Skip to main content

Data Analysis

  • Chapter
  • First Online:
Two-Dimensional Liquid Chromatography

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 370 Accesses

Abstract

2DLC can resolve far more peaks than standard HPLC but it also produces far more complex data. We are at a point in analytical science where running samples and generating terabytes of data is often the simplest part of the workflow and analysing the data properly takes up the majority of the analyst’s time. The question then becomes how to draw meaningful insights from these datasets, and once the data’s salient features are extracted, how can we best identify them, and infer meaning from that list of identified compounds. The data must be processed properly to create useful chromatograms, identify all the peaks, and generate new knowledge from the data obtained. There are a number of different ways to do this ranging from pre-process smoothing algorithms to geometric approach factor analysis. Understanding these methods as well as the format of the raw data is an important part of the 2DLC workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen RC, Rutan SC (2011) Investigation of interpolation techniques for the reconstruction of the first dimension of comprehensive two-dimensional liquid chromatography–diode array detector data. Anal Chim Acta 705(1–2):253–260

    Article  CAS  Google Scholar 

  • Andrighetto LM, Stevenson PG, Pearson JR, Henderson LC, Conlan XA (2014) DryLab(R) optimised two-dimensional high performance liquid chromatography for differentiation of ephedrine and pseudoephedrine based methamphetamine samples. Forensic Sci Int 244:302–305

    Article  CAS  Google Scholar 

  • Beucher S, Lantuejoul C (1979) Use of watersheds in contour detection

    Google Scholar 

  • Bos TS, Knol WC, Molenaar SRA, Niezen LE, Schoenmakers PJ, Somsen GW, Pirok BWJ (2020) Recent applications of chemometrics in one- and two-dimensional chromatography. J Sep Sci n/a(n/a)

    Google Scholar 

  • Bradbury J, Genta-Jouve G, Allwood JW, Dunn WB, Goodacre R, Knowles JD, He S, Viant MR (2015) MUSCLE: automated multi-objective evolutionary optimization of targeted LC-MS/MS analysis. Bioinformatics 31(6):975–977

    Article  CAS  Google Scholar 

  • Burns NK, Andrighetto LM, Conlan XA, Purcell SD, Barnett NW, Denning J, Francis PS, Stevenson PG (2016) Blind column selection protocol for two-dimensional high performance liquid chromatography. Talanta 154:85–91

    Article  CAS  Google Scholar 

  • Cook DW, Rutan SC (2014) Chemometrics for the analysis of chromatographic data in metabolomics investigations. J Chemom 28(9):681–687

    Article  CAS  Google Scholar 

  • Danielsson R, Bylund D, Markides KE (2002) Matched filtering with background suppression for improved quality of base peak chromatograms and mass spectra in liquid chromatography–mass spectrometry. Anal Chim Acta 454(2):167–184

    Article  CAS  Google Scholar 

  • Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (1999) Introduction to multi- and megavariate data analysis using projection methods (PCA and PLS). Umetrics, Umeå, Sweden

    Google Scholar 

  • Guiochon G, Marchetti N, Mriziq K, Shalliker RA (2008) Implementations of two-dimensional liquid chromatography. J Chromatogr A 1189(1–2):109–168

    Article  CAS  Google Scholar 

  • Nikitas P, Pappa-Louisi A, Papageorgiou A (2001) On the equations describing chromatographic peaks and the problem of the deconvolution of overlapped peaks. J Chromatogr A 912(1):13–29

    Article  CAS  Google Scholar 

  • Pandohee J, Rees RJ, Spencer MJS, Raynor A, Jones OAH (2019) Combining computational and experimental approaches to select chromophores to enable the detection of fatty acids via HPLC. Anal Methods 11(23):2952–2959

    Article  CAS  Google Scholar 

  • Peters S, Vivó-Truyols G, Marriott PJ, Schoenmakers PJ (2007) Development of an algorithm for peak detection in comprehensive two-dimensional chromatography. J Chromatogr A 1156(1–2 SPEC. ISS.):14–24

    Google Scholar 

  • Pierce KM, Mohler RE (2011) A review of chemometrics applied to comprehensive two-dimensional separations from 2008–2010. Sep Purif Rev 41(2):143–168

    Article  Google Scholar 

  • Ramos L (2009) Comprehensive two dimensional gas chromatography. Elsevier

    Google Scholar 

  • Ramos LS, Sanchez E, Kowalski BR (1987) Generalized rank annihilation method: II. Analysis of bimodal chromatographic data. J Chromatogr A 385(0):165–180

    Google Scholar 

  • Ranjbar L, Talebi M, Haddad PR, Park SH, Cabot JM, Zhang M, Smejkal P, Foley JP, Breadmore MC (2017) In silico screening of two-dimensional separation selectivity for ion chromatography × capillary electrophoresis separation of low-molecular-mass organic acids. Anal Chem 89(17):8808–8815

