Skip to main content

Plant Disease Management in Organic Farming System: Strategies and Challenges

  • Chapter
  • First Online:
Emerging Trends in Plant Pathology

Abstract

Organic farming can be stated as an ecologically, economically, and socially dependable way of farming that may provide continuous supply of safe and healthy food and fibres, with the least probable loss of nutrients and energy, and the least negative impacts on the environment. Though the use of chemical inputs in agriculture is inevitable to combat dreaded pests and meet the growing demand for food in a populous nation like India, there are opportunities where organic production can be encouraged to meet the domestic and export demand for fresh fruits and vegetables. Organic agriculture can be seen as a pioneering effort to create sustainable development based on different principles compared to mainstream agriculture. Modification in cultural practices, mechanical destruction of the source of inoculum, clean cultivation, use of organic amendments, developing pesticides of organic origin, encouraging biocontrol agents, use of cover and trap crops and use of heat treatment, cold temperature, solar energy, etc. can be conveniently used to manage disease incidence below the economic injury level under organic farming. This chapter provides an overview of the potential role and challenges of organic agriculture in this global perspective where organic farming servs as an alternative example for the broader implementation of ecological justice in agriculture and society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abadie C, Edel-Hermann V, Alabouvette C (1998) Soil suppressiveness to Fusarium wilt: influence of a cover plant on density and diversity of Fusarium population. Soil Biol Biochem 30:643–649

    Google Scholar 

  • Agarwal VK, Sinclair JB (1996) Principles of seed pathology. Lewis Publishers, New York, p 539

    Google Scholar 

  • Akhtar Y, Yeoung YR, Isman MB (2008) Comparative bioactivity of selected extracts from Meliaceae and some commercial botanical insecticides against two noctuid caterpillars, Trichoplusia ni and Pseudaletia unipuncta. Phytochem Rev 7(1):77–88

    Article  CAS  Google Scholar 

  • Altieri MA (1995) Agroecology: the science of sustainable agriculture. Intermediate Technology Publications, London

    Google Scholar 

  • Alva AK, Graham JH, Tucker DPH (1993) Role of calcium in amelioration of copper phytotoxicity for citrus. Soil Sci 155:211–218

    Article  CAS  Google Scholar 

  • Alva AK, Graham JH, Anderson CA (1995) Soil pH and copper effects on young “Hamlin” orange trees. Soil Sci Soc Am J 59:481–487

    Article  CAS  Google Scholar 

  • Arie T, Namba S, Yamashita S, Doi Y, Kijima T (1987) Pseudomonas gladioli. Annu Rev Phytopathol Soc Jpn 53:531–539

    Google Scholar 

  • Bailey KL, Lazarovits G (2003) Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res 72:169–180

    Article  Google Scholar 

  • Barzman M, Bàrberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen JE, Kiss J, Kudsk P, Lamichhane JR, Messéan A, Moonen AC, Ratnadass A, Ricci P, Sarah JL, Sattin M (2015) Eight principles of integrated pest management. Agron Sustain Dev 35(4):1199–1215

    Article  Google Scholar 

  • Baker KF (1962) Thermotherapy of planting material. Phytopathology 53:1244

    Google Scholar 

  • Baker KF, Cook RJ (1974) Biological control of plant pathogens. W. H. Freeman and Co San Francisco, California, p 433

    Google Scholar 

  • Balfour EA (1943) The living soil. Faber & Faber Ltd, London, p 276

    Google Scholar 

  • Behlau F, Scandelai LHM, Da Silva Junior GJ, Lanza FE (2017) Soluble and insoluble copper formulations and metallic copper rate for control of citrus canker on sweet orange trees. Crop Prot 94:185–191

    Article  CAS  Google Scholar 

  • Benda GTA (1972) Hot water treatment for mosaic and ratoon stunting disease control. Sugar J 34:32–39

    Google Scholar 

  • Berger RD (1975) Disease incidence and infection rates of Cercospora apii in plant spacing plots. Phytopathology 65:485–487

    Article  Google Scholar 

  • Brinton et al (2004) Compost teas: microbial hygiene and quality in relation to method of preparation (PDF). Biodynamics 249:36–45

    Google Scholar 

  • Bruehl GW (1987) Soil borne plant pathogens. MacMillan Publishing Company, New York

    Google Scholar 

  • Burdon JJ, Chilvers GA (1982) Host density as a factor in disease ecology. Annu Rev Phytopathol 20:143–166

    Article  Google Scholar 

  • Butler DM, Rosskopf EN, Kokalis-Burelle N, Albano JP, Muramota J, Shennan C (2012) Exploring warm season cover crops as carbon sources for anaerobic soil disinfestations. Plant and Soil 355:149–165

    Article  CAS  Google Scholar 

  • Cazorla FM, Arrebola E, Olea F (2006) Field evaluation of treatments for the control of the bacterial apical necrosis of mango (Mangifera indica) caused by Pseudomonas syringae pv. syringae. Eur J Plant Pathol 116:279–288

    Article  CAS  Google Scholar 

  • Chandrashekare KN, Manivannan S, Chandrashekare C, Chakravarthi M (2012) Biological control of plant diseases. In: Singh VK, Singh Y, Singh P (eds) Eco-friendly innovative approaches in plant disease management. International Book Distributors and Publisher, New Delhi, pp 147–166

    Google Scholar 

  • Chaube HS, Singh US (1990) Plant disease management: principles and practices. C.R.C, Press, Boca Raton, p 319

    Google Scholar 

  • Chinn SHF (1967) Differences in fungistasis in some Saskatchewan soils with special reference to Cochliobolus sativus. Phytopathology 57:224–226

    Google Scholar 

  • Cohen MR, Yamasaki H, Mazzola M (2005) Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biol Biochem 37:1215–1227

    Article  CAS  Google Scholar 

  • Cook RJ (1990) Twenty-five years of progress towards biological control. In: Hornby D (ed) Biological control of soilborne pathogens. CAB International, Wallingford, pp 1–14

    Google Scholar 

  • Darnhofer I, Lindenthal T, Bartel-Kratochvil R, Zollitsch W (2010) Conventionalization of organic farming practices: from structural criteria towards an assessment based on organic principles. A review. Agron Sustain Dev 30:67–81

    Article  Google Scholar 

  • De Boer M, Bom P, Kindt F, Keurentjes JJB, Van der Sluis I, Van Loon LC, Bakker PAHM (2003) Control of Fusarium wilt of radish by combining Pseudomonas putidastrains that have different disease suppressive mechanisms. Phytopathology 93:626–632

    Article  PubMed  Google Scholar 

  • De Kroon H (2007) How do roots interact? Science 318:1562–1563

    Article  PubMed  Google Scholar 

  • Deka Boruah HP, Dileep Kumar BS (2003) Rhizoctonia wilt suppression of brinjal and plant growth activity by Bacillus BS2. Indian J Exp Biol 41:627–631

    Google Scholar 

  • Dickson JG (1923) Influence of soil temperature and moisture on the development of the seedling blight of wheat and corn. J Agric Res 23:837–869

    Google Scholar 

  • Dumestre A, Sauve S, McBride M (1993) Copper speciation and microbial activity in long-term contaminated soils. Arch Environ Contam Toxicol 36:124–131

    Article  Google Scholar 

  • Edwards-Jones G, Howells O (2001) The origin and hazard of inputs to crop protection in organic farming systems: are they sustainable. Agr Syst 67:31

    Article  Google Scholar 

  • Elkins RB, Temple TN, Shaffer CA (2015) Evaluation of dormant stage inoculum sanitation as a component of a fire blight management program for fresh-market Bartlett pear. Plant Dis 99:1147–1152

    Article  PubMed  Google Scholar 

  • Fan J, He Z, Ma LQ, Stoffella PJ (2011) Accumulation and availability of copper in citrus grove soils as affected by fungicide application. J Soil Sediment 11:639–648

    Article  CAS  Google Scholar 

  • FAO (1999) Organic agriculture. Food and agriculture organization of the United Nations, Rome Accessed 26 Feb 1999

    Google Scholar 

  • Fi BL (2006) Use of potassium bicarbonate as a fungicide in organic farming Archived 11 January 2014 at the Wayback Machine

    Google Scholar 

  • Finckh MR (2008) Integration of breeding and technology into diversification strategies for disease control in modern agriculture. Eur J Plant Pathol 121:399–409

    Article  Google Scholar 

  • Finckh MR, Gacek ES, Goyeau HC, Lannou U, Merz CC, Mundt L, Munk J, Nadziak AC, Newton C, Vallavieille-Pope D, Wolfe MS (2000) Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20:813–837

    Article  Google Scholar 

  • Finckh MR, Schulte-Geldermann E, Bruns C (2006) Challenges to organic potato farming: disease and nutrient management. Potato Res 49:27–42

    Article  CAS  Google Scholar 

  • Finckh MR, Van Bruggen AHC, Tamm L (2015a) Plant diseases and their management in organic agriculture. APS Press, St. Paul

    Google Scholar 

  • Finckh MR, Tamm L, Bruns C (2015b) Organic potato disease management. In: Finckh MR, van Bruggen AHC, Tamm L (eds) Plant Diseases and their Management in Organic Agriculture. APS Press, St Paul, pp 239–257

    Google Scholar 

  • Fleming CA, Trevors JT (1989) Copper toxicity and chemistry in the environment: a review. Water Air Soil Pollut 44:143–158

    Article  Google Scholar 

  • Fliebbach A, Mader P (2000) Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Biol Biochem 32(6):757–768

    Article  Google Scholar 

  • Fliebbach A, Oberholzer H, Gunst L, Mäder P (2006) Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric Ecosyst Environ 118(1–4):273–284

    Google Scholar 

  • Gamliel A, Katan J (2012) Soil solarization: theory and practice. APS Press, St. Paul, p 266

    Google Scholar 

  • Gan Y, Campbell CA, Liu L, Basnyat P, McDonald CL (2009) Water use and distribution profile under pulse and oilseed crops in semiarid northern high latitude areas. Agric Water Manag 96:337–348

    Article  Google Scholar 

  • Gayon U, Sauvageau C (1903) Notice sur la vie et les travaux de A. Millardet Mem la Soc des Sci Phys Nat Bordeaux 6:9–47

    Google Scholar 

  • Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soils 33:410–415

    Article  Google Scholar 

  • Girlanda M, Perotto S, Moenne-Loccoz Y, Bergero R, Lazarri A, Defago G, Bonfante P, Luppi AM (2001) Impact of biocontrol Pseudomonas fluorescens CHA and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere. Appl Environ Microbiol 67:1851–1864

    Google Scholar 

  • Gillman J (2008) The truth about organic gardening: benefits, drawnbacks, and the bottom line. Timber press

    Google Scholar 

  • Goud JKC, Termorshuizen AJ, Blok WJ, Van Bruggen AHC (2004) Long-term effect of biological soil disinfestation on Verticillium wilt. Plant Dis 88:688–694

    Google Scholar 

  • Handelsman J, Stabb EV (1996) Biocontrol of plant pathogens. Plant Cell 8:1855–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil 311:1–18

    Article  CAS  Google Scholar 

  • Heller WE, Zoller C (2010) Pflanzenbau Desinfektion von Basilikum-Saatgut ist eine Herausforderung. J Pediatr Matern Fam Health-Chiropr 1(5):190–193

    Google Scholar 

  • Hikal WM, Baeshen RS, Said-Al Ahl HAH (2017) Botanical insecticide as simple extractives for pest control. Cogent Biol 3:1404274

    Article  CAS  Google Scholar 

  • Holb IJ, DeJong PF, Heijne B (2003) Efficacy, phytotoxicity of lime sulphur in organic apple production. Ann Appl Biol 142:225–233

    Article  CAS  Google Scholar 

  • Huang X, Wen T, Zhang J, Meng L, Zhu T (2015) Toxic organic acids produced in biological soil disinfestation mainly caused the suppression of Fusarium oxysporum f. sp. cubense. BioControl 60:113–124

    Article  CAS  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Metraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:851–858

    Article  CAS  PubMed  Google Scholar 

  • IFOAM (1998) IFOAM basic standards for organic production and processing. IFOAM Publications, Tholey-Tholey

    Google Scholar 

  • IFOAM (2006) The four principles of organic farming. The International Federation of Organic Agriculture Movements, www.IFOAM.org, Bonn, Germany, assessed 5/6 2006

  • Ingram M (2007) Biology and beyond: the science of back to nature farming in the United States. Ann Am Assoc Geogr 97:298–312

    Article  Google Scholar 

  • IPCC (2007) In: Metz B, Davidson OR, RPR B, Meyer Dave LA (eds) Climate change: mitigation. Contribution of Working Group III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Jones D (1998) Piperonyl butoxide: the insecticide synergist. Academic Press, London, p 323

    Google Scholar 

  • Kathleen D, Robert H (2003) Weed management for organic farmers. Iowa State University Extension Bulletin 1883

    Google Scholar 

  • Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil 170:75–86

    Article  CAS  Google Scholar 

  • Kirchmann H, Thorvaldsson G, Bergstrom L, Gerzabek M, Andren O, Eriksson L, Winninge M (2008) Fundamentals of organic agriculture – past and present. In: Kirchmann H, Bergstrom L (eds) Organic crop production – ambitions and limitations. Springer, Dordrecht, pp 13–38

    Chapter  Google Scholar 

  • Kirkegaard JA, Ryan MH (2014) Magnitude and mechanisms of persistent crop sequence effects on wheat. Field Crop Res 164:154–165

    Article  Google Scholar 

  • Klein E, Katan J, Gamliel A (2011) Soil suppressiveness to Fusarium disease following organic amendments and solarization. Plant Dis 95:1116–1123

    Article  PubMed  Google Scholar 

  • Klein E, Katan J, Gamliel A (2012) Soil suppressiveness to Meloidogyne javanica as induced by organic amendments and solarisation in greenhouse crops. Crop Prot 39:26–32

    Google Scholar 

  • Kloepper JW, Tuzun S, Zehnder GW, Wei G (1997) Multiple disease protection by rhizobacteria that induce systemic resistance – historic precedence. Phytopathology 87(2):136–137

    Article  CAS  PubMed  Google Scholar 

  • Kowalchuk GA, Buma DS, De Boer W, Klinkhamer PGL, Van Veen JA (2002) Effect of above ground plant species composition and diversity on the diversity of soil borne microorganisms. Antonie Van Leeuwenhoek 81:509–520

    Article  PubMed  Google Scholar 

  • Kristensen ES (2005) Organic farming in a global perspective, globalization, sustainable development and ecological justice. Danish Research Centre for Organic Food and Farming, Tjele

    Google Scholar 

  • Kristensen ES, Hogh-Jensen H, Kristensen IS (1995) A simple-model for estimation of atmospherically-derived nitrogen in grass-clover systems. Bio Agric Hortic 12:263–276

    Article  Google Scholar 

  • Lampkin N (1990) Organic farming. Farming Press Books. Ipswich, UK. Plant Patho., Kyoto. 411

    Google Scholar 

  • Landen EW (1939) Abstract in Rev Appl Mycol 19:84

    Google Scholar 

  • Lazarovits G, Tenuta M, Conn KL (2001) Organic amendments as a disease control strategy for soilborne diseases of high-value agricultural crops. Australas Plant Pathol 30:111–117

    Article  Google Scholar 

  • Lamichhane JR, Osdaghi E, Behlau F, Köhl J, Jones JB, Aubertot JN (2018) Thirteen decades of antimicrobial copper compounds applied in agriculture. a review. Agron Sustain Dev 38(3):28

    Article  CAS  Google Scholar 

  • Lennartsson M (1988) Effects of organic soil amendments and mixed species cropping on take-all disease of wheat. In: Allen P, Van Dusen D. (eds) Global perspectives on agroecology and sustainable agricultural systems: proceedings of the sixth international scientific conference of the international federation of organic agriculture movements, Santa Cruz, August 18–20, p 575–580

    Google Scholar 

  • Litterick AM, Watson CA, Atkinson D (2002) Crop protection in organic agriculture-a simple matter? In: Proceedings of the UK organic research 2002 conference. Institute of Rural Studies, University of Wales Aberystwyth, Organic Centre Wales, pp 203–206

    Google Scholar 

  • Lotter D (2003) Organic agriculture. J Sustain Agri 21:59

    Article  Google Scholar 

  • Lupwayi NZ, Rice WA, Clayton GW (1999) Soil microbial biomass and carbon dioxide flux under wheat as influenced by tillage and crop rotation. Can J Soil Sci 79:273–280

    Article  Google Scholar 

  • Luttikholt LW (2007) Principles of organic agriculture as formulated by the international federation of organic agriculture movements. NJAS-Wageningen J Life Sci 54:347–360

    Article  Google Scholar 

  • Marking LL, Bills TD (1976) Toxicity of rotenone to fish in standardized laboratory tests. Dept. of the Interior, Fish and Wildlife Service, Washington. No. 72, p 11

    Google Scholar 

  • Mazzola M (2004) Assessment and management of soil microbial community structure for disease suppression. Annu Rev Phytopathol 42:35–59

    Article  CAS  PubMed  Google Scholar 

  • Mol L, Van Riesen HW (1995) Effect of plant roots on the germination of microsclerotia of Verticillium dahliae. European J Pl Pathol 101(6):673–678

    Google Scholar 

  • Momma N (2008) Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Jpn Agric Res Q 42:7–12

    Article  CAS  Google Scholar 

  • Mukhopadhyay AN, Mukherjee PK (1996) Fungi as fungicides. Int J Trop Plant Dis 14:1–17

    Google Scholar 

  • Mundt CC (2002) Use of multiline cultivars and cultivar mixture for diseases management. Annu Rev Phytopathol 40:381–410

    Article  CAS  PubMed  Google Scholar 

  • Nagaraja A, Kumar A, Raguchander T, Hota AK, Patro TSSK, Devaraje GP, Savita E, Gowda MVC (2012) Impact of management practices of finger millet blast and grain yield. Indian Phytopathol 65:356–359

    Google Scholar 

  • Natarajan M, Kannaiyan J, Willey R, Nene YL (1985) Studies on effects of cropping system on Fusarium wilt of pigeonpea. Field Crop Res 10:333–346

    Google Scholar 

  • Navaratnam SJ, Shuttleworth D, Wallace D (1980) The effect of aerated steam on six seed borne pathogen. Australian J Exp Agril Ani Husban 20:97–101

    Article  Google Scholar 

  • Ninot A, Aleta N, Moragrega C, Montesinos E (2002) Evaluation of a reduced copper spraying program to control bacterial blight of walnut. Plant Dis 86:583–587

    Article  PubMed  Google Scholar 

  • Otten W, Filipe JAN, Gilligan CA (2005) Damping off epidemics, contact structure and disease transmission in mixed species populations. Ecology 86:85–92

    Article  Google Scholar 

  • Pal KK, McSpadden GB (2006) Biological control of plant pathogens. The Plant Health Instructor. https://doi.org/10.1094/PHI-A-2006-1117-02

  • Palaniappan SP, Annadurai K (1999) Organic farming: theory and practice. Scientific Publishers, Jodhpur, p 257

    Google Scholar 

  • Panov A, Dikalov S, Shalbuyeva N, Taylor G, Sherer T, Greenamyre JT (2005) Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J Biol Chem 280:42026–42035

    Article  CAS  PubMed  Google Scholar 

  • Patil J (1981) Cultural practices and infection crop diseases. Springer-Verlog, Barlin, p 243

    Google Scholar 

  • Patro TSSK, Rani C, Kumar GV (2008) Pseudomonas fluorescens, a potential bioagent for the management of blast in Eleusine coracana. J Mycol Pl Pathol 38:298–300

    Google Scholar 

  • Patibanda AK, Ranganathswamy M (2018) Effect of agrichemicals on biocontrol agents of plant disease control. In: Microorganisms for green revolution, pp 1–21

    Google Scholar 

  • Peoples MB, Herridge DF, Ladha JK (1995) Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant and Soil 174:3–28

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Weller DM (2001) Exploiting the genetic diversity of Pseudomonas spp. characterization of superior colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol 67:2545–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawat L, Singh Y, Shukla N, Kumar J (2011) Alleviation of the adverse effect of salinity stress in wheat by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant and Soil 347:387–400

    Article  CAS  Google Scholar 

  • Rawat L (2011) Characterization of native Trichoderma spp. from Indian Himalayas and their evaluation against salinity stress. Ph.D. Thesis, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India

    Google Scholar 

  • Rawat L, Singh Y, Kumar J (2012) Seed biopriming with salinity tolerant isolates of Trichoderma harzianum alleviates salinity stress in rice: growth, Physiological and Biochemical characteristics. J Plant Pathol 94:353–365

    Google Scholar 

  • Rawat L, Singh Y, Shukla N, Kumar J (2013) Salinity tolerant Trichoderma harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f.sp. ciceri in chickpea (Cicer arietinum L.) under salt stress conditions. Arch Phytopathol Plant Protect 46:1442–1467

    Article  CAS  Google Scholar 

  • Ren LX, Su SM, Yang XM, Xu YC, Huang QW, Shen QR (2007) Intercropping with aerobic rice suppressed Fusarium wilt in watermelon. Soil Biol Biochem 40:834–844

    Google Scholar 

  • Roberts PD, Momol MT, Ritchie L (2008) Evaluation of spray programs containing famoxadone plus cymoxanil, acibenzolar-Smethyl, and Bacillus subtilis compared to copper sprays for management of bacterial spot on tomato. Crop Prot 27:1519–1526

    Article  CAS  Google Scholar 

  • Sayler RJ, Kirkpatrick BC (2003) The effect of copper sprays and fertilization on bacterial canker in French prune. Plant Dis 25:406–410

    CAS  Google Scholar 

  • Scheuerell SJ, Mahaffee WF (2004) Compost tea as a container medium drench for suppressing seedling damping-off caused by Pythium. Phytopathology 94:1156–1163

    Google Scholar 

  • Schmidt H, Philipps L, Welsh JP, Von Fragstein P (1999) Legume breaks in stockless organic farming rotations: nitrogen accumulation and influence on the following crops. Bio Agric Hortic 17:159–170

    Article  Google Scholar 

  • Sequeira L (1958) Bacterial wilt of banana: dissemination of the pathogen and control of disease. Phytopathology 48:64–69

    CAS  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety and social consequences of the deployment of B-transgenic plants. Annu Rev Entomol 47:845–881

    Article  CAS  PubMed  Google Scholar 

  • Singh K (1968) Hot air therapy against grassy shoot disease of sugarcane. Curr Sci 37:592

    Google Scholar 

  • Singh K (1973) Hot air therapy against red rot of sugarcane. Plant Dis Rep 57:220

    Google Scholar 

  • Singh RS (2003) Diseases of vegetable crops. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi

    Google Scholar 

  • Singh RS (2007) Plant diseases. Oxford and IBH Publishing Co. PVT. Ltd., New Delhi, p 720

    Google Scholar 

  • Singh US, Zaidi NW, Joshi D, Varshney S, Khan T (2003) Current status of Trichoderma as a biocontrol agent. In: Ramanujam B, Rabindra RJ (eds) Current status of biological control of plant diseases using antagonistic organisms in India. Project Directorate of Biological Control, Bangalore, pp 13–48

    Google Scholar 

  • Soleimani MJ, Deadman ML, Mc Cartney HA (1996) Splash dispersal on Pseudocercosporella herpotrichoides spores in wheat-clover crop canopies from simulated rain. Plant Pathol 45:1065–1070

    Article  Google Scholar 

  • Sommer AL (1931) Copper as an essential for plant growth. Plant Physiol 6:339–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song YN, Zhang FS, Marschner P, Fan FL, Gao HM, Bao XG, Sun JH, Li L (2007) Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat, maize, and faba bean. Biol Fertil Soils 43:565–574

    Article  CAS  Google Scholar 

  • Souza AGC, Maffia LA, Silva EF (2015) A time series analysis of brown eye spot progress in conventional and organic coffee production systems. Plant Pathol 64:157–166

    Article  Google Scholar 

  • Spiertz JHJ, Sibma L (1986) Dry-matter production and nitrogen utilization in cropping systems with grass, lucerne and maize. 2. Nitrogen yield and utilization. Neth J Agric Sci 34:37–47

    Google Scholar 

  • Srinivas P (2017) Disease management in organic farming. International conference on organic farming for sustainable agriculture. Organized by Orissa University of Agriculture and Technology and Centre for Environment and Economic Development from 2–3 June, 2017 at University of Agriculture and Technology, Bhubaneswar

    Google Scholar 

  • Srinivas P, Ramakrishna G (2005) Biological management of rice seed borne pathogens by native biocontrol agents. Ann Plant Protec Sci 13:422–426

    Google Scholar 

  • Steadman JR, Coyne DP, Cook GE (1973) Reduction of severity of white mold disease on great northern beans by wider row spacing and determinate growth habit. Pl Dis Rep 12:1070–1071

    Google Scholar 

  • Stijger CCMM, Rast ATB (1988) Prospects of dry heat treatment at 0 °C disinfection of pepper seed infected with capsicum mosaic virus. Meded Facul 53:473

    Google Scholar 

  • Stockdale EA, Lampkin NH, Hovi M, Keatinge R, Lennartsson EKM, MacDonald DW, Padel S, Tattersall FH, Wolfe MS, Watson CA (2001) Agronomic and environmental implications of organic farming Systems. Adv Agron 70:261–327

    Article  Google Scholar 

  • Stover RH (1962) Studies on Fusarium wilt of banana. VIII differentiation clones by cultural interaction and volatile substances. Can J Bot 40:1467–1471

    Google Scholar 

  • Szykitka W (2004) The big book of self-reliant living: advice and information on just about everything you need to know to live on planet earth. Globe-Pequot, p 343

    Google Scholar 

  • Tamm L, Willer H, van Bruggen AHC (2015) Organic perennial crop production. In: Finckh MR, van AHC B, Tamm L (eds) Plant diseases and their management in organic agriculture. APS Press, St Paul, MN, pp 33–41

    Google Scholar 

  • Teviotdale BL, Krueger WH (2004) Effects of timing of copper sprays, defoliation, rainfall, and inoculum concentration on incidence of olive knot disease. Plant Dis 88:131–135

    Article  CAS  PubMed  Google Scholar 

  • Utkhede RS, Smith EM (1992) Promotion of apple tree growth and fruit production by the EBW-4 strain of Bacillus subtilis in apple replant disease soil. Can J Microbiol 38:1270–1273

    Article  CAS  PubMed  Google Scholar 

  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  • Van Kessel C, Hartley C (2000) Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crop Res 65:165–181

    Article  Google Scholar 

  • Van Bruggen AHC, Termorshuizen AJ (2003) Integrated approaches to root disease management in organic farming systems. Australas Plant Pathol 32:141–156

    Article  Google Scholar 

  • Vartanian VG, Endo RJ (1985) Survival of Phytophthora infestans in seeds extracted from tomato fruits. Phytopathology 75:375

    Article  Google Scholar 

  • Venkateswarlu B, Balloli SS, Ramakrishna YS (2008) Organic farming in rainfed agriculture: opportunities and constraints. Central Research Institute for Dryland Agriculture, Hyderabad, p 185

    Google Scholar 

  • Vilich-Meller V (1992) Pseudocercosporella herpotrichoides, Fusarium spp and Rhizoctonia cerealis stem rot in pure stands and interspecific mixtures of cereals. Crop Prot 11(1):45–50

    Article  Google Scholar 

  • Walker JL (1969) Diffusion of innovations among American states. Am Polit Sci Rev 63:880–899

    Article  Google Scholar 

  • Watson CA, Atkinson D, Gosling P, Jackson LR, Rayns FW (2002) Managing soil fertility in organic farming systems. Soil Use Manage 18:239–247

    Article  Google Scholar 

  • Wu FZ, Meng LJ, Wen JZ (2001) Effect of root exudates of cucumber on mycelium growth of Fusarium wilt. China Veg 5:26–27

    Google Scholar 

  • Zentmyer GA, Bald JG (1977) Management of the environment. In: Plant disease: an advanced treatise, vol 1. Academic Press Inc, New York, pp 121–144

    Google Scholar 

  • Zeigler RS, Alvarez E (1988) Pseudomonas spp. causing grain and sheath rot of rice in Latin America. Proc. 5th international congress of plant pathology, Kyoto, p 411

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rawat, L., Bisht, T.S., Naithani, D.C. (2021). Plant Disease Management in Organic Farming System: Strategies and Challenges. In: Singh, K.P., Jahagirdar, S., Sarma, B.K. (eds) Emerging Trends in Plant Pathology . Springer, Singapore. https://doi.org/10.1007/978-981-15-6275-4_27

Download citation

Publish with us

Policies and ethics