Skip to main content

Role of Exposure Dose in Toxicity Induction of Environmental Toxicants or Stresses

  • Chapter
  • First Online:
Exposure Toxicology in Caenorhabditis elegans
  • 231 Accesses

Abstract

Multiple factors may affect the toxicity induction of environmental toxicants or stresses in nematodes. Among these factors, the responses to different exposure doses of environmental toxicants or stresses are dynamic and complex in nematodes. We first discussed the dynamic responses to different doses of environmental toxicants or stresses. Again, we introduced the value of nematodes at different aspects for assessing the toxicity of toxicants or stresses at environmentally relevant doses. Moreover, we introduced the adaptive responses induced by pre-exposure to low dose of toxicants or stresses. Finally, we introduce and discussed the use of passive dosing in maintaining constant exposure dose of hydrophobic toxicants during the toxicity assay in nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang D-Y (2018) Nanotoxicology in Caenorhabditis elegans. Springer Nature Singapore Pte Ltd, Singapore

    Google Scholar 

  2. Wang D-Y (2019) Molecular toxicology in Caenorhabditis elegans. Springer Nature Singapore Pte Ltd, Singapore

    Google Scholar 

  3. Wang D-Y (2019) Target organ toxicology in Caenorhabditis elegans. Springer Nature Singapore Pte Ltd, Singapore

    Google Scholar 

  4. Cheng X-K, Dong S-S, Chen D, Rui Q, Guo J-J, Wang D-Y, Jiang J-D (2020) Potential of esterase DmtH in transforming plastic additive dimethyl terephthalate to less toxic mono-methyl terephthalate. Ecotoxicol Environ Safety 187:109848

    CAS  PubMed  Google Scholar 

  5. Zhao Y-L, Chen H, Yang Y-H, Wu Q-L, Wang D-Y (2020) Graphene oxide disrupts the protein-protein interaction between Neuroligin/NLG-1 and DLG-1 or MAGI-1 in nematode Caenorhabditis elegans. Sci Total Environ 700:134492

    Article  CAS  Google Scholar 

  6. Liu P-D, Shao H-M, Kong Y, Wang D-Y (2020) Effect of graphene oxide exposure on intestinal Wnt signaling in nematode Caenorhabditis elegans. J Environ Sci 88:200–208

    Article  Google Scholar 

  7. Liu P-D, Li D, Li W-J, Wang D-Y (2019) Mitochondrial unfolded protein response to microgravity stress in nematode Caenorhabditis elegans. Sci Rep 9:16474

    PubMed  PubMed Central  Google Scholar 

  8. Rui Q, Dong S-S, Jiang W-K, Wang D-Y (2019) Response of canonical Wnt/β-catenin signaling pathway in the intestine to microgravity stress in Caenorhabditis elegans. Ecotoxicol Environ Safety 186:109782

    Article  Google Scholar 

  9. Zhao Y-Y, Dong S-S, Kong Y, Rui Q, Wang D-Y (2020) Molecular basis of intestinal canonical Wnt/β-catenin BAR-1 in response to simulated microgravity in Caenorhabditis elegans. Biochem Biophys Res Commun 522:198–204

    Article  CAS  Google Scholar 

  10. Kong Y, Liu H-L, Li W-J, Wang D-Y (2019) Intestine-specific activity of insulin signaling pathway in response to microgravity stress in Caenorhabditis elegans. Biochem Biophys Res Commun 517:278–284

    CAS  PubMed  Google Scholar 

  11. Liu H-L, Guo D-Q, Kong Y, Rui Q, Wang D-Y (2019) Damage on functional state of intestinal barrier by microgravity stress in nematode Caenorhabditis elegans. Ecotoxicol Environ Safety 183:109554

    Article  CAS  Google Scholar 

  12. Zhao L, Rui Q, Wang D-Y (2017) Molecular basis for oxidative stress induced by simulated microgravity in nematode Caenorhabditis elegans. Sci Total Environ 607–608:1381–1390

    Article  Google Scholar 

  13. Yang Y-H, Shao H-M, Wu Q-L, Wang D-Y (2020) Lipid metabolic response to polystyrene particles in nematode Caenorhabditis elegans. Environ Pollut 256:113439

    CAS  PubMed  Google Scholar 

  14. Shao H-M, Wang D-Y (2020) Long-term and low-dose exposure to nanopolystyrene induces a protective strategy to maintain functional state of intestine barrier in nematode Caenorhabditis elegans. Environ Pollut 258:113649

    CAS  PubMed  Google Scholar 

  15. Shao H-M, Kong Y, Wang D-Y (2020) Response of intestinal signaling communication between nucleus and peroxisome to nanopolystyrene at predicted environmental concentration. Environ Sci Nano 7:250–261

