Skip to main content

An Automated Algorithm for Estimating Respiration Rate from PPG Signals

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1241))

Abstract

Objective: This paper presents a simple automated method to estimate respiration rate (RR) from the photoplethysmography (PPG) signals. Methods: The method consists of preprocessing, extremely low-frequency two-pole digital resonator, fast Fourier transform, spectral magnitude computation, prominent spectral peak identification and respiration rate computation. Validation Dataset: The proposed RR estimation method is evaluated using standard PPG databases including MIMIC-II and CapnoBase. Results: The proposed method had estimation accuracy with absolute error value (median, 25th–75th percentiles) of 0.522 (0, 1.403) and 0.2746 (0, 0.475) breaths/minute for the PPG recordings from the MIMIC-II and CapnoBase databases, respectively for the 30 s segment. Results showed that the proposed method outperforms the existing methods such as the empirical mode decomposition and principal component analysis (EMD-PCA), ensemble EMD-PCA, and improved complete EEMD with adaptive noise-PCA methods. Conclusion: Results demonstrate that the proposed method is more accurate in estimating RR with less processing time of 0.0296 s as compared to that of the existing methods. This study further demonstrate that the two-pole digital resonator with extremely low-frequency can be simple method to estimate the RR from the PPG signals.

This research work is carried out with the support of IMPRINT-II and MHRD Grant, Government of India.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L’Her, E., N’Guyen, Q.T., Pateau, V., Bodenes, L., Lellouche, F.: Photoplethysmographic determination of the respiratory rate in acutely ill patients: validation of a new algorithm and implementation into a biomedical device. Ann. Intensive Care 9(1), 1–10 (2019). https://doi.org/10.1186/s13613-019-0485-z

    Article  Google Scholar 

  2. Motin, M.A., Karmakar, C.K., Palaniswami, M.: Selection of empirical mode decomposition techniques for extracting breathing rate from PPG. IEEE Signal Process. Lett. 26(04), 592–596 (2019)

    Article  Google Scholar 

  3. Dehkordi, P., Garde, A., Molavi, B.: Extracting respiratory rate from multiple photoplethysmogram respiratory-induced variations. Front. Physiol. 9, 1–10 (2018)

    Article  Google Scholar 

  4. Pirhonen, M., Peltokangas, M., Vehkaoja, A.: Acquiring respiration rate from photoplethysmographic signal by recursive Bayesian tracking of intrinsic modes in time-frequency spectra. Sensors 18(06), 1693 (2018)

    Article  Google Scholar 

  5. Charlton, P.H., et al.: Breathing rate estimation from the electrocardiogram and photoplethysmogram: a review. IEEE Rev. Biomed. Eng. 11, 2–20 (2018)

    Article  Google Scholar 

  6. Motin, M.A., Karmakar, C.K., Palaniswami, M.: Ensemble empirical mode decomposition with principal component analysis: a novel approach for extracting respiratory rate and heart rate from photoplethysmographic signal. IEEE J. Biomed. Health Inf. 22(3), 766–774 (2017)

    Article  Google Scholar 

  7. Hernando, A., Peláez, M.D., Lozano, M.T., Aiger, M., Gil, G., Lázaro, J.: Finger and forehead PPG signal comparison for respiratory rate estimation based on pulse amplitude variability. In: 2017 25th IEEE European Signal Processing Conference (EUSIPCO), pp. 2076–2080 (2017)

    Google Scholar 

  8. Pimentel, M.A., et al.: Toward a robust estimation of respiratory rate from pulse oximeters. IEEE Trans. Biomed. Eng. 64(08), 1914–1923 (2017)

    Article  Google Scholar 

  9. Shelley, K.H., Awad, A.A., Stout, R.G., Silverman, D.G.: The use of joint time frequency analysis to quantify the effect of ventilation on the pulse oximeter waveform. J. Clin. Monit. Comput. 20(02), 81–87 (2016)

    Article  Google Scholar 

  10. Charlton, P.H., Bonnici, T., Tarassenko, L., Clifton, D.A., Beale, R., Watkinson, P.J.: An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram. Physiol. Meas. 37(4), 610 (2016)

    Article  Google Scholar 

  11. Garde, A., Karlen, W., Ansermino, J.M., Dumont, G.A.: Estimating respiratory and heart rates from the correntropy spectral density of the photoplethysmogram. PloS One 9(1), 1–11 (2014)

    Article  Google Scholar 

  12. Karlen, W., Raman, S., Ansermino, J.M., Dumont, G.A.: Multiparameter respiratory rate estimation from the photoplethysmogram. IEEE Trans. Biomed. Eng. 60(7), 1946–1953 (2013)

    Article  Google Scholar 

  13. Garde, A., Karlen, W., Dehkordi, P., Ansermino, J., Dumont, G., Empirical mode decomposition for respiratory and heart rate estimation from the photoplethysmogram. In: Computing in Cardiology, pp. 799–802 (2013)

