Skip to main content

Complex Exposures to Environmental Toxicants or Stresses

  • Chapter
  • First Online:
Exposure Toxicology in Caenorhabditis elegans
  • 230 Accesses

Abstract

Both combinational exposure and sequential exposure reflect the interaction between different stresses, between different toxicants, or between a stress and a toxicant in influencing the physiological or developmental state of animals. In this chapter, we focused on the introduction of these two complex exposures to environmental toxicants or stresses in nematodes. For the combinational exposures, we introduced the combinational exposure to different soluble toxicants, the combinational exposure to soluble toxicant and particulate toxicant, the combinational exposure to different particulate toxicants, and the combinational exposure to a toxicant and a stress. For the sequential exposures, we introduced both the toxic effects and the beneficial effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang D-Y (2018) Nanotoxicology in Caenorhabditis elegans. Springer, Singapore

    Google Scholar 

  2. Wang D-Y (2019) Molecular toxicology in Caenorhabditis elegans. Springer, Singapore

    Google Scholar 

  3. Wang D-Y (2019) Target organ toxicology in Caenorhabditis elegans. Springer, Singapore

    Google Scholar 

  4. Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106:5–28

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheng X-K, Dong S-S, Chen D, Rui Q, Guo J-J, Wang D-Y, Jiang J-D (2020) Potential of esterase DmtH in transforming plastic additive dimethyl terephthalate to less toxic mono-methyl terephthalate. Ecotoxicol Environ Saf 187:109848

    CAS  PubMed  Google Scholar 

  6. Zhao L, Dong S-S, Zhao Y-L, Shao H-M, Krasteva N, Wu Q-L, Wang D-Y (2019) Dysregulation of let-7 by PEG modified graphene oxide in nematodes with deficit in epidermal barrier. Ecotoxicol Environ Saf 169:1–7

    CAS  PubMed  Google Scholar 

  7. Qu M, Qiu Y-X, Lv R-R, Yue Y, Liu R, Yang F, Wang D-Y, Li Y-H (2019) Exposure to MPA-capped CdTe quantum dots causes reproductive toxicity effects by affecting oogenesis in nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 173:54–62

    CAS  PubMed  Google Scholar 

  8. Zhao Y-Y, Dong S-S, Kong Y, Rui Q, Wang D-Y (2020) Molecular basis of intestinal canonical Wnt/β-catenin BAR-1 in response to simulated microgravity in Caenorhabditis elegans. Biochem Biophys Res Commun 522:198–204

    CAS  PubMed  Google Scholar 

  9. Chu KW, Chow KL (2002) Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquat Toxicol 61:53–64

    Google Scholar 

  10. Wang D-Y, Liu P-D, Yang Y-C, Shen L-L (2010) Formation of combined Ca/Cd toxicity on lifespan of nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 73:1221–1230

    CAS  PubMed  Google Scholar 

  11. Qu M, Kong Y, Yuan Y-J, Wang D-Y (2019) Neuronal damage induced by nanopolystyrene particles in nematode Caenorhabditis elegans. Environ Sci Nano 6:2591–2601

    CAS  Google Scholar 

  12. Qu M, Liu Y-Q, Xu K-N, Wang D-Y (2019) Activation of p38 MAPK signaling-mediated endoplasmic reticulum unfolded protein response by nanopolystyrene particles. Adv Biosys 3:1800325

    CAS  Google Scholar 

  13. Yang Y-H, Shao H-M, Wu Q-L, Wang D-Y (2020) Lipid metabolic response to polystyrene particles in nematode Caenorhabditis elegans. Environ Pollut 256:113439

    CAS  PubMed  Google Scholar 

  14. Shao H-M, Wang D-Y (2020) Long-term and low-dose exposure to nanopolystyrene induces a protective strategy to maintain functional state of intestine barrier in nematode Caenorhabditis elegans. Environ Pollut 258:113649

    CAS  PubMed  Google Scholar 

  15. Shao H-M, Kong Y, Wang D-Y (2020) Response of intestinal signaling communication between nucleus and peroxisome to nanopolystyrene at predicted environmental concentration. Environ Sci Nano 7:250–261

    CAS  Google Scholar 

  16. Qu M, Luo L-B, Yang Y-H, Kong Y, Wang D-Y (2019) Nanopolystyrene-induced microRNAs response in Caenorhabditis elegans after long-term and lose-dose exposure. Sci Total Environ 697:134131

    CAS  PubMed  Google Scholar 

  17. Qu M, Zhao Y-L, Zhao Y-Y, Rui Q, Kong Y, Wang D-Y (2019) Identification of long non-coding RNAs in response to nanopolystyrene in Caenorhabditis elegans after long-term and low-dose exposure. Environ Pollut 255:113137

    CAS  PubMed  Google Scholar 

  18. Qu M, Qiu Y-X, Kong Y, Wang D-Y (2019) Amino modification enhances reproductive toxicity of nanopolystyrene on gonad development and reproductive capacity in nematode Caenorhabditis elegans. Environ Pollut 254:112978

    CAS  PubMed  Google Scholar 

  19. Qu M, Wang D-Y (2020) Toxicity comparison between pristine and sulfonate modified nanopolystyrene particles in affecting locomotion behavior, sensory perception, and neuronal development in Caenorhabditis elegans. Sci Total Environ 703:134817

    CAS  PubMed  Google Scholar 

  20. Qiu Y-X, Luo L-B, Yang Y-H, Kong Y, Li Y-H, Wang D-Y (2020) Potential toxicity of nanopolystyrene on lifespan and aging process of nematode Caenorhabditis elegans. Sci Total Environ 705:135918

    CAS  PubMed  Google Scholar 

  21. Liu H-L, Shao H-M, Guo Z-J, Wang D-Y (2020) Nanopolystyrene exposure activates a fat metabolism related signaling-mediated protective response in Caenorhabditis elegans. NanoImpacts 17:100204

    Google Scholar 

  22. Qu M, Nida A, Kong Y, Du H-H, Xiao G-S, Wang D-Y (2019) Nanopolystyrene at predicted environmental concentration enhances microcystin-LR toxicity by inducing intestinal damage in Caenorhabditis elegans. Ecotoxicol Environ Saf 183:109568

    CAS  PubMed  Google Scholar 

  23. Zhao Y-L, Wu Q-L, Tang M, Wang D-Y (2014) The in vivo underlying mechanism for recovery response formation in nano-titanium dioxide exposed Caenorhabditis elegans after transfer to the normal condition. Nanomed Nanotechnol Biol Med 10:89–98

    CAS  Google Scholar 

  24. Wu Q-L, Zhao Y-L, Li Y-P, Wang D-Y (2014) Susceptible genes regulate the adverse effects of TiO2-NPs at predicted environmental relevant concentrations on nematode Caenorhabditis elegans. Nanomed Nanotechnol Biol Med 10:1263–1271

    CAS  Google Scholar 

  25. Wu Q-L, Nouara A, Li Y-P, Zhang M, Wang W, Tang M, Ye B-P, Ding J-D, Wang D-Y (2013) Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere 90:1123–1131

    CAS  PubMed  Google Scholar 

  26. Rui Q, Zhao Y-L, Wu Q-L, Tang M, Wang D-Y (2013) Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes required for oxidative stress or stress response. Chemosphere 93:2289–2296

    CAS  PubMed  Google Scholar 

  27. Li Y-X, Wang W, Wu Q-L, Li Y-P, Tang M, Ye B-P, Wang D-Y (2012) Molecular control of TiO2-NPs toxicity formation at predicted environmental relevant concentrations by Mn-SODs proteins. PLoS One 7:e44688

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu Q-L, Wang W, Li Y-X, Li Y-P, Ye B-P, Tang M, Wang D-Y (2012) Small sizes of TiO2-NPs exhibit adverse effects at predicted environmental relevant concentrations on nematodes in a modified chronic toxicity assay system. J Hazard Mater 243:161–168

    CAS  PubMed  Google Scholar 

  29. Dong S-S, Qu M, Rui Q, Wang D-Y (2018) Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematodes Caenorhabditis elegans. Ecotoxicol Environ Saf 161:444–450

    CAS  PubMed  Google Scholar 

  30. Kong Y, Liu H-L, Li W-J, Wang D-Y (2019) Intestine-specific activity of insulin signaling pathway in response to microgravity stress in Caenorhabditis elegans. Biochem Biophys Res Commun 517:278–284

    CAS  PubMed  Google Scholar 

  31. Liu H-L, Guo D-Q, Kong Y, Rui Q, Wang D-Y (2019) Damage on functional state of intestinal barrier by microgravity stress in nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 183:109554

    CAS  PubMed  Google Scholar 

  32. Liu P-D, Li D, Li W-J, Wang D-Y (2019) Mitochondrial unfolded protein response to microgravity stress in nematode Caenorhabditis elegans. Sci Rep 9:16474

    PubMed  PubMed Central  Google Scholar 

  33. Rui Q, Dong S-S, Jiang W-K, Wang D-Y (2019) Response of canonical Wnt/β-catenin signaling pathway in the intestine to microgravity stress in Caenorhabditis elegans. Ecotoxicol Environ Saf 186:109782

    PubMed  Google Scholar 

  34. Li W-J, Wang D-Y, Wang D-Y (2018) Regulation of the response of Caenorhabditis elegans to simulated microgravity by p38 mitogen-activated protein kinase signaling. Sci Rep 8:857