    CAS  Google Scholar 

  16. Qu M, Zhao Y-L, Zhao Y-Y, Rui Q, Kong Y, Wang D-Y (2019) Identification of long non-coding RNAs in response to nanopolystyrene in Caenorhabditis elegans after long-term and low-dose exposure. Environ Pollut 255:113137

    Article  CAS  Google Scholar 

  17. Qu M, Wang D-Y (2020) Toxicity comparison between pristine and sulfonate modified nanopolystyrene particles in affecting locomotion behavior, sensory perception, and neuronal development in Caenorhabditis elegans. Sci Total Environ 703:134817

    Article  CAS  Google Scholar 

  18. Liu H-L, Shao H-M, Guo Z-J, Wang D-Y (2020) Nanopolystyrene exposure activates a fat metabolism related signaling-mediated protective response in Caenorhabditis elegans. NanoImpacts 17:100204

    Article  Google Scholar 

  19. Zhao Y-Y, Li D, Rui Q, Wang D-Y (2020) Toxicity induction of nanopolystyrene under microgravity stress condition in Caenorhabditis elegans. Sci Total Environ 703:135623

    Article  CAS  Google Scholar 

  20. Li D, Ji J, Yuan Y-J, Wang D-Y (2020) Toxicity comparison of nanopolystyrene with three metal oxide nanoparticles in nematode Caenorhabditis elegans. Chemosphere 245:125625

    Article  CAS  Google Scholar 

  21. Qiu Y-X, Luo L-B, Yang Y-H, Kong Y, Li Y-H, Wang D-Y (2020) Potential toxicity of nanopolystyrene on lifespan and aging process of nematode Caenorhabditis elegans. Sci Total Environ 705:135918

    Article  CAS  Google Scholar 

  22. Zhao L, Qu M, Wong G, Wang D-Y (2017) Transgenerational toxicity of nanopolystyrene particles in the range of μg/L in nematode Caenorhabditis elegans. Environ Sci Nano 4:2356–2366

    Article  CAS  Google Scholar 

  23. Qu M, Kong Y, Yuan Y-J, Wang D-Y (2019) Neuronal damage induced by nanopolystyrene particles in nematode Caenorhabditis elegans. Environ Sci Nano 6:2591–2601

    Article  CAS  Google Scholar 

  24. Wu Q-L, Nouara A, Li Y-P, Zhang M, Wang W, Tang M, Ye B-P, Ding J-D, Wang D-Y (2013) Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere 90:1123–1131

    Article  CAS  Google Scholar 

  25. Salf MS, Haq MU, Memon KS (2005) Heavy metals contamination through industrial effluent to irrigation water and soil in Korangi area of Karachi (Pakistan). Int J Agri Biol 7:646–648

    Google Scholar 

  26. Velma V, Vutukuru SS, Tchounwou PB (2009) Ecotoxicology of hexavalent chromium in freshwater fish: a critical review. Rev Environ Health 24:129–145

    Article  CAS  Google Scholar 

  27. Wu Q-L, Qu Y-Y, Li X, Wang D-Y (2012) Chromium exhibits adverse effects at environmental relevant concentrations in chronic toxicity assay system of nematode Caenorhabditis elegans. Chemosphere 87:1281–1287

    Article  CAS  Google Scholar 

  28. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  29. Li Y-X, Wang W, Wu Q-L, Li Y-P, Tang M, Ye B-P, Wang D-Y (2012) Molecular control of TiO2-NPs toxicity formation at predicted environmental relevant concentrations by Mn-SODs proteins. PLoS One 7:e44688

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu Q-L, Zhao Y-L, Li Y-P, Wang D-Y (2014) Susceptible genes regulate the adverse effects of TiO2-NPs at predicted environmental relevant concentrations on nematode Caenorhabditis elegans. Nanomedicine 10:1263–1271

    Article  CAS  Google Scholar 

  31. Lenz R, Enders K, Nielsen TG (2016) Microplastic exposure studies should be environmentally realistic. Proc Natl Acad Sci U S A 113:E4121–E4122

    Article  CAS  Google Scholar 

  32. Zhi L-T, Fu W, Wang X, Wang D-Y (2016) ACS-22, a protein homologous to mammalian fatty acid transport protein 4, is essential for the control of toxicity and translocation of multi-walled carbon nanotubes in Caenorhabditis elegans. RSC Adv 6:4151–4159

    Article  CAS  Google Scholar 

  33. Qu M, Xu K-N, Li Y-H, Wong G, Wang D-Y (2018) Using acs-22 mutant Caenorhabditis elegans to detect the toxicity of nanopolystyrene particles. Sci Total Environ 643:119–126

