Skip to main content

Multiscale Modeling of Soils

  • Chapter
  • First Online:
Practice of Constitutive Modelling for Saturated Soils

Abstract

This chapter presents the multiscale modeling methodology for soils from micro to macro. First, the multiscale feature of soils within the general framework of the multiscale approach to granular materials is presented. Then, the fundamentals of micromechanics are presented in more detail, including interparticle contact laws, definitions of the strain tensor, effective stress tensor and fabric tensor, averaging and localization operators, and homogenization integration. As an example, the micromechanics-based Chang–Hicher (CH) model is presented with experimental validation. Some possible developments of models based on the CH model are presented considering the capillary force, the chemical force in grouted sand, the surface energy force, and the mechanical force in clayey materials. Finally, the MicroSoil model in the ErosLab platform is presented for a practical exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolymbas D (2012) Constitutive modelling of granular materials. Springer Science & Business Media,

    Google Scholar 

  2. Chang C, Hicher P-Y (2005) An elasto-plastic model for granular materials with microstructural consideration. Int J Solids Struct 42(14):4258–4277

    MATH  Google Scholar 

  3. Yin ZY, Chang CS (2009) Microstructural modelling of stress-dependent behaviour of clay. Int J Solids Struct 46(6):1373–1388

    MATH  Google Scholar 

  4. Nicot F, Darve F, Group R (2005) A multi-scale approach to granular materials. Mech Mater 37(9):980–1006

    Google Scholar 

  5. Nicot F, Darve F (2011) The H-microdirectional model: accounting for a mesoscopic scale. Mech Mater 43(12):918–929

    Google Scholar 

  6. Radjai F, Roux J-N, Daouadji A (2017) Modeling granular materials: century-long research across scales. Journal of engineering mechanics 143(4):04017002

    Google Scholar 

  7. Cambou B, Jean M, RadjaĂŻ F (2013) Micromechanics of granular materials. John Wiley & Sons,

    Google Scholar 

  8. Mindlin RD (1953) Elastic spheres in contact under varying oblique forces. J Applied Mech 20:327–344

    MathSciNet  MATH  Google Scholar 

  9. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Google Scholar 

  10. Yin ZY, Chang CS, Hicher PY, Karstunen M (2009) Micromechanical analysis of kinematic hardening in natural clay. Int J Plast 25(8):1413–1435

    MATH  Google Scholar 

  11. Yin ZY, Chang CS, Hicher PY (2010) Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand. Int J Solids Struct 47(14–15):1933–1951. https://doi.org/10.1016/j.ijsolstr.2010.03.028

    Article  MATH  Google Scholar 

  12. Chang CS, Yin ZY (2011) Micromechanical modeling for behavior of silty sand with influence of fine content. Int J Solids Struct 48(19):2655–2667. https://doi.org/10.1016/j.ijsolstr.2011.05.014

    Article  Google Scholar 

  13. Chang CS, Yin ZY, Hicher PY (2011) Micromechanical Analysis for Interparticle and Assembly Instability of Sand. Journal of Engineering Mechanics-Asce 137(3):155–168. https://doi.org/10.1061/(asce)em.1943-7889.0000204

    Article  Google Scholar 

  14. Yin ZY, Hattab M, Hicher PY (2011) Multiscale modeling of a sensitive marine clay. Int J Numer Anal Methods Geomech 35(15):1682–1702. https://doi.org/10.1002/nag.977

    Article  Google Scholar 

  15. Yin Z-Y, Zhao J, Hicher P-Y (2014) A micromechanics-based model for sand-silt mixtures. Int J Solids Struct 51(6):1350–1363

    Google Scholar 

  16. Bagi K (2006) Analysis of microstructural strain tensors for granular assemblies. Int J Solids Struct 43(10):3166–3184

    MATH  Google Scholar 

  17. Bagi K (1993) On the definition of stress and strain in granular assemblies through the relation between micro-and macro-level characteristics. Powders & grains 93:117–121

    Google Scholar 

  18. Bagi K (1996) Stress and strain in granular assemblies. Mech Mater 22(3):165–177

    Google Scholar 

  19. Kruyt N, Rothenburg L (1996) Micromechanical definition of the strain tensor for granular materials. J Appl Mech 63(3):706–711

    MATH  Google Scholar 

  20. Kuhn MR Deformation measures for granular materials. In: Mechanics of Deformation and Flow of Particulate Materials, 1997. ASCE, pp 91–104

    Google Scholar 

  21. Kuhn MR (1999) Structured deformation in granular materials. Mech Mater 31(6):407–429

    Google Scholar 

  22. Liao C-L, Chang T-P, Young D-H, Chang CS (1997) Stress-strain relationship for granular materials based on the hypothesis of best fit. Int J Solids Struct 34(31):4087–4100

    MATH  Google Scholar 

  23. Love AEH (2013) A treatise on the mathematical theory of elasticity. Cambridge university press,

    Google Scholar 

  24. Weber J (1966) Recherches concernant les contraintes intergranulaires dans les milieux pulvérulents. Bulletin de Liaison des Ponts-et-chaussées 20:1–20