    PubMed  PubMed Central  Google Scholar 

  35. Zhao L, Rui Q, Wang D-Y (2017) Molecular basis for oxidative stress induced by simulated microgravity in nematode Caenorhabditis elegans. Sci Total Environ 607–608:1381–1390

    PubMed  Google Scholar 

  36. Zhao Y-Y, Li D, Rui Q, Wang D-Y (2020) Toxicity induction of nanopolystyrene under microgravity stress condition in Caenorhabditis elegans. Sci Total Environ 703:135623

    CAS  PubMed  Google Scholar 

  37. Yu Y-L, Zhi L-T, Wu Q-L, Jing L-N, Wang D-Y (2018) NPR-9 regulates innate immune response in Caenorhabditis elegans by antagonizing activity of AIB interneurons. Cell Mol Immunol 15:27–37

    CAS  PubMed  Google Scholar 

  38. Zhi L-T, Yu Y-L, Li X-Y, Wang D-Y, Wang D-Y (2017) Molecular control of innate immune response to Pseudomonas aeruginosa infection by intestinal let-7 in Caenorhabditis elegans. PLoS Pathog 13:e1006152

    PubMed  PubMed Central  Google Scholar 

  39. Zhi L-T, Yu Y-L, Jiang Z-X, Wang D-Y (2017) mir-355 functions as an important link between p38 MAPK signaling and insulin signaling in the regulation of innate immunity. Sci Rep 7:14560

    PubMed  PubMed Central  Google Scholar 

  40. Sun L-M, Zhi L-T, Shakoor S, Liao K, Wang D-Y (2016) microRNAs involved in the control of innate immunity in Candida infected Caenorhabditis elegans. Sci Rep 6:36036

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Adonizio A, Leal SM Jr, Ausubel FM, Mathee K (2008) Attenuation of Pseudomonas aeruginosa virulence by medicinal plants in a Caenorhabditis elegans model system. J Med Microbiol 57:809–813

    CAS  PubMed  Google Scholar 

  42. Wang D-Y, Xing X-J (2009) Pre-treatment with mild metal exposure suppresses the neurotoxicity on locomotion behavior induced by the subsequent severe metal exposure in Caenorhabditis elegans. Environ Toxicol Pharmacol 28:459–464

    CAS  PubMed  Google Scholar 

  43. Wang D-Y, Cao M, Dinh J, Dong Y-Q (2013) Methods for creating mutations in C. elegans that extend lifespan. Method Mol Biol 1048:65–75

    CAS  Google Scholar 

  44. Zhang H, He X, Zhang Z, Zhang P, Li Y, Ma Y, Kuang Y, Zhao Y, Chai Z (2011) Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ Sci Technol 45:3725–3730

    CAS  PubMed  Google Scholar 

  45. Liu P-D, Shao H-M, Ding X-C, Yang R-L, Rui Q, Wang D-Y (2019) Dysregulation of neuronal Gαo signaling by graphene oxide in nematode Caenorhabditis elegans. Sci Rep 9:6026

    PubMed  PubMed Central  Google Scholar 

  46. Liu P-D, Shao H-M, Kong Y, Wang D-Y (2020) Effect of graphene oxide exposure on intestinal Wnt signaling in nematode Caenorhabditis elegans. J Environ Sci 88:200–208

    Google Scholar 

  47. Shi L-F, Jia X-H, Guo T-T, Cheng L, Han X-X, Wu Q-L, Wang D-Y (2019) A circular RNA circ_0000115 in response to graphene oxide in nematodes. RSC Adv 9:13722–13735

    CAS  Google Scholar 

  48. Zhao Y-L, Chen H, Yang Y-H, Wu Q-L, Wang D-Y (2020) Graphene oxide disrupts the protein-protein interaction between Neuroligin/NLG-1 and DLG-1 or MAGI-1 in nematode Caenorhabditis elegans. Sci Total Environ 700:134492

    CAS  PubMed  Google Scholar 

  49. Ding X-C, Rui Q, Zhao Y-L, Shao H-M, Yin Y-P, Wu Q-L, Wang D-Y (2018) Toxicity of graphene oxide in nematodes with deficit in epidermal barrier caused by RNA interference knockdown of unc-52. Environ Sci Technol Lett 5:622–628

    CAS  Google Scholar 

  50. Wu Q-L, Zhou X-F, Han X-X, Zhuo Y-Z, Zhu S-T, Zhao Y-L, Wang D-Y (2016) Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide. Biomaterials 102:277–291

    CAS  PubMed  Google Scholar 

  51. Wu Q-L, Zhao Y-L, Fang J-P, Wang D-Y (2014) Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide. Nanoscale 6:5894–5906

    CAS  PubMed  Google Scholar 

  52. Zhang W, Wang C, Li Z, Lu Z, Li Y, Yin J, Zhou Y, Gao X, Fang Y, Nie G, Zhao Y (2012) Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv Mater 24:5391–5397

