Skip to main content

β-Sitosterol: Predominant Phytosterol of Therapeutic Potential

  • Chapter
  • First Online:
Innovations in Food Technology

Abstract

In plant cell membranes, there is a group of naturally occurring compounds referred to as phytosterols (plant sterol and stanol esters). Phytosterols are structurally similar to cholesterol, occurring in plants and vary in absence or presence of a double bond in carbon side chain. These phytosterols does not produce undesirable side effects and are generally recognized as safe (GRAS). There are around more than 200 sterols, and allied compounds have been identified. The plants exclusively made the most predominant phytosterol that is β-sitosterol, a white waxy powder in its pure form. A deoxyxylulose and mevalonate pathway promotes its biological synthesis. It is majorly found in plant kingdom (nuts and seeds, fruits, fresh vegetables, and higher concentration in unrefined plant oils such as flaxseed, olive, canola, corn, and sesame oil). Some clinical and preclinical studies suggest that β-sitosterol provides many significant health benefits. It lowers the level of bad cholesterol (LDL) and reduces the risk of coronary artery disease, heart attack, and atherosclerosis, preventing many types of cancers along with supporting body’s natural recovery process. This review article is aimed at the chemistry of β-sitosterol, biosynthetic pathways, and their metabolism along with wide-range pharmacological and therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aguirre-Hernández E, Rosas-Acevedo H, Soto-Hernández M, Martínez AL, Moreno J, González-Trujano ME (2007) Bioactivity-guided isolation of beta-sitosterol and some fatty acids as active compounds in the anxiolytic and sedative effects of Tilia americana var. Mexicana Planta Med 73:1148–1155

    Article  PubMed  CAS  Google Scholar 

  • Akhisa T, Kokke W (1991) Naturally occurring sterols and related compounds from plants. In: Patterson GW, Nes WD (eds) Physiology and biochemistry of sterols. American Oil Chemists’ Society, Champaign

    Google Scholar 

  • Arokiyaraj S, Vimalarasan A, Hemachandran M, Priya D (2011) Antibacterial activity of beta-sitosterol of Vitex agnus castus. Int J of Appl Biol 2:12–15

    Google Scholar 

  • Awad AB, Downie AC, Fink CS (2000) Inhibition of growth and stimulation of apoptosis by beta-sitosterol treatment of MDA-MB-231 human breast cancer cells in culture. Int J Mol Med 5:541–546

    CAS  PubMed  Google Scholar 

  • Baskar AA, Al Numair KS, Paulraj MG, Alsaif MA, Al Muamar M, Ignacimuthu S (2012) β-Sitosterol prevents lipid peroxidation and improves antioxidant status and histoarchitecture in rats with 1,2-dimethylhydrazine-induced colon cancer. J Med Food 15:335–343

    Article  CAS  Google Scholar 

  • Bouic PJ (1997) Immunomodulation in HIV/AIDS: the Tygerberg/Stellenbosch University experience. AIDS Bull 6:18–20

    Google Scholar 

  • Bouic PJ (2001) The role of phytosterols and phytosterolins in immune modulation: a review of the past 10 years. Curr Opin Clin Nutr Metab Care 4:471–475

    Article  CAS  PubMed  Google Scholar 

  • British Dietetic Association (2012). https://www.bda.uk.com/foodfacts/plantstanolsandsterols. Accessed 22 June 2014

  • Chai JW, Kuppusamy UR, Kanthimathi MS (2008) Beta-sitosterol induces apoptosis in MCF-7 cells. Malays J Biochem Molecular Bio 16:28–30

    Google Scholar 

  • Chai JW, Lim SL, Kanthimathi M, Kuppusamy UR (2011) Gene regulation in β-sitosterol-mediated stimulation of adipogenesis, glucose uptake, and lipid mobilization in rat primary adipocytes. Genes Nutr 6:181–188

    Article  CAS  PubMed  Google Scholar 

  • Choi YH, Kong KR, Kim Y, Jung KO, Kil JH, Rhee SH, Park KY (2003) Induction of bax and activation of caspases during β-sitosterol-mediated apoptosis in human colon cancer cells. Int J Oncol 23:1657–1662

    CAS  PubMed  Google Scholar 

  • De-Eknamkul W, Potduang B (2003) Biosynthesis of β-sitosterol and stigmasterol in Croton sublyratus proceeds via a mixed origin of isoprene units. Phytochemistry 62:389–398

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Sharma AK, Dobhal MP, Sharma MC, Gupta RS (2011) Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. J Diabetes 3:29–37

    Article  CAS  PubMed  Google Scholar 

  • Gylling H, Simonen P (2015) Phytosterols, phytostanols, and lipoprotein metabolism. Nutrients 7:7965–7977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamedi A, Ghanbari A, Razavipour R, Saeidi V, Zarshenas MM, Sohrabpour M, Azari H (2015) Alyssum homolocarpum seeds: phytochemical analysis and effects of the seed oil on neural stem cell proliferation and differentiation. J Nat Med 69:1–10

    Article  CAS  Google Scholar 

  • Hang J, Dussault P (2010) A concise synthesis of beta-sitosterol and other phytosterols. Steroids 75:879–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu FB (2003) Plant-based foods and prevention of cardiovascular disease: an overview. Am J Clin Nutr 78:544S–551S

    Article  CAS  PubMed  Google Scholar 

  • Ivorra M, D’ocon M, Paya M, Villar A (1997) Antihyperglycemic and insulin-releasing effects of beta-sitosterol 3-beta-D-glucoside and its aglycone, beta-sitosterol. Arch Int Pharmacodyn Thér 296:224–231

    Google Scholar 

  • Ju YH, Clausen LM, Allred KF, Almada AL, Helferich WG (2004) β-sitosterol, β-sitosterol glucoside, and a mixture of β-sitosterol and β-sitosterol glucoside modulate the growth of estrogen-responsive breast cancer cells In vitro and in ovariectomized athymic mice. J Nutr 134:1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Khripach VA, Zhabinskii VN, Konstantinova OV, Khripach NB, Antonchick AV, Antonchick AP, Schneider B (2005) Preparation of (25R)- and (25S)-26-functionalized steroids as tools for biosynthetic studies of cholic acids. Steroids 70:551–562

    Article  CAS  PubMed  Google Scholar 

  • Kiprono PC, Kaberia F, Keriko JM, Karanja JN (2000) The in vitro anti-fungal and anti-bacterial activities of β -sitosterol from Senecio lyratus (Asteraceae). Z Naturforschung C 55:485–488

    Article  CAS  Google Scholar 

  • Kritchevsky D (1997) Phytosterols. In: Kristchevsky, Bonfield (eds) Dietary fiber in health and disease, vol 427. Plenum Press, New York, pp 235–242

    Chapter  Google Scholar 

  • López-Rubalcava C, Piña-Medina B, Estrada-Reyes R, Heinze G, Martínez-Vázquez M (2006) Anxiolytic-like actions of the hexane extract from leaves of Annona cherimola in two anxiety paradigms: possible involvement of the GABA/benzodiazepine receptor complex. Life Sci 78:730–737

    Article  PubMed  CAS  Google Scholar 

  • Malini T, Vanithakumari G (1991) Antifertility effects of beta-sitosterol in male albino rats. J Ethnopharmacol 35:149–153

    Article  CAS  PubMed  Google Scholar 

  • Manayi A, Saeidnia S, Ostad SN, Hadjiakhoondi A, Shams Ardekani MR, Vazirian M, Akhtar Y, Khanavi M (2013) Chemical constituents and cytotoxic effect of the main compounds of Lythrum salicaria L. Z Naturforsch 68:367–375

    Article  CAS  Google Scholar 

  • Moon EJ, Lee YM, Lee OH, Lee MJ, Lee SK, Chung MH, Park YI, Sung CK, Choi JS, Kim KW (1999) A ncovel angiogenic factor derived from aloe vera gel: β-sitosterol, a plant sterol. Angiogenesis 3:117–123

    Article  CAS  PubMed  Google Scholar 

  • Moreau RA, Whitaker BD, Hicks KB (2002) Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog Lipid Res 41:457–500

    Article  CAS  PubMed  Google Scholar 

  • Njinga NS, Sule MI, Pateh UU, Hassan HS, Abdullahi ST, Ache RN (2016) Isolation and antimicrobial activity of β-Sitosterol-3-OGlucoside from Lannea Kerstingii Engl. and K. Krause (Anacardiaceae). Nitte Univ J Health Sci (NUJHS) 6:4–8

    Google Scholar 

  • Novotny L, Abdel-Hamid ME, Hunakova L (2017) Anticancer potential of β-sitosterol. Int J Clin Pharmacol Pharmacother 2:2–4

    Article  Google Scholar 

  • Nweze NE (2011) In vitro anti-trypanosomal activity of Morinda lucida leaves. Afr J Biotechnol 11:1812–1817

    Google Scholar 

  • Padee P, Nualkaew S, Talubmook C, Sakuljaitrong S (2010) Hypoglycemic effect of a leaf extract of Pseuderanthemum palatiferum (Nees) Radlk. in normal and streptozotocin-induced diabetic rats. J Ethnopharmacol 132:491–496

    Article  CAS  PubMed  Google Scholar 

  • Phillips KM, Ruggio DM, Ashraf-Khorassani M (2005) Phytosterol composition of nuts and seeds commonly consumed in the United States. J Agric Food Chem 53:9436–9445

    Article  CAS  PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008) Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) sweet. Parasitol Res 102:981–988

    Article  PubMed  Google Scholar 

  • Rao N, Mittal S, Sudhanshu ME (2013) Antioxidant potential and validation of bioactive B-Sitosterol in Eulophia campestris Wall. Adv Biores 4:136–142

    CAS  Google Scholar 

  • Raport E (2008) Consumption of food and beverages with added plant sterols in the European Union. EFSA J 133:1–21

    Google Scholar 

  • Ras RT, Geleijnse JM, Trautwein EA (2014) LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: a meta-analysis of randomised controlled studies. Br J Nutr 112:214–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Retelny VS, Neuendorf A, Roth JL (2008) Nutrition protocols for the prevention of cardiovascular disease. Nutr Clin Pract 23:468–476

    Article  PubMed  Google Scholar 

  • Ribeiro N, Streiff S, Heissler D, Elhabiri M, Albrecht-Gary AM, Atsumi M, Gotoh M, Desaubry L, Nakatani Y, Ourisson G (2007) Reinforcing effect of bi- and tri-cyclopolyprenols on ‘primitive’ membranes made of polyprenyl phosphates. Tetrahedron 63:3395–3407

    Article  CAS  Google Scholar 

  • Richter WO, Geiss HC, Sönnichsen AC, Schwandt P (1996) Treatment of severe hypercholesterolemia with a combination of beta-sitosterol and lovastatin. Curr Therap Res 57:497–505

    Article  CAS  Google Scholar 

  • Ryökkynen A, Käyhkö UR, Mustonen AM, Kukkonen JV, Nieminen P (2005) Multigenerational exposure to phytosterols in the mouse. Reprod Toxicol 19:535–540

    Article  PubMed  CAS  Google Scholar 

  • Saeidnia S, Manayi A, Gohari AR, Abdollahi M (2014) The story of beta-sitosterol – a review. Europ J Med Plants 4:590–609

    Article  CAS  Google Scholar 

  • Santos A, Niero R, Yunes R, Pizzolatti M, Delle Monache F, Calixto J (1995) Antinociceptive properties of steroids isolated from Phyllanthus corcovadensis in mice. Planta Med 61:329–332

    Article  CAS  PubMed  Google Scholar 

  • Schneider K, DiNovi M, Baines J, Schlatter J (2009) Phytosterols, phytostanols and their esters. Saf Eval Certain Food Addit 60:117–157

    CAS  Google Scholar 

  • Shi C, Wu F, Zhu X, Xu J (2013) Incorporation of β-sitosterol into the membrane increases resistance to oxidative stress and lipid peroxidation via estrogen receptor-mediated PI3K/GSK3β signalling. Biochim Biophys Acta 1830:2538–2544

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Gupta RS (2016) Antifertility activity of β-sitosterol isolated from Barleria prionitis (l.) roots in male albino rats. Int J Pharm Pharm Sci 8:88–96

    Article  CAS  Google Scholar 

  • Subramaniam S, Keerthiraja M, Sivasubramanian A (2014) Synergistic antibacterial action of β-sitosterol-D-glucopyranoside isolated from Desmostachya bipinnata leaves with antibiotics against common human pathogens. Rev Bras Farm 24:44–50

    Article  CAS  Google Scholar 

  • Sugano M, Morioka H, Ikeda I (1977) A comparison of hypocholesterolemic activity of betasitosterol and beta-sitostanol in rats. J Nutr 107:2011–2019

    Article  CAS  PubMed  Google Scholar 

  • Vivancos M, Moreno JJ (2005) β-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic Biol Med 39:91–97

    Article  CAS  PubMed  Google Scholar 

  • Von Holtz RL, Fink CS, Awad AB (1998) Beta-sitosterol activates the sphingomyelin cycle and induces apoptosis in LNCaP human prostate cancer cells. Nutr Cancer 32:8–12

    Article  Google Scholar 

  • Yin Y, Liu X, Liu J, Cai E, Zhao Y, LiH ZL, LiP GY (2018) The effect of beta-sitosterol and its derivatives on depression by the modification of 5-HT, DA and GABA-ergic systems in mice. RSC Adv 8:671–680

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, E. (2020). β-Sitosterol: Predominant Phytosterol of Therapeutic Potential. In: Mishra, P., Mishra, R.R., Adetunji, C.O. (eds) Innovations in Food Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6121-4_32

Download citation

Publish with us

Policies and ethics