsville, MD, USA. http://www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?

  • USDA, ARS (2014) United States Department of Agriculture, National Genetic Resources Program. Germplasm Resources Information Network (GRIN). National Germplasm Resources Laboratory, Beltsvilld, MD, USA. [Online] http://www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?7642

  • USDA Foreign Agricultural Service (2019) Oil seeds world markets and trades. United States Department of Agriculture Ulmer B, Gillott C, Erlandson M (2001) Feeding preferences, growth, and development of Mamestra configurata (Lepidoptera: Noctuidae) on Brassicaceae. The CanEntomol 133:509–519

    Google Scholar 

  • USDA-ARS (2013) Germplasm resources information network (GRIN) online database. National Germplasm Resources Laboratory, Beltsville Maryland USA. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx

  • USDA-ARS (2016) Germplasm resources information network (GRIN). https://npgsweb.arsgrin.gov/gringlobal/taxon/taxonomysimple.aspx

  • USDA-ARS (2017) Germplasm resources information network (GRIN) taxonomy for plants. Taxon: Brassica napus L. United States Department of Agriculture. Agricultural Research Service, Beltsville Area. http://www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?7661

  • USDA-ERS (2014) Soybeans & oil crops—Canola. United States Department of Agriculture. Economic Research Service. http://www.ers.usda.gov/topics/crops/soybeans-oil-crops/canola.aspx

  • USDA-NRCS (2016) The PLANTS database. National Plant Data Center, Baton Rouge, LA, USA. https://plants.usda.gov

  • Verma JK, Sodhi YS, Mukhopadhyay A, Arumugam N, Gupta V, Pental D, Pradhan AK (2000) Identification of stable maintainer and fertility restorer lines for ‘Polima’ CMS in Brassica campestris. Plant Breed 119:90–92

    Google Scholar 

  • Vohora SB, Khan MSY (1977) Pharmacological studies on Lepidium sativum Linn. Ind J Physiol Pharmacol 21:118–120

    CAS  Google Scholar 

  • Vollmann J, Moritz T, Karg C, Baumgartner S, Wagentrist H (2007) Agronomic evaluation of Camelina genotypes selected for seed quality characteristics. Ind Crops Prod 26:270–277

    CAS  Google Scholar 

  • Vyas P, Prakash S, Shivanna KR (1995) Production of wide hybrids and backcross progenies between Diplotaxis erucoides and crop Brassicas. Theor Appl Genet 90:549–553

    Google Scholar 

  • Wada M, Kido H, Ohyama K, Ichibangase T, Kishikawa N, Ohba Y, Nakashima MN, Kuroda N, Nakashima K (2007) Chemiluminescent screening of quenching effects of natural colorants against reactive oxygen species: evaluation of grape seed, monascus, gardenia and red radish extracts as multi-functional food additives. Food Chem 101:980–986

    CAS  Google Scholar 

  • Waddington J, Bowren KE (1978) Effect of crop residue on production of barley, bromegrass and alfalfa in the greenhouse and in the field. Can J Plant Sci 58:249–225

    Google Scholar 

  • Walsh KD, Raatz LL, Topinka KC, Hall LM (2013) Transient seed bank of Camelina contributes to a low weedy propensity in western Canadian cropping systems. Crop Sci 53:2176–2185

    Google Scholar 

  • Wang P, Zhu Z (2006) Effect of different harvest seasons on the flavonoids content and antioxidant activities of leaf mustard. Acta Horticult Sin 33:745–750

    CAS  Google Scholar 

  • Wang YP, Sonntag K, Rudloff E, Chen JM (2005) Intergeneric somatic hybridization between Brassica napus L. and Sinapis alba L. J Integr Plant Biol 47(1):84–91

    Google Scholar 

  • Wang YP, Sonntag K, Rudloff E, Groeneveld I, Gramenz J, Chu CC (2006) Production and characterization of somatic hybrids between Brassica napus and Raphanus sativus. Plant Cell Tiss Organ Cult 86:279–283

    CAS  Google Scholar 

  • Warwick SI (2010) Brassicaceae in agriculture, in genetics and genomics of the Brassicaceae (eds Schmidt R, Bancroft I), pp 33–65. https://doi.org/10.1007/978-1-4419-7118-0_2

  • Warwick SI, Al-Shehbaz IA (2006) Brassicaceae: chromosome number index and database on CD-Rom. Pl Syst Evol 259:237–248

    Google Scholar 

  • Warwick SI, Francis A (2005) The biology of Canadian weeds. 132. Raphanus raphanistrum. Can J Plant Sci 85:709–733