    Google Scholar 

  25. Gens A, Sánchez M, Sheng D (2006) On constitutive modelling of unsaturated soils. Acta Geotech 1(3):137

    Google Scholar 

  26. Duriez J, Wan R (2017) Subtleties in discrete-element modelling of wet granular soils

    Google Scholar 

  27. Chalak C, Chareyre B, Nikooee E, Darve F (2017) Partially saturated media: from DEM simulation to thermodynamic interpretation. European Journal of Environmental and Civil Engineering 21(7–8):798–820

    Google Scholar 

  28. Satake M Fabric tensor in granular materials. In: IUTAM Conference on Deformation and Flow of Granular Materials, 1982, 1982. AA Balkema, pp 63–68

    Google Scholar 

  29. Oda M, Nemat-Nasser S, Konishi J (1985) Stress-induced anisotropy in granular masses. Soils Found 25(3):85–97

    Google Scholar 

  30. Santamarina J, Cascante G (1996) Stress anisotropy and wave propagation: a micromechanical view. Can Geotech J 33(5):770–782

    Google Scholar 

  31. Kuganenthira N, Zhao D, Anandarajah A (1996) Measurement of fabric anisotropy in triaxial shearing. Géotechnique 46(4):657–670

    Google Scholar 

  32. Panc Y, Dongc J (1999) A micromechanics-based methodology for evaluating the fabric of granular material

    Google Scholar 

  33. Li X, Li X-S (2009) Micro-macro quantification of the internal structure of granular materials. Journal of engineering mechanics 135(7):641–656

    Google Scholar 

  34. Fu P, Dafalias YF (2015) Relationship between void-and contact normal-based fabric tensors for 2D idealized granular materials. Int J Solids Struct 63:68–81

    Google Scholar 

  35. Wang J-P, Li X, Yu H-S (2017) Stress–force–fabric relationship for unsaturated granular materials in pendular states. Journal of engineering mechanics 143(9):04017068

    Google Scholar 

  36. Kanatani K-I (1984) Distribution of directional data and fabric tensors. Int J Eng Sci 22(2):149–164. https://doi.org/10.1016/0020-7225(84)90090-9

    Article  MathSciNet  MATH  Google Scholar 

  37. Li XS, Dafalias YF (2011) Anisotropic critical state theory: role of fabric. Journal of engineering mechanics 138(3):263–275

    Google Scholar 

  38. Li X, Dafalias Y (2015) Dissipation consistent fabric tensor definition from DEM to continuum for granular media. J Mech Phys Solids 78:141–153

    MathSciNet  MATH  Google Scholar 

  39. Schofield A, Wroth P (1968) Critical state soil mechanics

    Google Scholar 

  40. Gao Z, Zhao J, Li XS, Dafalias YF (2014) A critical state sand plasticity model accounting for fabric evolution. Int J Numer Anal Methods Geomech 38(4):370–390

    Google Scholar 

  41. Gao Z, Zhao J (2017) A non-coaxial critical-state model for sand accounting for fabric anisotropy and fabric evolution. Int J Solids Struct 106:200–212

    Google Scholar 

  42. Xiong H, Nicot F, Yin Z (2017) A three-dimensional micromechanically based model. Int J Numer Anal Methods Geomech 41(17):1669–1686

    Google Scholar 

  43. Misra A, Singh V (2014) Nonlinear granular micromechanics model for multi-axial rate-dependent behavior. Int J Solids Struct 51(13):2272–2282

    Google Scholar 

  44. Misra A, Poorsolhjouy P (2015) Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Mathematics and Mechanics of Solids:1081286515576821

    Google Scholar 

  45. Zhao C, Salami Y, Yin Z-Y, Hicher P-Y (2017) A micromechanical model for unsaturated soils based on thermodynamics. In: Poromechanics VI. pp 594–601

    Google Scholar 

  46. Zhao C-F, Yin Z-Y, Misra A, Hicher P-Y (2018) Thermomechanical formulation for micromechanical elasto-plasticity in granular materials. Int J Solids Struct 138:64–75

    Google Scholar 

  47. Li X, Yu H (2011) Tensorial characterisation of directional data in micromechanics. Int J Solids Struct 48(14–15):2167–2176

    Google Scholar 

  48. Rothenburg L, Bathurst R (1989) Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39(4):601–614

    Google Scholar 

  49. Li X, Yu H-S (2013) On the stress–force–fabric relationship for granular materials. Int J Solids Struct 50(9):1285–1302

    Google Scholar 

  50. He X, Cai G, Zhao C, Sheng D (2017) On the stress-force-fabric equation in triaxial compressions: Some insights into the triaxial strength. Comput Geotech 85:71–83

    Google Scholar 

  51. Li X, Yu HS, Li XS (2013) A virtual experiment technique on the elementary behaviour of granular materials with discrete element method. Int J Numer Anal Methods Geomech 37(1):75–96

    Google Scholar 

  52. Li X (2016) Internal structure quantification for granular constitutive modeling. Journal of engineering mechanics 143(4):C4016001