    Article  CAS  Google Scholar 

  34. Qu M, Qiu Y-X, Kong Y, Wang D-Y (2019) Amino modification enhances reproductive toxicity of nanopolystyrene on gonad development and reproductive capacity in nematode Caenorhabditis elegans. Environ Pollut 254:112978

    Article  CAS  Google Scholar 

  35. Zhao Y-L, Wang D-Y (2012) Formation and regulation of adaptive response in nematode Caenorhabditis elegans. Oxidat Med Cell Longev 2012:564093

    Article  Google Scholar 

  36. Ye B-P, Rui Q, Wu Q-L, Wang D-Y (2010) Metallothioneins are required for formation of cross-adaptation response to neurobehavioral toxicity from lead and mercury exposure in nematodes. PLoS One 5:e14052

    Article  Google Scholar 

  37. Wang D-Y, Xing X-J (2010) Pre-treatment with mild UV irradiation suppresses reproductive toxicity induced by subsequent cadmium exposure in nematodes. Ecotoxicol Environ Safety 73:423–429

    Article  CAS  Google Scholar 

  38. Helmcke KJ, Aschner M (2010) Hormetci effect of methylmercury on Caenorhabditis elegans. Toxicol Appl Pharmacol 248:156–164

    Article  CAS  Google Scholar 

  39. Wang D-Y, Liu P-D, Xing X-J (2010) Pretreatment with mild UV irradiation increases the resistance of nematode Caenorhabditis elegans to toxicity on locomotion behavior from metal exposure. Environ Toxicol Pharmacol 29:213–222

    Article  CAS  Google Scholar 

  40. Wang D-Y, Xing X-J (2009) Pre-treatment with mild metal exposure suppresses the neurotoxicity on locomotion behavior induced by the subsequent severe metal exposure in Caenorhabditis elegans. Environ Toxicol Pharmacol 28:459–464

    Article  CAS  Google Scholar 

  41. Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, Senoo-Matsuda N, Yanase S, Ayusawa D, Suzuki K (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394:694–697

    Article  CAS  Google Scholar 

  42. Fischer F, Bohm L, Hoss S, Mohlenkamp C, Claus E, During R, Schafer S (2016) Passive dosing in chronic toxicity tests with the nematode Caenorhabditis elegans. Environ Sci Technol 50:9708–9716

    Article  CAS  Google Scholar 

  43. Spann N, Goedkoop W, Traunspurger W (2015) Phenanthrene bioaccumulation in the nematode Caenorhabditis elegans. Environ Sci Technol 49:1842–1850

    Article  CAS  Google Scholar 

  44. Wu Q-L, Zhao Y-L, Fang J-P, Wang D-Y (2014) Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide. Nanoscale 6:5894–5906

    Article  CAS  Google Scholar 

  45. Roh J, Lee H, Kwon J (2014) Changes in the expression of cyp35a family genes in the soil nematode Caenorhabditis elegans under controlled exposure to chlorpyrifos using passive dosing. Environ Sci Technol 48:10475–10481

    Article  CAS  Google Scholar 

  46. Gu C-X, Wen Y, Wu L, Wang Y-D, Wu Q-L, Wang D-Y, Wang Y-B, Liu Q-Z, Zhang J-S (2020) Arsenite-induced transgenerational glycometabolism is associated with up-regulation of H3K4me2 via inhibiting spr-5 in Caenorhabditis elegans. Toxicol Lett 326:11–17

    Article  CAS  Google Scholar 

  47. Qu M, Li D, Zhao Y-L, Yuan Y-J, Wang D-Y (2020) Exposure to low-dose nanopolystyrene induces the response of neuronal JNK MAPK signaling pathway in nematode Caenorhabditis elegans. Environ Sci Eur 32:58

    Article  CAS  Google Scholar 

  48. Qu M, Li D, Qiu Y-X, Wang D-Y (2020) Neuronal ERK MAPK signaling in response to low-dose nanopolystyrene exposure by suppressing insulin peptide expression in Caenorhabditis elegans. Sci Total Environ 724:138378

    Article  CAS  Google Scholar 

  49. Li D, Deng Y-J, Wang S-T, Du H-H, Xiao G-S, Wang D-Y (2020) Assessment of nanopolystyrene toxicity under fungal infection condition in Caenorhabditis elegans. Ecotoxicol Environ Safety. https://doi.org/10.1016/j.ecoenv.2020.110625

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D. (2020). Role of Exposure Dose in Toxicity Induction of Environmental Toxicants or Stresses. In: Exposure Toxicology in Caenorhabditis elegans. Springer, Singapore. https://doi.org/10.1007/978-981-15-6129-0_11

Download citation

Publish with us

Policies and ethics