Skip to main content

Remote Sensing Technology and Its Applications in Plant Pathology

  • Chapter
  • First Online:
Emerging Trends in Plant Pathology

Abstract

Early disease detection and plant health monitoring is a critical tool for reducing the spread of diseases. Thanks to its great importance in detecting infection before it occurs on plants, remote sensing is one of the modern science developments in the monitoring of plant pathogens. Remote sensing techniques will be a very useful tool for greatly tailoring the diagnostic results. Such innovative technologies are unparalleled instruments for making agriculture healthier and more sustainable and for reducing the unnecessary use of pesticides in crop safety. This chapter discusses the importance of remote sensing in the control of plant disease and its diagnostic methods, and some examples where remote sensing was used to monitor plant diseases. Finally, this chapter discusses the basic principles of hyper-spectrum measurements and the various types of hyperspectral sensors for plant defense and plant disease detection in various ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel WH, Aboelghar M, Ali AM, Yones M (2017) Spectral and molecular studies on Gray Mold in strawberry. Asian J Plant Pathol 11:167–173

    Article  Google Scholar 

  • Aboelghar M, Abdel Wahab H (2013) Spectral footprint of Botrytis cinerea, a novel way for fungal characterization. Adv Biosci Biotechnol 4:374–382

    Article  Google Scholar 

  • Aggarwal S (2004) Principles of remote sensing. Satellite remote sensing and GIS applications in agricultural meteorology, pp 23–38

    Google Scholar 

  • Apan A, Held A, Phinn S, Markley J (2004) Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery. Int J Remote Sens 25:489–498

    Article  Google Scholar 

  • Baranowski P, JÄ™dryczka M, Mazurek W, Babula-Skowronska D, Siedliska A, Kaczmarek J (2015) Hyperspectral and thermal imaging of oilseed rape (Brassica napus) response to fungal species of the genus Alternaria. PLoS ONE 10:e0122913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bauriegel E, Giebel A, Herppisch WB (2011) Hyperspectral and chlorophyll fluorescence imaging to analyse the impact of Fusarium culmorum on the photosynthetic integrity of infected wheat ears. Sensors 11:3765–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berdugo CA, Zito R, Paulus S, Mahlein AK (2014) Fusion of sensor data for the detection and differentiation of plant diseases in cucumber. Plant Pathol 63:1344–1356

    Article  CAS  Google Scholar 

  • Bergstrasser S, Fanourakis D, Schmittgen S, Cendrero-Mateo MP, Jansen M, Scharr H, Rascher U (2015) Hyper ART: non-invasive quantification of leaf traits using hyperspectral absorption reflectance- transmittance imaging. Plant Methods 11:1–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blackburn GA, Steele CM (1999) Towards the remote sensing of matorral vegetation physiology: relationships between spectral reflectance, pigment and biophysical characteristics of semi-arid bushland canopies. Remote Sens Environ 70:278–292

    Article  Google Scholar 

  • Bock CH, Parker PE, Cook AZ, Gottwald TR (2008) Visual rating and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves. Plant Dis 92:530–541

    Article  CAS  PubMed  Google Scholar 

  • Bravo C, Moshou D, West J, McCartney A, Ramon H (2003) Early disease detection in wheat fields using spectral reflectance. Biosyst Eng 84:137–145

    Article  Google Scholar 

  • Bravo C, Moshou D, Oberti R, West J, McCartney A, Bodria L, Ramon H (2004) Foliar disease detection in the field using optical sensor fusion. International Commission of Agricultural Engineering, Vol. VI Manuscript FP 04 008

    Google Scholar 

  • Burling K, Hunsche M, Noga G (2011) Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in wheat. J Plant Physiol 168:1641–1648

    Article  PubMed  CAS  Google Scholar 

  • Camargo A, Smith JS (2009) Image pattern classification for the identification of disease causing agents in plants. Comput Electron Agric 66:121–125

    Article  Google Scholar 

  • Cao X, Luo Y, Zhou Y, Duan X, Cheng D (2013) Detection of powdery mildew in two winter wheat cultivars using canopy hyperspectral reflectance. Crop Prot 45:124–131

    Article  Google Scholar 

  • Chaerle L, Lenk S, Hagenbeek D, Buschmann C, Straetena DVD (2004) Multicolor fluorescence imaging for early detection of the hypersensitive reaction to tobacco mosaic virus. J Plant Physiol 164:253–262

    Article  CAS  Google Scholar 

  • Chaerle L, Hagenbeek D, De Bruyne E, Van der Straeten D (2007) Chlorophyll fluorescence imaging for disease-resistance screening of sugar beet. Plant Cell Tiss Org 91:97–106

    Article  CAS  Google Scholar 

  • Delalieux S, Somers B, Verstaeten WW, Vanaardt JAN, Keulemans W, Coppin P (2009) Hyperspectral indices to diagnose leaf biotic stress on apple plants, considering leaf phenology. Int J Remote Sens 30:1887–1912

