Skip to main content

Basics of Astrostatistics

  • Chapter
  • First Online:
Tutorial Guide to X-ray and Gamma-ray Astronomy
  • 876 Accesses

Abstract

This chapter introduces the key statistical concepts that are necessary to understand and analyze high-energy astronomical data. Our goal is to present enough information such that a reader may learn to judge the quality of their inferences and properly evaluate claims made in the literature. We first describe the role played by statistical methodology in analysis in Sect. 6.1. We then introduce the Poisson likelihood, which governs how counts fluctuations are described, in the context of several other useful distributions, in Sect. 6.2. Methods to determine and propagate uncertainties are discussed in Sect. 6.3. This is followed by a discussion of model fitting in Sect. 6.4, followed by hypothesis tests and model comparisons in Sect. 6.5. We list some targeted references from astronomical literature, and some books for further reading, in Sect. 6.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Matsumoto 1997; http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html.

  2. 2.

    Statisticians use Greek letters for variables that describe model parameters and Roman letters for quantities that describe the data. In particular, they use \(\lambda \) as the symbol to represent brightness or strength of a source. This is sometimes also called intensity, but always has units [count].

  3. 3.

    In this, it is similar to the Weibull distribution, which has an \(\frac{1}{\alpha }~x^\beta \) form in the exponential instead of \(x\beta \).

  4. 4.

    This bias is sometimes called the Eddington Bias, though strictly speaking the Eddington Bias also includes the effects of population characteristics. That is, the measured source strengths are affected by both the Type M bias as well as there being more weaker sources that have upward fluctuations in the measurements than stronger sources that have downward fluctuations.

References

Papers and Monographs

  1. Y. Avni, Energy spectra of X-ray clusters of galaxies. ApJ 210, 642 (1976), https://ui.adsabs.harvard.edu/abs/1976ApJ...210..642A/abstract

  2. L. Bretthorst, Bayesian Fourier analysis (1988), https://bayes.wustl.edu/glb/book.pdf

  3. W. Cash, Parameter estimation in astronomy through application of the likelihood ratio. ApJ 228, 939 (1979), https://ui.adsabs.harvard.edu/abs/1979ApJ...228..939C/abstract

  4. D.W. Hogg, Data analysis recipes: probability calculus for inference (2012), arXiv:1205.4446, https://arxiv.org/pdf/1205.4446.pdf

  5. D.W. Hogg, J. Bovy, D. Lang, Data analysis recipes: fitting a model to data (2010), arXiv:1008.4686, https://arxiv.org/pdf/1008.4686.pdf

  6. D.W. Hogg, D. Foreman-Mackey, Data analysis recipes: using Markov Chain Monte Carlo. ApJS 236, 11 (2018), https://ui.adsabs.harvard.edu/abs/2018ApJS..236...11H/abstract

  7. E.D. Feigelson, P.I. Nelson, Statistical methods for astronomical data with upper limits. I. Univariate distributions. ApJ 293, 192 (1985), https://ui.adsabs.harvard.edu/abs/1985ApJ...293..192F/abstract

  8. P.E. Freeman, V. Kashyap, R. Rosner, D.Q. Lamb, A wavelet-based algorithm for the spatial analysis of Poisson data. ApJS 138, 185 (2002), https://ui.adsabs.harvard.edu/abs/2002ApJS..138..185F/abstract

  9. N. Gehrels, Confidence limits for small numbers of events in astrophysical data. ApJ 303, 336 (1986), https://ui.adsabs.harvard.edu/abs/1986ApJ...303..336G/abstract

  10. A. Gelman, J. Carlin, Beyond power calculations: assessing type S (sign) and type M (magnitude) errors. Perspect. Psychol. Sci. 9, 641 (2014), https://doi.org/10.1177/1745691614551642

  11. T. Isobe, E.D. Feigelson, P.I. Nelson, Statistical methods for astronomical data with upper limits. II. Correlation and regression. ApJ 306, 490 (1986), https://ui.adsabs.harvard.edu/abs/1986ApJ...306..490I/abstract

  12. J.S. Kaastra, On the use of C-stat in testing models for X-ray spectra. A&A 605, 51 (2017), https://ui.adsabs.harvard.edu/abs/2017A&A...605A..51K/abstract

  13. V.L. Kashyap, D.A. van Dyk, A. Connors, P.E. Freeman, A. Siemiginowska, X. Jin, A. Zezas, On computing upper limits to source intensities. ApJ 719, 900 (2010), https://ui.adsabs.harvard.edu/abs/2010ApJ...719..900K/abstract

  14. K. Kearns, F. Primini, D. Alexander, Bias-free parameter estimation with few counts, by iterative chi-squared minimization. ASPC 77, 331 (1995), https://ui.adsabs.harvard.edu/abs/1995ASPC...77..331K/abstract

  15. B.C. Kelly, Some aspects of measurement error in linear regression of astronomical data. ApJ 665, 1489 (2007), https://ui.adsabs.harvard.edu/abs/2007ApJ...665.1489K/abstract

  16. T. Loredo, From Laplace to supernova SN 1987 A: Bayesian inference in astrophysics (1990), http://hosting.astro.cornell.edu/staff/loredo/bayes/L90-LaplaceToSN1987A-scan.pdf

  17. M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8, 1 (1998), https://doi.org/10.1145/272991.272995

  18. R. Neal, Probabilistic inference using Markov Chain Monte Carlo methods. Techincal Report CRG-TR-93-1 (Department of Computer Science, University of Toronto, 1993), https://www.cs.toronto.edu/~radford/review.abstract.html

  19. S. Nieuwenhaus, B.U. Forstmann, E.-J. Wagenmakers, Erroneous analyses of interactions in neuroscience: a problem of significance. Nat. Neurosci. 14, 1105 (2011), https://doi.org/10.1038/nn.2886

  20. T. Park, V.L. Kashyap, A. Siemiginowska, D.A. van Dyk, A. Zezas, C. Heinke, B. Wargelin, Bayesian estimation of hardness ratios: modeling and computations. ApJ 652, 610 (2006), https://ui.adsabs.harvard.edu/abs/2006ApJ...652..610P/abstract

  21. F.A. Primini, V.L. Kashyap, Determining X-ray source intensity and confidence bounds in crowded fields. ApJ 796, 24 (2014), https://ui.adsabs.harvard.edu/abs/2014ApJ...796...24P/abstract

  22. R. Protassov, D.A. van Dyk, A. Connors, V.L. Kashyap, A. Siemiginowska, Statistics, handle with care: detecting multiple model components with the likelihood ratio test. ApJ 571, 545 (2002), https://ui.adsabs.harvard.edu/abs/2002ApJ...571..545P/abstract

  23. J.D. Scargle, J.P. Norris, B. Jackson, J. Chiang, Studies in astronomical time series analysis. VI. Bayesian block representations. ApJ 764, 167 (2013), https://ui.adsabs.harvard.edu/abs/2013ApJ...764..167S/abstract

  24. J.H.M.M. Schmitt, Statistical analysis of astronomical data containing upper bounds: general methods and examples drawn from X-ray astronomy. ApJ 293, 178 (1985), https://ui.adsabs.harvard.edu/abs/1985ApJ...293..178S/abstract

  25. J.H.M.M. Schmitt, T. Maccacaro, Number-counts slope estimation in the presence of Poisson noise. ApJ 310, 334 (1986), https://ui.adsabs.harvard.edu/abs/1986ApJ...310..334S/abstract

  26. D.A. van Dyk, A. Connors, V.L. Kashyap, A. Siemiginowska, Analysis of energy spectra with low photon counts via Bayesian posterior simulation. ApJ 548, 224 (2001), https://ui.adsabs.harvard.edu/abs/2001ApJ...548..224V/abstract

Books

  1. J. Babu, E. Feigelson, Astrostatistics (1996), https://www.crcpress.com/Astrostatistics/Babu-Feigelson/p/book/9780412983917

  2. P.R. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 3rd edn. (2003), http://hosting.astro.cornell.edu/academics/courses/astro3310/Books/Bevington_opt.pdf

  3. L. Wasserman, All of Non-Parametric Statistics (2006), http://www.stat.cmu.edu/~larry/all-of-nonpar/

  4. C.K. Rasmussen, C.E. Williams, Gaussian Processes for Machine Learning (2006), http://www.gaussianprocess.org/gpml/

  5. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (2007), http://numerical.recipes

  6. E. Feigelson, J. Babu, Modern Statistical Methods for Astronomy with R Applications (2012), https://astrostatistics.psu.edu/MSMA/

  7. K. Arnaud, R. Smith, A. Siemiginowska, Handbook of X-Ray Astronomy (2011), http://hea-www.cfa.harvard.edu/~rsmith/xrayastronomyhandbook/

  8. P. Gregory, Bayesian Logical Data Analysis for Physical Sciences (2012), https://doi.org/10.1017/CBO9780511791277

  9. A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, D.B. Rubin, Bayesian Data Analysis, 3rd edn. (2013), http://www.stat.columbia.edu/~gelman/book/

  10. E. Robinson, Data Analysis for Scientists and Engineers (2016), https://press.princeton.edu/titles/10911.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay L. Kashyap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kashyap, V.L. (2020). Basics of Astrostatistics. In: Bambi, C. (eds) Tutorial Guide to X-ray and Gamma-ray Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-15-6337-9_6

Download citation

Publish with us

Policies and ethics