    Google Scholar 

  14. Addison, P.S., Watson, J.N., Mestek, M.L., Mecca, R.S.: Developing an algorithm for pulse oximetry derived respiratory rate (RR(oxi)): a healthy volunteer study. J. Clin. Monit. Comput. 26(1), 45–51 (2012)

    Article  Google Scholar 

  15. Li, J., Jin, J., Chen, X., Sun, W., Guo, P.: Comparison of respiratory-induced variations in photoplethysmographic signals. Physiol. Meas. 31(3), 415–425 (2010)

    Article  Google Scholar 

  16. Karlen, W., Brouse, C.J., Cooke, E., Ansermino, J.M., Dumont, G.A.: Respiratory rate estimation using respiratory sinus arrhythmia from photoplethysmography. In: Proceedings of IEEE Annual International Conference in Medicine and Biology Society, Boston, MA, USA, pp. 1201–1204 (2011)

    Google Scholar 

  17. Chon, K.H., Dash, S., Ju, K.: Estimation of respiratory rate from photoplethysmogram data using time-frequency spectral estimation. IEEE Trans. Biomed. Eng. 56(8), 2054–2063 (2009)

    Article  Google Scholar 

  18. Fleming, S., Tarassenko, L.: A comparison of signal processing techniques for the extraction of breathing rate from the photoplethysmogram. Int. J. Biol. Med. Sci. 2(4), 232–236 (2007)

    Google Scholar 

  19. Leonard, P., Grubb, N.R., Addison, P.S., Clifton, D., Watson, J.N.: An algorithm for the detection of individual breaths from the pulse oximeter waveform. J. Clin. Monit. Comput. 18(5–6), 309–312 (2004)

    Article  Google Scholar 

  20. Johansson, A.: Neural network for photoplethysmographic respiratory rate monitoring. Med. Biol. Eng. Comput. 41(3), 242–248 (2003)

    Article  Google Scholar 

  21. Nilsson, L., Johansson, A., Kalman, S.: Monitoring of respiratory rate in postoperative care using a new photoplethysmographic technique. J. Clin. Monit. Comput. 16(04), 309–315 (2000)

    Article  Google Scholar 

  22. Olsson, E., Ugnell, H., Oberg, P.A., Sedin, G.: Photoplethysmography for simultaneous recording of heart and respiratory rates in newborn infants. Acta Paediatr. (Oslo, Norway: 1992) 89(7), 853–861 (2000)

    Article  Google Scholar 

  23. Lindberg, L.G., Ugnell, H., Oberg, P.A.: Monitoring of respiratory and heart rates using a fibre-optic sensor. Med. Biol. Eng. Comput. 30(5), 533–537 (1992)

    Article  Google Scholar 

  24. Nakajima, K., Tamura, T., Miike, H.: Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique. Med. Eng. Phys. 18(5), 365–372 (1996)

    Article  Google Scholar 

  25. Nakajima, K., Tamura, T., Ohta, T., Miike, H., Oberg, P.A.: Photoplethysmographic measurement of heart and respiratory rates using digital filters. In: Proceedings IEEE Annual International Conference in Medicine and Biology Society, pp. 1006–1007 (1993)

    Google Scholar 

  26. Moody, G.B., Mark, R.G.: A database to support development and evaluation of intelligent intensive care monitoring. In: Proceedings Computer in Cardiology, pp. 657–660 (1996). https://physionet.org/physiobank/database/mimicdb/

  27. Karlen, W., Turner, M., Cooke, E., Dumont, G.A., Ansermino, J.M.: CapnoBase: signal database and tools to collect, share and annotate respiratory signals. In: Proceedings Annual Meeting Society for Technology Anesthesia, West Palm Beach, FL, USA, p. 25 (2010). http://www.capnobase.org/

  28. Saeed, M., et al.: Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database. Critical Care Med. 39, 952–960 (2011). https://physionet.org/physiobank/database/bidmc/

    Article  Google Scholar 

  29. BioRadio Wireless Data Acquisition System. https://glneurotech.com/bioradio/exercise-science/

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kinjarapu Manojkumar , Srinivas Boppu or M. Sabarimalai Manikandan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manojkumar, K., Boppu, S., Manikandan, M.S. (2020). An Automated Algorithm for Estimating Respiration Rate from PPG Signals. In: Bhattacharjee, A., Borgohain, S., Soni, B., Verma, G., Gao, XZ. (eds) Machine Learning, Image Processing, Network Security and Data Sciences. MIND 2020. Communications in Computer and Information Science, vol 1241. Springer, Singapore. https://doi.org/10.1007/978-981-15-6318-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6318-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6317-1

  • Online ISBN: 978-981-15-6318-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics