Skip to main content

An Edge Detection and Sliding Window Based Approach to Improve Object Localization in YOLOv3

  • Conference paper
  • First Online:
Book cover Machine Learning, Image Processing, Network Security and Data Sciences (MIND 2020)

Abstract

Object detection is considered as a challenging field in computer vision. Once an object has been detected, the next challenge is object localization where a rectangular boundary box is drawn around the location of detected object. The proposed framework addresses the problem of object localization by improving its precision. You only look once or YOLOv3 is one of the well-known object detection algorithm with its state-of-the-art object detection and real time capabilities. Because of this reason, the proposed scheme uses YOLOv3 as the base algorithm. In this work, COCO dataset is used to detect an object, and to improve the precision of boundary box this work make use of edge detection, thresholding and morphological operation. Also, redundant edge removal algorithm is proposed to remove redundant edges and boundary box construction algorithm draws rectangular boundary box around detected object. When compared with YOLOv3, the proposed model produces significantly better results when boundary boxes around detected object is concern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Druzhkov, P.N., Kustikova, V.D.: A survey of deep learning methods and software tools for image classification and object detection. Pattern Recogn. Image Anal. 26, 9–15 (2016). https://doi.org/10.1134/S1054661816010065

    Article  Google Scholar 

  2. Wojek, C., Dollar, P., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34, 743–761 (2012)

    Article  Google Scholar 

  3. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)

    Google Scholar 

  5. Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: International Conference on Image Processing (2002)

    Google Scholar 

  6. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  7. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  8. Girshick, R.: Fast R-CNN. In: International Conference on Computer Vision (2015)

    Google Scholar 

  9. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)

    Google Scholar 

  10. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: NIPS (2016)

    Google Scholar 

  11. Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  12. He, K., et al.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  13. Erhan, D., et al.: Scalable object detection using deep neural networks. In: CVPR (2014)

    Google Scholar 

  14. Najibi, M., et al.: G-CNN: an iterative grid based object detector. In: CVPR (2016)

    Google Scholar 

  15. Yoo, D., Park, S., et al.: AttentionNet: aggregating weak directions for accurate object detection. In: CVPR (2015)

    Google Scholar 

  16. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified real-time object detection. In: CVPR (2016)

    Google Scholar 

  17. Redmon, J., Farhadi, A.: YOLO9000: better faster stronger. In: CVPR (2016)

    Google Scholar 

  18. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  19. Fu, C.-Y., et al.: DSSD: Deconvolutional single shot detector. https://arxiv.org/abs/1701.06659 (2017)

  20. Shen, Z., Liu, Z., Li, J., Jiang, Y.-G., Chen, Y., Xue, X.: DSOD: learning deeply supervised object detectors from scratch. In: ICCV (2017)

    Google Scholar 

  21. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. https://arxiv.org/abs/1804.02767 (2018)

  22. Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. Int. J. Comput. Vis. 104, 154–171 (2013). https://doi.org/10.1007/s11263-013-0620-5

    Article  Google Scholar 

  23. Cortes, C., Vapnik, V.: Support vector network. Mach. Learn. 20, 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  24. Blue, S.T., Brindha, M.: Edge detection based boundary box construction algorithm for improving the precision of object detection in YOLOv. In: 10th ICCCNT (2019)

    Google Scholar 

  25. Zhang, D., Zhang, P., Wang, L.: Cell counting algorithm based on YOLOv3 and image density estimation. In: 4th International Conference on Signal and Image Processing, (2019)

    Google Scholar 

  26. Zhang, X., Zhu, X.: Vehicle Detection in the aerial infrared images via an improved YOLOv3 network. In: 4th International Conference on Signal and Image Processing (2019)

    Google Scholar 

  27. Shi, T., Liu, M, Yang, Y., Wang, P., Huang, Y.: Fast classification and detection of marine targets in complex scenes with YOLOv3. In: OCEANS 2019, Marseille (2019)

    Google Scholar 

  28. Cui, H., Yang, Y., Liu, M., Shi, T., Qi, Q.: Ship detection: an improved YOLOv3 method. In: OCEANS 2019, Marseille (2019)

    Google Scholar 

  29. Qu, H., Yuan, T., Sheng, Z., Zhang, Y.: A pedestrian detection method based on YOLOv3 Model and Image enhanced by Retinex. In: 11th CISP-BMEI (2018)

    Google Scholar 

  30. Miao, F., Tian, Y., Jin, L.: Vehicle direction detection based on yolov3. In: 11th IHMSC (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Brindha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blue, S.T., Brindha, M. (2020). An Edge Detection and Sliding Window Based Approach to Improve Object Localization in YOLOv3. In: Bhattacharjee, A., Borgohain, S., Soni, B., Verma, G., Gao, XZ. (eds) Machine Learning, Image Processing, Network Security and Data Sciences. MIND 2020. Communications in Computer and Information Science, vol 1240. Springer, Singapore. https://doi.org/10.1007/978-981-15-6315-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6315-7_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6314-0

  • Online ISBN: 978-981-15-6315-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics