Skip to main content

An Energy-Efficient Data Routing in Weight-Balanced Tree-Based Fog Network

  • Conference paper
  • First Online:
Intelligent and Cloud Computing

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 153))

Abstract

Investigation for the scope for implementation of green computing in fog network is an important focus among researchers. For this reason, a weight-balanced tree-based architecture in fog network is presented in this research. It is observed that the proposed design is having an advantage for the possession of a fixed (or, almost fixed) length routing table, which further ensures the simplicity of design and fast execution. A detailed analysis discovers the inherent energy efficiency of proposed architecture towards data routing, which further explores the potential of proposed architecture towards the implementation of green computing in fog network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Varghese, B., Buyya, R.: Next generation cloud computing: New trends and research directions. Future Gen. Comp. Syst. 79, 849–861 (2018)

    Article  Google Scholar 

  2. https://cs.wmich.edu/~elise/courses/cs631/Height-and-Weight-Balanced-Trees.pptx. Accessed 06 Aug. 2019

  3. Stojmenovic, I., Wen, S.: The fog computing paradigm: scenarios and security issues. In: 2014 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1–8. IEEE (2014)

    Google Scholar 

  4. https://media.blackhat.com/bh-us-11/Nakibly/BH_US_11_Nakibly_Owning_the_Routing_Table_WP.pdf. Accessed 07 August 2019

  5. Harmon, R.R., Auseklis, N.: Sustainable IT services: assessing the impact of green computing practices. In: 2009 Portland International Conference on Management of Engineering & Technology (PICMET), pp. 1707–1717. IEEE (2009)

    Google Scholar 

  6. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13–16. ACM (2012)

    Google Scholar 

  7. https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-solutions.pdf. Accessed 07 Aug. 2019

  8. Agrawal, P., Rao, S.: Energy-aware scheduling of distributed systems using cellular automata. In: 2012 IEEE International Systems Conference (SysCon), pp. 1–6. IEEE (2012)

    Google Scholar 

  9. Agrawal, P., Rao, S.: Energy-aware scheduling of distributed systems. IEEE Trans. Autom. Sci. Eng. 11(4), 1163–1175 (2014)

    Article  Google Scholar 

  10. Mitra, A., Kundu, A., Chattopadhyay, M.: Energy efficient task-pull scheduling using equal length cellular automata in distributed computing. In: 2014 Fourth International Conference of Emerging Applications of Information Technology, pp. 40–45. IEEE (2014)

    Google Scholar 

  11. Mitra, A., Kundu, A.: Energy efficient CA based page rank validation model: a green approach in cloud. Int. J. Green Comput. (IJGC) 8(2), 59–76 (2017)

    Article  Google Scholar 

  12. Mitra, A.: On investigating energy stability for cellular automata based page rank validation model in green cloud. Int. J. Cloud Appl. Comput. (IJCAC) 9(4), 66–85 (2019)

    Google Scholar 

  13. Saha, S., Mitra, A.: Towards exploration of green computing in energy efficient optimized algorithm for uses in fog computing. In: International Conference on Intelligent Computing and Communication Technologies, pp. 628–636. Springer, Singapore (2019)

    Google Scholar 

  14. Yu, R., Xue, G., Zhang, X.: Application provisioning in fog computing-enabled internet-of-things: a network perspective. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 783–791. IEEE (2018)

    Google Scholar 

  15. Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: An energy-efficient model for fog computing in the internet of things (IoT). Internet Things 1, 14–26 (2018)

    Article  Google Scholar 

  16. Miyandoab, F.D., Ferreira, J.C., Tavares, V.M.G.: Analysis and evaluation of an energy-efficient routing protocol for WSNs combining source routing and minimum cost forwarding. J. Mobile Multimedia 14(4), 469–504 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge sincerely the anonymous reviewers for their useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Mitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saha, S., Mitra, A. (2021). An Energy-Efficient Data Routing in Weight-Balanced Tree-Based Fog Network. In: Mishra, D., Buyya, R., Mohapatra, P., Patnaik, S. (eds) Intelligent and Cloud Computing. Smart Innovation, Systems and Technologies, vol 153. Springer, Singapore. https://doi.org/10.1007/978-981-15-6202-0_1

Download citation

Publish with us

Policies and ethics