    Article  CAS  Google Scholar 

  • Reichenbach SE (2009) Quantification in comprehensive two-dimensional liquid chromatography. Anal Chem 81(12):5099–5101

    Article  CAS  Google Scholar 

  • Rubtsov DV, Griffin JL (2007) Time-domain Bayesian detection and estimation of noisy damped sinusoidal signals applied to NMR spectroscopy. J Magn Reson 188(2):13–13

    Article  Google Scholar 

  • Sanchez E, Scott Ramos L, Kowalski BR (1987) Generalized rank annihilation method: I. Application to liquid chromatography—diode array ultraviolet detection data. J Chromatogr A 385(0):151–164

    Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639

    Article  CAS  Google Scholar 

  • Stevenson PG, Bassanese DN, Barnett NW, Conlan XA (2013a) Improved 2D-HPLC of red wine by incorporating pre-process signal-smoothing algorithms. J Sep Sci 36(21–22):3503–3510

    Article  CAS  Google Scholar 

  • Stevenson PG, Conlan XA, Barnett NW (2013b) Evaluation of the asymmetric least squares baseline algorithm through the accuracy of statistical peak moments. J Chromatogr A 1284:107–111

    Article  CAS  Google Scholar 

  • Stevenson PG, Guiochon G (2013) Cumulative area of peaks in a multidimensional high performance liquid chromatogram. J Chromatogr A 1308:79–85

    Article  CAS  Google Scholar 

  • Stevenson PG, Mnatsakanyan M, Guiochon G, Shalliker RA (2010) Peak picking and the assessment of separation performance in two-dimensional high performance liquid chromatography. Analyst 135(7):1541–1550

    Article  CAS  Google Scholar 

  • Tautenhahn R, Böttcher C, Neumann S (2008) Highly sensitive feature detection for high resolution LC/MS. BMC Bioinf 9(1):1–16

    Article  Google Scholar 

  • Tistaert C, Bailey HP, Allen RC, Heyden YV, Rutan SC (2012) Resolution of spectrally rank-deficient multivariate curve resolution: alternating least squares components in comprehensive two-dimensional liquid chromatographic analysis. J Chemom 26(8–9):474–486

    Article  CAS  Google Scholar 

  • Vivó-Truyols G (2012) Bayesian approach for peak detection in two-dimensional chromatography. Anal Chem 84(6):2622–2630

    Article  Google Scholar 

  • Vivó-Truyols G, Janssen H-G (2010) Probability of failure of the watershed algorithm for peak detection in comprehensive two-dimensional chromatography. J Chromatogr A 1217(8):1375–1385

    Article  Google Scholar 

  • Vivó-Truyols G, Torres-Lapasió JR, Caballero RD, Garcı́a-Alvarez-Coque MC (2002) Peak deconvolution in one-dimensional chromatography using a two-way data approach. J Chromatogr A 958(1–2):35–49

    Google Scholar 

  • Vivó-Truyols G, Torres-Lapasió JR, van Nederkassel AM, Vander Heyden Y, Massart DL (2005) Automatic program for peak detection and deconvolution of multi-overlapped chromatographic signals: part II: peak model and deconvolution algorithms. J Chromatogr A 1096(1–2):146–155

    Article  Google Scholar 

  • Wei X, Sun W, Shi X, Koo I, Wang B, Zhang J, Yin X, Tang Y, Bogdanov B, Kim S, Zhou Z, McClain C, Zhang X (2011) MetSign: a computational platform for high-resolution mass spectrometry-based metabolomics. Anal Chem 83(20):7668–7675

    Article  CAS  Google Scholar 

  • Whittaker ET (1922) On a new method of graduation. Proc Edinb Math Soc 41:63–75

    Article  Google Scholar 

  • Wold S, Andersson K (1973) Major components influencing retention indices in gas chromatography. J Chromatogr A 80(1):43–59

    Article  CAS  Google Scholar 

  • Xu J, Zheng L, Su G, Sun B, Zhao M (2019) An improved peak clustering algorithm for comprehensive two-dimensional liquid chromatography data analysis. J Chromatogr A 1602:273–283

    Article  CAS  Google Scholar 

  • Zellner BdA, Bicchi C, Dugo P, Rubiolo P, Dugo G, Mondello L (2008) Linear retention indices in gas chromatographic analysis: a review. Flavour Fragr J 23(5):297–314

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Jones .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jones, O. (2020). Data Analysis. In: Two-Dimensional Liquid Chromatography. SpringerBriefs in Molecular Science. Springer, Singapore. https://doi.org/10.1007/978-981-15-6190-0_4

Download citation

Publish with us

Policies and ethics