    CAS  PubMed  Google Scholar 

  53. Zhao Y-L, Jin L, Wang Y, Kong Y, Wang D-Y (2019) Prolonged exposure to multi-walled carbon nanotubes dysregulates intestinal mir-35 and its direct target MAB-3 in nematode Caenorhabditis elegans. Sci Rep 9:12144

    PubMed  PubMed Central  Google Scholar 

  54. Zhao L, Wan H-X, Liu Q-Z, Wang D-Y (2017) Multi-walled carbon nanotubes-induced alterations in microRNA let-7 and its targets activate a protection mechanism by conferring a developmental timing control. Part Fibre Toxicol 14:27

    PubMed  PubMed Central  Google Scholar 

  55. Zhi L-T, Fu W, Wang X, Wang D-Y (2016) ACS-22, a protein homologous to mammalian fatty acid transport protein 4, is essential for the control of toxicity and translocation of multi-walled carbon nanotubes in Caenorhabditis elegans. RSC Adv 6:4151–4159

    CAS  Google Scholar 

  56. Shakoor S, Sun L-M, Wang D-Y (2016) Multi-walled carbon nanotubes enhanced fungal colonization and suppressed innate immune response to fungal infection in nematodes. Toxicol Res 5:492–499

    CAS  Google Scholar 

  57. Wang D-Y, Xing X-J (2010) Pre-treatment with mild UV irradiation suppresses reproductive toxicity induced by subsequent cadmium exposure in nematodes. Ecotoxicol Environ Saf 73:423–429

    CAS  PubMed  Google Scholar 

  58. Yu X-M, Guan X-M, Wu Q-L, Zhao Y-L, Wang D-Y (2015) Vitamin E ameliorates the neurodegeneration related phenotypes caused by neurotoxicity of Al2O3-nanoparticles in C. elegans. Toxicol Res 4:1269–1281

    CAS  Google Scholar 

  59. Zhao Y-L, Jia R-H, Qiao Y, Wang D-Y (2016) Glycyrrhizic acid, active component from Glycyrrhizae radix, prevents toxicity of graphene oxide by influencing functions of microRNAs in nematode Caenorhabditis elegans. Nanomed Nanotechnol Biol Med 12:735–744

    CAS  Google Scholar 

  60. Zhang W-M, Lv T, Li M, Wu Q-L, Yang L-S, Liu H, Sun D-F, Sun L-M, Zhuang Z-H, Wang D-Y (2013) Beneficial effects of wheat gluten hydrolysate to extend lifespan and induce stress resistance in nematode Caenorhabditis elegans. PLoS One 8:e74553

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao Y-L, Yu X-M, Jia R-H, Yang R-L, Rui Q, Wang D-Y (2015) Lactic acid bacteria protects Caenorhabditis elegans from toxicity of graphene oxide by maintaining normal intestinal permeability under different genetic backgrounds. Sci Rep 5:17233

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Rui Q, Lu Q, Wang D-Y (2009) Administration of Bushenkangshuai Tang alleviates the UV irradiation- and oxidative stress-induced lifespan defects in nematode Caenorhabditis elegans. Front Med China 3:76–90

    Google Scholar 

  63. Gu C-X, Wen Y, Wu L, Wang Y-D, Wu Q-L, Wang D-Y, Wang Y-B, Liu Q-Z, Zhang J-S (2020) Arsenite-induced transgenerational glycometabolism is associated with up-regulation of H3K4me2 via inhibiting spr-5 in Caenorhabditis elegans. Toxicol Lett 326:11–17

    CAS  PubMed  Google Scholar 

  64. Qu M, Li D, Zhao Y-L, Yuan Y-J, Wang D-Y (2020) Exposure to low-dose nanopolystyrene induces the response of neuronal JNK MAPK signaling pathway in nematode Caenorhabditis elegans. Environ Sci Eur 32:58

    CAS  Google Scholar 

  65. Qu M, Li D, Qiu Y-X, Wang D-Y (2020) Neuronal ERK MAPK signaling in response to low-dose nanopolystyrene exposure by suppressing insulin peptide expression in Caenorhabditis elegans. Sci Total Environ 724:138378

    CAS  PubMed  Google Scholar 

  66. Li D, Deng Y-J, Wang S-T, Du H-H, Xiao G-S, Wang D-Y (2020) Assessment of nanopolystyrene toxicity under fungal infection condition in Caenorhabditis elegans. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2020.110625

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D. (2020). Complex Exposures to Environmental Toxicants or Stresses. In: Exposure Toxicology in Caenorhabditis elegans. Springer, Singapore. https://doi.org/10.1007/978-981-15-6129-0_3

Download citation

Publish with us

Policies and ethics