    Google Scholar 

  • Warwick SI, Sauder C (2005) Phylogeny of tribe Brassiceae based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer (ITS) and chloroplast trnL intron sequences. Can J Bot 83:467–483

    CAS  Google Scholar 

  • Warwick SI, Francis A, La Fleche J (2000) Guide to the wild germplasm of brassica and allied crops (tribe Brassiceae, Brassicaceae), 2nd edn. Agriculture and Agri-Food Canada Eastern Cereal and Oilseeds Research Centre, Ottowa

    Google Scholar 

  • Warwick SI, Simard MJ, Légère A, Beckie HJ, Braun L, Zhu B, Mason P, Seguin-Swartz G, Stewart CN (2003) Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L. and Erucastrum gallicum (Willd.) O.E. Schulz. Theor Appl Genet 107:528–539

    CAS  PubMed  Google Scholar 

  • Warwick SI, Gugel RK, McDonald T, Falk KC (2006a) Genetic variation and agronomic potential of Ethiopian mustard (Brassica carinata) in western Canada. Genet Resour Crop Evol 53:297–312

    CAS  Google Scholar 

  • Warwick SI, Francis A, Al-Shehbaz IA (2006b) Brassicaceae: species checklist and database on CD-Rom. Plant Syst Evol 259:249–258

    Google Scholar 

  • Warwick SI, Gugel RK, Gómez-Campo C, James T (2007) Genetic variation in the Eruca vesicaria (L.) Cav. Plant Genet Resour Charact Util 5:142–153

    Google Scholar 

  • Warwick SI, Légère A, Simard MJ, James T (2008) Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol Ecol 17:1387–1395

    CAS  PubMed  Google Scholar 

  • Warwick SI, Francis A, Gugel RK (2009) Guide to wild germplasm. Brassica and allied crops (tribe Brassiceae, Brassicaceae), 3rd ed. Agriculture and Agri-Food Canada (AAFC), Eastern Cereal and Oilseeds Research Centre, Canada K1A0C6. http://www.brassica.info/info/publications/guide-wild-germplasm.php

  • Wei W, Darmency H (2008) Gene flow hampered by low seed size of hybrids between oilseed rape and five wild relatives. Seed Sci Res 18(2):115–123

    Google Scholar 

  • Wei BQ, Li BJ (1989) Pairing Chinese cabbage hybrid combinations from cytoplasmic male-sterile line. J Shenyang Agric Uni 20:9–14

    Google Scholar 

  • Wen J, Tu J-X, Li Z-Y, Fu T-D, Ma C-Z, Shen J-X (2008) Improving ovary and embryo culture techniques for efficient resynthesis of Brassica napus from reciprocal crosses between yellow-seeded diploids B. rapa and B. oleracea. Euphytica 162:81–89

    Google Scholar 

  • Westman AL, Kresovich S, Dickson MH (1999) Regional variation in Brassica nigra and other weedy crucifers for disease reaction to Alternaria brassicicola and Xanthomonas campestris pv. campestris. Euphytica 106:253–259

    Google Scholar 

  • Williams DJ, Critchley C, Pun S, Chaliha M, Timothy JO (2009) Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds. Phytochem 70:1401–1409

    CAS  Google Scholar 

  • Wojciechowski A (1985) Interspecific hybrids between Brassica campestris and B. oleracea L. 1. Effectiveness of crossing, pollen tube growth, embryogenesis. Genetica Polonica 26:423–436

    Google Scholar 

  • Wu H, Zhu J, Yang L, Wang R, Wang C (2015) Ultrasonic-assisted enzymatic extraction of phenolics from broccoli (Brassica oleracea L. var. italica) inflorescences and evaluation of antioxidant activity in vitro. Food Sci Technol Int 21:306–319

    CAS  PubMed  Google Scholar 

  • Yamagishi H, Bhat SR (2014) Cytoplasmic male sterility in Brassicaceae crops. Breed Sci 64(1):38–47. https://doi.org/10.1270/jsbbs.64.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagishi H, Nakagawa S (2004) Somatic hybrids between Arabidopsis thaliana and cabbage (Brassica oleracea). J Jap Soc Hort Sci 73:319–323

    CAS  Google Scholar 

  • Yamagishi H, Landgren M, Forsberg J, Glimelius K (2002) Production of asymmetric hybrids between Arabidopsis thaliana and Brassica napus utilizing an efficient protoplast culture system. Theo Appl Genet 104:959–964