    Article  Google Scholar 

  • Deleon L, Brewer MJ, Esquivel IL, Halcomb J (2017) Use of a geographic information system to produce pest monitoring maps for south Texas cotton and sorghum land managers. Crop Prot 101:50–57

    Article  Google Scholar 

  • Delwiche SR, Kim MS (2000) Hyperspectral imaging for detection of scab in wheat. Biol Qual Prec Agric II Proc SPIE 4203:13–20

    Google Scholar 

  • Devadas R, Lamb DW, Simpfendorfer S, Backhouse D (2009) Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves. Precis Agric 10:459–470

    Article  Google Scholar 

  • Gamal E, Khdery G, Morsy A, El-Sayed M, Hashim A, Saleh H (2020a) Hyperspectral indices for discriminating plant diversity in Wadi AL-Afreet, Egypt. Plant Arch 20(suppl 2):3361–3371

    Google Scholar 

  • Gamal E, Khdery G, Morsy A, El-Sayed M, Hashim A, Saleh H (2020b) Using GIS based modelling to aid conservation of two endangered plant species (Ebenus Armitagei and Periploca Angustifolia) at Wadi Al-Afreet, Egypt. Remote Sens Appl: Soc Environ 19:100336. https://doi.org/10.1016/j.rsase.2020.100336

  • Gitelson AA, Merzlyak MN, Chivkunova OB (2001) Optical properties and nondestructive estimation of anthocyanin content in plantm leaves. Photochem Photobiol 74:38–45

    Article  CAS  PubMed  Google Scholar 

  • Gogoi NK, Deka B, Bora LC (2018) Remote sensing and its use in detection and monitoring plant diseases: a review. Agric Res Commun Centre 39:307–313

    Google Scholar 

  • Hatfield JL, Pinter PJ Jr (1993) Remote sensing for crop protection. Crop Prot 12:403–413

    Article  Google Scholar 

  • He Y, Kim SB, Balint-Kurti P (2019) A maize cytochrome b-c1 complex subunit protein ZmQCR61 controls variation in the hypersensitive response. Planta 249:1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Hillnhutter C, Mahlein AK, Sikora RA, Oerke EC (2011) Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solane in sugar beet fields. Field Crops Res 122:70–77

    Article  Google Scholar 

  • Hillnhutter C, Mahlein AK, Sikora RA, Oerke EC (2012) Use of imaging spectroscopy to discriminate symptoms caused Heterodera schachtii and Rhizoctonia solane on sugar beet. Precis Agric 13:17–32

    Article  Google Scholar 

  • Huang JF, Apan A (2006) Detection of Sclerotinia rot disease on celery using hyperspectral data and partial least squares regression. J Spat Sci 51:129–142

    Article  Google Scholar 

  • Huang W, Lamb DW, Niu Z, Zhang Y, Liu L, Wang J (2007) Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis Agric 8:187–197

    Article  Google Scholar 

  • Jiang JA, Tseng CL, Lu FM, Yang EC, Wu ZS, Chen CP et al (2008) A GSM-based remote wireless automatic monitoring system for field information: a case study for ecological monitoring of oriental fruit fly, Bactrocera dorsalis (Hendel). Comput Electron Agric 62:243–259

    Article  Google Scholar 

  • Khdery G, Frag E, Arafat S (2019) Natural vegetation cover discrimination using hyperspectral data in Wadi Hagul, Egypt. Egypt J Remote Sens Space Sci 22:253–262

    Google Scholar 

  • Konanz S, Kocsanyi L, Buschmann C (2014) Advanced multi-color fluorescence imaging system for detection of biotic and abiotic stresses in leaves. Agriculture 4:79–95

    Article  Google Scholar 

  • Kuska M, Wahabzada M, Leucker M, Dehne HW, Kersting K, Oerke EC, Steiner U, Mahlein AK (2015) Hyperspectral phenotyping on microscopic scale – towards automated characterization of plant-pathogen interactions. Plant Methods 11:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Leucker M, Mahlein AK, Steiner U, Oerke EC (2016) Improvement of lesion phenotyping in Cercospora beticola-sugar beet interaction by hyperspectral imaging. Phytopathology 2:177–184

    Article  CAS  Google Scholar 

  • Mahlein AK (2016) Plant disease detection by imaging sensors-Parrels and specific demands for precision agriculture and plant phenotyping. Plant Dis 100:241–251

    Article  PubMed  Google Scholar 

  • Mahlein AK, Steiner U, Dehne HW, Oerke EC (2010) Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precis Agric 11:413–431

    Article  Google Scholar 

  • Mahlein AK, Steiner U, Hillnhütter C, Dehne HW, Oerke EC (2012) Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet disease. Plant Methods 8:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Moran MS, Inoue Y, Barnes EM (1997) Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens Environ 61:319–346

    Article  Google Scholar 

  • Moshou D, Bravo C, West J, Wahlen S, McCartney A, Ramon H (2004) Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks. Comput Electron Agric 44:173–188

    Article  Google Scholar 

  • Moshou D, Bravo C, Oberti R, West J, Bodria L, McCartney A, Ramon H (2005) Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps. Real Time Imaging 11:75–83

    Article  Google Scholar 

  • Moshou D, Bravo C, Wahlen S, West J, McCartney A, De Baerdemaeker J, Ramon H (2006) Simultaneous identification of plant stresses and diseases in arable crops using proximal optical sensing and self-organising maps. Precis Agric 7:149–164

    Article  Google Scholar 

  • Mutka AM, Bart RS (2014) Image-based phenotyping of plant disease symptoms. Front Plant Sci 5:734

    PubMed  Google Scholar 

  • Neumann M, Hallau L, Klatt B, Kersting K, Bauckhage C (2014) Erosion band features for cell phone image based plant disease classification. In: Proceeding of the 22nd International Conference on Pattern Recognition (ICPR), Stockholm, Sweden, 24–28 August 2014, pp 3315–3320

    Google Scholar 

  • Oerke EC, Steiner U, Dehne HW, Lindenthal M (2006) Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J Exp Bot 57:2121–2132

    Article  CAS  PubMed  Google Scholar 

  • Oerke EC, Frohling P, Steiner U (2011) Thermographic assessment of scab disease on apple leaves. Precis Agric 12:699–715

    Article  Google Scholar 

  • Piou C, Prévost E (2013) Contrasting effects of climate change in continental vs. oceanic environments on population persistence and microevolution of Atlantic salmon. Glob Change Biol Bioenergy 19:711–723

    Article  Google Scholar 

  • Polder G, van der Heijden GWAM, van Doorn J, Baltissen TAHMC (2014) Automatic detection of tulip breaking virus (TBV) in tulip fields using machine vision. Biosyst Eng 117:35–42

    Article  Google Scholar 

  • Qin J, Burks TF, Kim MS, Chao K, Ritenour MA (2008) Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method. Sens & Instrumen Food Qual 2:168–177

    Article  Google Scholar 

  • Rousseau C, Belin E, Bove E, Rousseau D, Fabre F, Berruyer R, Guillaumes J, Manceau C, Jaques MA, Boureau T (2013) High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. Plant Methods 9:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rumpf T, Mahlein AK, Steiner U, Oerke EC, Dehne HW, Plümer L (2010) Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Comput Electron Agric 74:91–99

    Article  Google Scholar 

  • Sahoo RN, Ray SS, Manjunath KR (2015) Hyperspectral remote sensing of agriculture. Curr Sci 108:848–859

    Google Scholar 

  • Sankaran S, Mishra A, Ehsani R, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72:1–13

    Article  Google Scholar 

  • Thomas S, Wahabzada M, Kuska M, Rascher U, Mahlein AK (2017) Observation of plant–pathogen interaction by simultaneous hyperspectral imaging reflection and transmission measurements. Funct Plant Biol 44:23–34

    Article  CAS  Google Scholar 

  • Wahabzada M, Mahlein AK, Bauckhage C, Steiner U, Oerke EC, Kersting K (2015) Metro maps of plant disease dynamics - automated mining of differences using hyperspectral images. PLoS One. https://doi.org/10.1371/journal.pone.0116902

  • Wang X, Zhang M, Zhu J, Geng S (2008) Spectral prediction of Phytophthora infestans infection on tomatoes using artificial neural network (ANN). Int J Remote Sens 29:1693–1706

    Article  Google Scholar 

  • West SJ, Bravo C, Oberti R, Moshou D, Ramon H, McCartney HA (2010) Detection of fungal diseases optically and pathogen inoculum by air sampling. In: Oerke EC, Gerhards R, Menz G, Sikora RA (eds) Precision crop protection—the challenge and use of heterogeneity. Springer, Dordrecht, pp 135–150

    Chapter  Google Scholar 

  • WiJekoon CP, Goodwin PH, Hsiang T (2008) Quantifying fungal infection of plant leaves by digital image analysis using scion image software. J Microbiol Method 74:94–101

    Article  CAS  Google Scholar 

  • Yones MS, Aboelghar M, Khdery GA, Dahi HF, Sowilem M (2019a) Spectral signature for detecting pest infestation of some cultivated plants in the northern west coast of Egypt. Egypt Acad J Biol Sci 12:73–38

    Google Scholar 

  • Yones MS, Aboelghar M Khdery GA, Farag E, Ali AM, Salem NH, Ma’mon SAM (2019b) Spectral measurements for monitoring of sugar beet infestation and its relation with production. Asian J Agric Biol under press

    Google Scholar 

  • Yones MS, Khdery GA, Dahi HF, Farg E, Arafat SM, Gamil WE (2019c) Early detection of pink bollworm Pectinophora gossypiella (Saunders) using remote sensing technologies. Proc. SPIE 11149, Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI, 111491C (21 October)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghada A. Khdery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khdery, G.A. (2021). Remote Sensing Technology and Its Applications in Plant Pathology. In: Singh, K.P., Jahagirdar, S., Sarma, B.K. (eds) Emerging Trends in Plant Pathology . Springer, Singapore. https://doi.org/10.1007/978-981-15-6275-4_30

Download citation

Publish with us

Policies and ethics