    Google Scholar 

  53. Yang Z, Li X, Yang J (2007) Undrained anisotropy and rotational shear in granular soil. Géotechnique 57(4):371–384

    Google Scholar 

  54. Yang Z, Li X, Yang J (2008) Quantifying and modelling fabric anisotropy of granular soils. Géotechnique 58(4):237–248

    Google Scholar 

  55. Yang Z, Wu Y (2016) Critical state for anisotropic granular materials: a discrete element perspective. Int J Geomech 17(2):04016054

    Google Scholar 

  56. Xie Y, Yang Z, Barreto D, Jiang M (2017) The influence of particle geometry and the intermediate stress ratio on the shear behavior of granular materials. Granular Matter 19(2):35

    Google Scholar 

  57. Yin ZY, Chang CS (2009) Non-uniqueness of critical state line in compression and extension conditions. Int J Numer Anal Methods Geomech 33(10):1315–1338

    MATH  Google Scholar 

  58. Yin ZY, Chang CS, Hicher PY, Wang JH (2011) Micromechanical analysis of the behavior of stiff clay. Acta Mech Sin 27(6):1013–1022. https://doi.org/10.1007/s10409.011-0507-z

    Article  Google Scholar 

  59. Yin Z, Hicher PY (2013) Micromechanics-based model for cement-treated clays. Theoretical and Applied Mechanics Letters 3(2):021006

    Google Scholar 

  60. Biarez J, Hicher PY (1994) Elementary mechanics of soil behaviour: saturated remoulded soils. AA Balkema,

    Google Scholar 

  61. Kanatani K-I (1984) Stereological determination of structural anisotropy. Int J Eng Sci 22(5):531–546

    MathSciNet  MATH  Google Scholar 

  62. Chang CS, Misra A (1990) Packing structure and mechanical properties of granulates. Journal of engineering mechanics 116(5):1077–1093

    Google Scholar 

  63. Bažant P, Oh B (1986) Efficient numerical integration on the surface of a sphere. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 66(1):37–49

    MathSciNet  MATH  Google Scholar 

  64. Bardet J-P, Choucair W (1991) A linearized integration technique for incremental constitutive equations. Int J Numer Anal Methods Geomech 15(1):1–19

    MATH  Google Scholar 

  65. Zhao CF, Yin ZY, Hicher PY (2018) Integrating a micromechanical model for multiscale analyses. Int J Numer Methods Eng 114(2):105–127

    MathSciNet  Google Scholar 

  66. Kolymbas D, Wu W (1990) Recent results of triaxial tests with granular materials. Powder Technol 60(2):99–119

    Google Scholar 

  67. Kozicki J, Tejchman J (2009) Numerical simulations of triaxial test with sand using DEM. Archives of Hydro-Engineering and Environmental Mechanics 56(3–4):149–172

    Google Scholar 

  68. Tejchman J, Kozicki J, Leśniewska D (2011) Discrete simulations of shear zone patterning in sand in earth pressure problems of a retaining wall. Int J Solids Struct 48(7–8):1191–1209

    MATH  Google Scholar 

  69. Hicher P-Y, Chang CS (2007) A microstructural elastoplastic model for unsaturated granular materials. Int J Solids Struct 44(7–8):2304–2323

    MATH  Google Scholar 

  70. Chang CS, Hicher P-Y, Yin Z, Kong L (2009) Elastoplastic model for clay with microstructural consideration. Journal of engineering mechanics 135(9):917–931

    Google Scholar 

  71. Chang C, Yin Z-Y, Hicher P-Y (2010) Micromechanical analysis for interparticle and assembly instability of sand. Journal of engineering mechanics 137(3):155–168

    Google Scholar 

  72. Chang CS, Bennett K (2015) Micromechanical modeling for the deformation of sand with noncoaxiality between the stress and material axes. Journal of engineering mechanics 143(1):C4015001

    Google Scholar 

  73. Hicher P-Y, Chang CS, Dano C (2008) Multi-scale modeling of grouted sand behavior. Int J Solids Struct 45(16):4362–4374

    MATH  Google Scholar 

  74. Hicher P-Y, Dano C, Chang C (2008) Multi-scale modelling of the mechanical behaviour of grouted sand. Studia Geotechnica et Mechanica 1

    Google Scholar 

  75. Hattab M, Chang CS (2015) Interaggregate forces and energy potential effect on clay deformation. Journal of engineering mechanics 141(7):04015014

    Google Scholar 

  76. Chang C, Hicher P-Y (2009) Model for granular materials with surface energy forces. Journal of Aerospace Engineering 22(1):43–52

    Google Scholar 

  77. Wu S, Gray DH, Richart F Jr (1984) Capillary effects on dynamic modulus of sands and silts. Journal of geotechnical engineering 110(9):1188–1203

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Yin .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd. and Tongji University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, ZY., Hicher, PY., Jin, YF. (2020). Multiscale Modeling of Soils. In: Practice of Constitutive Modelling for Saturated Soils. Springer, Singapore. https://doi.org/10.1007/978-981-15-6307-2_9

Download citation

Publish with us

Policies and ethics