    CAS  Google Scholar 

  • Yao X, Ge X, Li Z (2012) Different fertility and meiotic regularity in allohexaploids derived from trigenomic hybrids between three cultivated Brassica allotetraploids and B. maurorum. Plant Cell Rep 31:781–788

    PubMed  Google Scholar 

  • Yoon JY, Opena RT, Chang LC (1988) Evaluation of radish derived cytoplasmic male sterile for use in tropical heading Chinese cabbage. Cruciferae News 13:70–71

    Google Scholar 

  • Yoshimura Y, Beckie HJ, Matsuo K (2006) Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada. Environ Biosaf Res 5:67–75

    Google Scholar 

  • Young-Mathews A (2012) Plant guide for field mustard (Brassica rapa var. rapa). USDA Natural Resources Conservation Service, Corvallis Plant Materials Center, Corvallis, OR

    Google Scholar 

  • Zaleckas E, Makarevičienė V, Sendžikienė W (2012) Possibilities of using Camelina sativa oil for producing biodiesel fuel. Transport 27:60–66

    Google Scholar 

  • Zanetti F, Monti A, Berti MT (2013) Challenges and opportunities for new industrial oilseed crops in EU-27: a review. Indust Crops Prod 50:580–595

    CAS  Google Scholar 

  • Zennie TM, Ogzewalla D (1977) Ascorbic acid and Vitamin A content of edible wild plants of Ohio and Kentucky. Eco Bot 31(1):76–79

    CAS  Google Scholar 

  • Zhang B, Lu CM, Kakihara F, Kato M (2002) Effect of genome composition and cytoplasm on petal colour in resynthesized amphidiploids and sesquidiploids derived from crosses between Brassica rapa and Brassica oleracea. Plant Breed 121:297–300

    Google Scholar 

  • Zhang GQ, Zhou WJ, Gu HH, Song WJ, Momoh EJJ (2003) Plant regeneration from the hybridization of Brassica juncea and B. napus through embryo culture. J Agron Crop Sci 189:347–350

    Google Scholar 

  • Zhang X, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protocols 1(2):641–646

    CAS  PubMed  Google Scholar 

  • Zhang H, Feng J, Hwang SF, Strelkov SE, Falak I, Huang X, Sun R (2015) Mapping of clubroot (Plasmodiophora brassicae) resistance in canola (Brassica napus). Plant Pathol 65:435–440

    Google Scholar 

  • Zhang J, Zhou X, Fu M (2016) Integrated utilization of red radish seeds for the efficient production of seed oil and sulforaphene. Food Chem 192:541–547

    CAS  PubMed  Google Scholar 

  • Zhang Y, Zhou F, Ge F (2019) Effects of combined extracts of Lepidium meyenii and Allium tuberosum Rottl. on erectile dysfunction. BMC Complement Altern Med 19:135

    Google Scholar 

  • Zhao H-C, Du D-Z, Liu Q-Y, Zhan M-N, Yu Q-L (2003) Interspecific distant hybridization between Brassica juncea with multiloculus and Brassica napus. Xibei Zhiwu Xuebao 23:1587–1591

    Google Scholar 

  • Zhu L-H (2016) Crambe (Crambe abyssinica). Ind Oil Crops 195–205

    Google Scholar 

  • Zhu J, Struss D (1991) Transfer of Phoma lingam resistance from B. nigra into B. napus. Cruciferae Newslett 14/15:16–17

    Google Scholar 

  • Zhu B, Lawrence J, Warwick SI, Mason P, Braun L, Halfhill MD, Stewart CN Jr (2004) Stable Bacillus thuringiensis (Bt) toxin content in interspecific F1 and backcross populations of wild Brassica rapa after Bt gene transfer. Mol Ecol 13:237–241

    CAS  PubMed  Google Scholar 

  • Zhu X, Wang D, Sun XS (2017) Carbodiimide stabilizes the ultrasound-pretreated Camelina protein structure with improved water resistance. Ind Crop Prod 97:196–200

    CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428(6984):764–767

    CAS  PubMed  Google Scholar 

  • Zubr J, Matthaus B (2002) Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Ind Crops Prod 15:155–162

    Google Scholar 

  • Zudkafh ZS (2011) Ethnobotanical studies of some plants of Chagharzai valley, district Buner, Pakistan. Pak J Bot 43(3):1445–1452

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nusrat Jabeen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jabeen, N. (2020). Agricultural, Economic and Societal Importance of Brassicaceae Plants. In: Hasanuzzaman, M. (eds) The Plant Family Brassicaceae. Springer, Singapore. https://doi.org/10.1007/978-981-15-6345-4_2

Download citation

Publish with us

Policies and ethics